Synthesis of Bisoxazole and Bromo-substituted Aryloxazoles
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthesis and Characterization
3.2.1. 5,5′-(2,5-Dimethoxy-1,4-phenylene)Bis(oxazole) (10)
3.2.2. Synthesis of Bromo-Oxazoles 12–14
3.2.3. 2,4-Dibromo-5-(4-Bromo-2,5-Dimethoxyphenyl)oxazole (12)
3.2.4. 2-Bromo-5-(4-Bromo-2,5-Dimethoxyphenyl)oxazole (13)
3.2.5. 4-Bromo-5-(4-Bromo-2,5-Dimethoxyphenyl)oxazole (14)
3.3. Data Collection and Refinement Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kakkar, S.; Narasimhan, B. A comprehensive review on biological activities of oxazole derivatives. BMC Chem. 2019, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Z.; Zhao, Z.L.; Zhou, C.H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem. 2018, 144, 444–492. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.C. (Ed.) . Oxazoles: Synthesis, Reactions and Spectroscopy, Part B; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Jin, Z. Muscarine, imidazole, oxazole and thiazole alkaloids. Nat. Prod. Rep. 2005, 22, 196–229. [Google Scholar] [CrossRef] [PubMed]
- Gomstyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd. 2012, 48, 7–10. [Google Scholar]
- Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015–2016) in anticancer hybrids. Eur. J. Med. Chem. 2017, 142, 179–212. [Google Scholar] [CrossRef]
- Rodriquez, M.; Aquino, M.; Bruno, I.; De Martino, G.; Taddei, M.; Gomez-Paloma, L. Chemistry and biology of chromatin remodeling agents: State of art and future perspectives of HDAC inhibitors. Curr. Med. Chem. 2006, 13, 1119–1139. [Google Scholar] [CrossRef]
- Sharma, V.; Bhatia, P.; Alam, O.; Javed Naim, M.; Nawaz, F.; Ahmad Sheikh, A.; Jha, M. Recent advancement in the discovery and development of COX-2 inhibitors: Insight into biological activities and SAR studies (2008–2019). Bioorg. Chem. 2019, 89, 103007. [Google Scholar] [CrossRef]
- Dayam, R.; Grande, F.; Al-Mawsawi, L.Q.; Neamati, N. Recent advances in the design and discovery of small-molecule therapeutics targeting HER2/neu. Expert Opin. Ther. Pat. 2007, 17, 83–103. [Google Scholar] [CrossRef]
- Kaur, R.; Palta, K.; Kumar, M.; Bhargava, M.; Dahiya, L. Therapeutic potential of oxazole scaffold: A patent review (2006–2017). Expert Opin. Ther. Pat. 2018, 28, 783–812. [Google Scholar] [CrossRef]
- Joshi, S.; Bisht, A.S.; Juyal, D. Systematic scientific study of 1,3-oxazole derivatives as a useful lead for pharmaceuticals: A review. Pharma Innovation 2017, 6, 109–117. [Google Scholar]
- Zhou, H.; Cheng, J.-Q.; Wang, Z.-S.; Chen, F.-H.; Liu, X.-H. Oxazole: A Promising Building Block for the Development of Potent Antitumor Agents. Curr. Top. Med. Chem. 2016, 16, 3582–3589. [Google Scholar] [CrossRef] [PubMed]
- Stokes, N.R.; Baker, N.; Bennett, J.M.; Chauhan, P.K.; Collins, I.; Davies, D.T.; Gavade, M.; Kumar, D.; Lancett, P.; Macdonald, R.; et al. Design, synthesis and structure–activity relationships of substituted oxazole–benzamide antibacterial inhibitors of FtsZ. Bioorg. Med. Chem. Lett. 2014, 24, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H.; Imamura, K.; Haruta, J.; Wakitani, K. 4-(4-Cycloalkyl/aryl-oxazol-5-yl)benzenesulfonamides as Selective Cyclooxygenase-2 Inhibitors: Enhancement of the Selectivity by Introduction of a Fluorine Atom and Identification of a Potent, Highly Selective, and Orally Active COX-2 Inhibitor JTE-522. J. Med. Chem. 2002, 45, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.J.; Zhang, D.J.; Peng, Z.G.; Li, Y.H.; Shan, G.Z.; Zuo, L.M.; Wu, L.T.; Li, S.Y.; Gao, R.M.; Li, Z.R. Synthesis and antiviral activity of a novel class of (5-oxazolyl)phenyl amines. Eur. J. Med. Chem. 2013, 69, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Zahanich, I.; Kondratov, I.; Naumchyk, V.; Kheylik, Y.; Platonov, M.; Zozulya, S.; Krasavin, M. Phenoxymethyl 1,3-oxazoles and 1,2,4-oxadiazoles as potent and selective agonists of free fatty acid receptor 1 (GPR40). Bioorg. Med. Chem. Lett. 2015, 25, 3105–3111. [Google Scholar] [CrossRef]
- Shaw, A.Y.; Henderson, M.C.; Flynn, G.; Samulitis, B.; Han, H.; Stratton, S.P.; Chow, H.H.S.; Hurley, L.H.; Dorr, R.T. Characterization of novel diaryl oxazole-based compounds as potential agents to treat pancreatic cancer. J. Pharmacol. Exp. Ther. 2009, 331, 636–647. [Google Scholar] [CrossRef]
- Harris, P.A.; Cheung, M.; Hunter, R.N., III; Brown, M.L.; Veal, J.M.; Nolte, R.T.; Wang, L.; Liu, W.; Crosby, R.M.; Johnson, J.H.; et al. Discovery and evaluation of 2-anilino-5-aryloxazoles as a novel class of VEGFR2 kinase inhibitors. J. Med. Chem. 2005, 48, 1610–1619. [Google Scholar] [CrossRef]
- Palmer, D.C. (Ed.) Oxazoles: Synthesis, Reactions and Spectroscopy, Part A; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Yan, X.; Wen, J.; Zhou, L.; Fan, L.; Wang, X.; Xu, Z. Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity. Curr. Top. Med. Chem. 2020, 20, 1916–1937. [Google Scholar] [CrossRef]
- Rymbai, E.M.; Chakraborty, A.; Choudhury, R.; Verma, N.J.; De, B. Review on Chemistry and Therapeutic Activity of the Derivatives of Furan and Oxazole: The Oxygen Containing Heterocycles. Pharma Chem. 2019, 11, 20–41. [Google Scholar]
- Kadu, V.D. Recent Advances for Synthesis of Oxazole Heterocycles via C-H/C-N Bond Functionalization of Benzylamines. ChemistrySelect 2022, 7, e202104028. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, W.; Zhang, D. Recent Advances in the Synthesis of Oxazole-Based Molecules via van Leusen Oxazole Synthesis. Molecules 2020, 25, 1594. [Google Scholar] [CrossRef] [PubMed]
- Kotha, S.; Shah, V. Synthesis of bis- and trisoxazole derivatives via Suzuki-Miyaura cross-coupling reaction and van Leusen oxazole synthesis. Synthesis 2007, 23, 3653–3658. [Google Scholar] [CrossRef]
- Kotha, S.; Todeti, S.; Gopal, M.B.; Datta, A. Synthesis and photophysical properties of c 3-symmetric star-shaped molecules containing heterocycles such as furan, thiophene, and oxazole. ACS Omega 2017, 2, 6291–6297. [Google Scholar] [CrossRef] [PubMed]
- Kotha, S.; Cheekatla, S.R. Design and Synthesis of Pentacycloundecane Cage Compound Containing Oxazole Moiety. Heterocycles 2020, 100, 1623–1632. [Google Scholar] [CrossRef]
- Kotha, S.; Sreenivasachary, N. A new synthetic approach to 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) derivatives via a [2+2+2] cycloaddition reaction. Bioorg. Med. Chem. Lett. 2000, 10, 1413–1415. [Google Scholar] [CrossRef]
- Kotha, S.; Sreenivasachary, N. Synthesis of 1,2,3,4-Tetrahydroisoquinoline-3-carboxylic Acid (Tic) Derivatives by Cycloaddition Approaches. Eur. J. Org. Chem. 2001, 18, 3375–3383. [Google Scholar] [CrossRef]
- Van Leusen, D.; Van Leusen, A.M. Synthetic Uses of Tosylmethyl Isocyanide (TosMIC). Org. React. 2001, 57, 417–666. [Google Scholar]
- Mathiyazhagan, A.D.; Anilkumar, G. Recent advances and applications of p-toluenesulfonylmethyl isocyanide (TosMIC). Org. Biomol. Chem. 2019, 17, 6735–6747. [Google Scholar] [CrossRef]
- Shao, P.; Li, Z.; Luo, J.; Wang, H.; Qin, J. A Convenient Synthetic Route to 2,5 Dialkoxyterephthalaldehyde. Synth. Commun. 2005, 35, 49–53. [Google Scholar] [CrossRef]
- Roviello, A.; Borbone, F.; Carella, A.; Diana, R.; Roviello, G.; Panunzi, B.; Ambrosio, A.; Maddalena, P. High quantum yield photoluminescence of new polyamides containing oligo-PPV amino derivatives and related oligomers. J. Polym. Sci. A Polym. Chem. 2009, 47, 2677–2689. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Macrae, C.F.; Bruno, L.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, L.R.; Van de Streek, J.; Wood, P.A. Mercury CSD 2.0 -New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotha, S.; Cheekatla, S.R. Synthesis of Bisoxazole and Bromo-substituted Aryloxazoles. Molbank 2022, 2022, M1440. https://doi.org/10.3390/M1440
Kotha S, Cheekatla SR. Synthesis of Bisoxazole and Bromo-substituted Aryloxazoles. Molbank. 2022; 2022(3):M1440. https://doi.org/10.3390/M1440
Chicago/Turabian StyleKotha, Sambasivarao, and Subba Rao Cheekatla. 2022. "Synthesis of Bisoxazole and Bromo-substituted Aryloxazoles" Molbank 2022, no. 3: M1440. https://doi.org/10.3390/M1440
APA StyleKotha, S., & Cheekatla, S. R. (2022). Synthesis of Bisoxazole and Bromo-substituted Aryloxazoles. Molbank, 2022(3), M1440. https://doi.org/10.3390/M1440