Abstract
The genus Satyrium (Orchidaceae) is a large, mostly sub-Saharan genus with a single species reported from Madagascar and Asia. Taxonomical complexity and high morphological diversity make the classification within the genus difficult to handle. In this study, we attempted to solve this problem using a comprehensive approach based on data from multiple sources. We combined morphological data from vegetative parts with data on flower structure using timescale phylogenetics conducted for both nuclear internal transcribed spacer (ITS) and plastid markers (matK, trnS-trnG, trnL, trnL-trnF). Phylogenetic studies confirmed most of the results of previous studies and led to the identification of six potential hybridization events within the genus. Morphological diversity often does not correspond to phylogenetic relationships within the genus, and many evolutionary lineages began to diverge only at the end of the early Miocene and in the late Miocene. The development of similar characteristics is the result of this diversification under the influence of similar environmental pressures. Reconstruction of the historical geographical range of Satyrium showed that the regions of South Africa and the mountainous areas of Eastern Africa played the most important role in the diversification of the genus.