Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = electrophilic aromatic bromination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4424 KiB  
Article
Synthesis and Structure of Unsymmetrical Anthracenyl-Isoxazole Antitumor Agents Via the Diastereoselective Bromination of 3-(9′-Anthryl)-Isoxazole Esters
by Michael J. Campbell, Daniel A. Decato, Chun Li, Matthew J. Weaver and Nicholas R. Natale
Crystals 2024, 14(3), 256; https://doi.org/10.3390/cryst14030256 - 5 Mar 2024
Cited by 1 | Viewed by 1957
Abstract
In pursuit of unsymmetrical precursors for the novel series of anthracenyl-isoxazole amide (AIM) antitumor agents, a series of substituted anthracenes were subjected to bromination and re-aromatization in our study, during which we solved four single crystal X-ray diffractometry (Sc-xrd) structures which we report [...] Read more.
In pursuit of unsymmetrical precursors for the novel series of anthracenyl-isoxazole amide (AIM) antitumor agents, a series of substituted anthracenes were subjected to bromination and re-aromatization in our study, during which we solved four single crystal X-ray diffractometry (Sc-xrd) structures which we report herein. The C-9 nitrile oxide, after its reaction with bromine, was isolated, but when subjected to re-aromatization, it returned to the starting 10-bromo nitrile oxide 1, which did provide an accurate crystal structure, with R = 0.018. The 10-halogenated 3-(9’-anthryl)-isoxazole esters were subjected to bromination and re-aromatization. Surprisingly, the yields obtained in the presence of the isoxazole were reasonably good (62–68% isolated yields), and the major diastereomers allowed for the characterization using Sc-xrd. The penta bromo product 2 showed a trans, trans, cis relationship for the four bromines on the A-ring of the anthracene, and we observed that for the unit cell, the atropisomers displayed a 1:1 ratio at the chiral axis between the isoxazole and anthrancene rings. Similarly, the 10-chloro 3 indicated a ratio of 1:1 at the chiral axis in the crystal structure. A base-induced re-aromatization afforded 3,10-dihalogenated analogues selectively in very good yields (X = Cl, 89%; X = Br 92%), of which the dibromo 4 was characterized using Sc-xrd. The improved yields of the unique diastereomeric bromination products suggested the consideration of a novel electrophilic aromatic substitution mechanism driven by the stereo-electronic environment, imposed by the isoxazole ester substituent. The promise of the application of this chemistry in the future development of AIM antitumor agents is suggested. Full article
(This article belongs to the Special Issue Feature Papers in Biomolecular Crystals in 2022-2023)
Show Figures

Figure 1

24 pages, 6531 KiB  
Article
Bromopyrene Symphony: Synthesis and Characterisation of Isomeric Derivatives at Non-K Region and Nodal Positions for Diverse Functionalisation Strategies
by Dawid Zych and Martyna Kubis
Molecules 2024, 29(5), 1131; https://doi.org/10.3390/molecules29051131 - 3 Mar 2024
Cited by 2 | Viewed by 2787
Abstract
Pyrene, a renowned aromatic hydrocarbon, continues to captivate researchers due to its versatile properties and potential applications across various scientific domains. Among its derivatives, bromopyrenes stand out for their significance in synthetic chemistry, materials science, and environmental studies. The strategic functionalisation of pyrene [...] Read more.
Pyrene, a renowned aromatic hydrocarbon, continues to captivate researchers due to its versatile properties and potential applications across various scientific domains. Among its derivatives, bromopyrenes stand out for their significance in synthetic chemistry, materials science, and environmental studies. The strategic functionalisation of pyrene at non-K region and nodal positions is crucial for expanding its utility, allowing for diverse functionalisation strategies. Bromo-substituted precursors serve as vital intermediates in synthetic routes; however, the substitution pattern of bromoderivatives significantly impacts their subsequent functionalisation and properties, posing challenges in synthesis and purification. Understanding the distinct electronic structure of pyrene is pivotal, dictating the preferential electrophilic aromatic substitution reactions at specific positions. Despite the wealth of literature, contradictions and complexities persist in synthesising suitably substituted bromopyrenes due to the unpredictable nature of substitution reactions. Building upon historical precedents, this study provides a comprehensive overview of bromine introduction in pyrene derivatives, offering optimised synthesis conditions based on laboratory research. Specifically, the synthesis of mono-, di-, tri-, and tetrabromopyrene isomers at non-K positions (1-, 3-, 6-, 8-) and nodal positions (2-, 7-) is systematically explored. By elucidating efficient synthetic methodologies and reaction conditions, this research contributes to advancing the synthesis and functionalisation strategies of pyrene derivatives, unlocking new possibilities for their utilisation in various fields. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

7 pages, 1961 KiB  
Communication
Synthesis of Bisoxazole and Bromo-substituted Aryloxazoles
by Sambasivarao Kotha and Subba Rao Cheekatla
Molbank 2022, 2022(3), M1440; https://doi.org/10.3390/M1440 - 6 Sep 2022
Cited by 2 | Viewed by 2829
Abstract
Herein, we report a bisoxazole derivative as well as a bromo-substituted oxazole derivatives via a simple approach. The synthesis begins with an inexpensive and readily available starting material, such as 2,5-dimethoxybenzaldehyde, hydroquinone, and p-toluenesulfonylmethyl isocyanide (TosMIC). This approach relies on the Van [...] Read more.
Herein, we report a bisoxazole derivative as well as a bromo-substituted oxazole derivatives via a simple approach. The synthesis begins with an inexpensive and readily available starting material, such as 2,5-dimethoxybenzaldehyde, hydroquinone, and p-toluenesulfonylmethyl isocyanide (TosMIC). This approach relies on the Van Leusen oxazole method and electrophilic aromatic bromination. The structures of bisoxazole and bromosubstituted aryloxazoles were fully supported by spectroscopic methods (IR, NMR, and HRMS) and further established using single crystal X-ray diffraction studies. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

16 pages, 352 KiB  
Article
Regioselective Electrophilic Aromatic Bromination: Theoretical Analysis and Experimental Verification
by Hui-Jing Li, Yan-Chao Wu, Jian-Hong Dai, Yan Song, Runjiao Cheng and Yuanyuan Qiao
Molecules 2014, 19(3), 3401-3416; https://doi.org/10.3390/molecules19033401 - 20 Mar 2014
Cited by 26 | Viewed by 19861
Abstract
Electrophilic aromatic bromination is the most common synthetic method used to prepare aryl bromides, which are very useful intermediates in organic synthesis. To understand the experimental results in electrophilic aromatic brominations, ab initio calculations are used here for a tentative analysis of the [...] Read more.
Electrophilic aromatic bromination is the most common synthetic method used to prepare aryl bromides, which are very useful intermediates in organic synthesis. To understand the experimental results in electrophilic aromatic brominations, ab initio calculations are used here for a tentative analysis of the positional selectivity. The calculated results agree well with the corresponding experimental data, and the reliability of the resulting positional selectivity was verified by the corresponding experimental data. Full article
Show Figures

Graphical abstract

Back to TopTop