Real-World Impact of Finerenone on Albuminuria in Patients with Diabetes and CKD
Abstract
1. Introduction
2. Results
2.1. Baseline Characteristics of the Studied Population
2.2. Renoprotective Treatment During the Study
2.3. eGFR and Albuminuria Evolution During Follow-Up
2.4. Other Clinical Parameters
2.5. Adverse Events
3. Discussion
4. Materials and Methods
4.1. Study Design and Patients
4.2. Study Follow-Up and Data Collection
4.3. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Available online: https://www.Who.Int/News-Room/Fact-Sheets/Detail/Diabetes (accessed on 6 November 2025).
- Górriz, J.L.; González-Juanatey, J.R.; Facila, L.; Soler, M.J.; Valle, A.; Ortiz, A. Finerenone: Towards a Holistic Therapeutic Approach to Patients with Diabetic Kidney Disease. Nefrol. (Engl. Ed.) 2023, 43, 386–398. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Reeves, W.B.; Awad, A.S. Pathophysiology of Diabetic Kidney Disease: Impact of SGLT2 Inhibitors. Nat. Rev. Nephrol. 2021, 17, 319–334. [Google Scholar] [CrossRef]
- López-Martínez, M.; Luis-Lima, S.; Morales, E.; Navarro-Díaz, M.; Negrín-Mena, N.; Folgueras, T.; Escamilla, B.; Estupiñán, S.; Delgado-Mallén, P.; Marrero-Miranda, D.; et al. The Estimation of GFR and the Adjustment for BSA in Overweight and Obesity: A Dreadful Combination of Two Errors. Int. J. Obes. 2020, 44, 1129–1140. [Google Scholar] [CrossRef]
- Luis-Lima, S.; Higueras Linares, T.; Henríquez-Gómez, L.; Alonso-Pescoso, R.; Jimenez, A.; López-Hijazo, A.M.; Negrín-Mena, N.; Martín, C.; Sánchez-Gallego, M.; Galindo-Hernández, S.J.; et al. The Error of Estimated GFR in Type 2 Diabetes Mellitus. J. Clin. Med. 2019, 8, 1543. [Google Scholar] [CrossRef]
- Cebrian, A.; Escobar, C.; Aranda, U.; Palacios, B.; Capel, M.; Sicras, A.; Sicras, A.; Hormigo, A.; Manito, N.; Botana, M.; et al. The 2021 European Society of Cardiology Cardiovascular Disease Prevention Guidelines: Adding Albuminuria to the SCORE Scale Increases the Prevalence of Very High/High Cardiovascular Risk Among Patients with Chronic Kidney Disease. Clin. Kidney J. 2022, 15, 1204–1208. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic Kidney Disease. Lancet 2021, 398, 786–802. [Google Scholar] [CrossRef]
- Moreno-Pérez, O.; Reyes-García, R.; Modrego-Pardo, I.; López-Martínez, M.; Soler, M.J. Are We Ready for an Adipocentric Approach in People Living with Type 2 Diabetes and Chronic Kidney Disease? Clin. Kidney J. 2024, 17, sfae039. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Erraez, S.; López-Mesa, M.; Gómez-Fernández, P. Bloqueantes del Receptor Mineralcorticoide en la Enfermedad Renal Crónica. Nefrología 2021, 41, 258–275. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Chan, J.C.; Cooper, M.E.; Gansevoort, R.T.; Haller, H.; Remuzzi, G.; Rossing, P.; Schmieder, R.E.; Nowack, C.; et al. Effect of Finerenone on Albuminuria in Patients with Diabetic Nephropathy. JAMA 2015, 314, 884. [Google Scholar] [CrossRef]
- Agarwal, R.; Filippatos, G.; Pitt, B.; Anker, S.D.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Gebel, M.; Ruilope, L.M.; et al. Cardiovascular and Kidney Outcomes with Finerenone in Patients with Type 2 Diabetes and Chronic Kidney Disease: The FIDELITY Pooled Analysis. Eur. Heart J. 2022, 43, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [Google Scholar] [CrossRef]
- Agarwal, R.; Tu, W.; Farjat, A.E.; Farag, Y.M.K.; Toto, R.; Kaul, S.; Lawatscheck, R.; Rohwedder, K.; Ruilope, L.M.; Rossing, P.; et al. Impact of Finerenone-Induced Albuminuria Reduction on Chronic Kidney Disease Outcomes in Type 2 Diabetes: A Mediation Analysis. Ann. Intern. Med. 2023, 176, 1606–1616. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef]
- Neuen, B.L.; Heerspink, H.J.L.; Vart, P.; Claggett, B.L.; Fletcher, R.A.; Arnott, C.; de Oliveira Costa, J.; Falster, M.O.; Pearson, S.-A.; Mahaffey, K.W.; et al. Estimated Lifetime Cardiovascular, Kidney, and Mortality Benefits of Combination Treatment with SGLT2 Inhibitors, GLP-1 Receptor Agonists, and Nonsteroidal MRA Compared with Conventional Care in Patients with Type 2 Diabetes and Albuminuria. Circulation 2024, 149, 450–462. [Google Scholar] [CrossRef]
- González-Juanatey, J.R.; Górriz, J.L.; Ortiz, A.; Valle, A.; Soler, M.J.; Facila, L. Cardiorenal Benefits of Finerenone: Protecting Kidney and Heart. Ann. Med. 2023, 55, 502–513. [Google Scholar] [CrossRef]
- Goulooze, S.C.; Heerspink, H.J.L.; van Noort, M.; Snelder, N.; Brinker, M.; Lippert, J.; Eissing, T. Dose–Exposure–Response Analysis of the Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone on UACR and EGFR: An Analysis from FIDELIO-DKD. Clin. Pharmacokinet. 2022, 61, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
- Sato, A.; Nishimoto, M. Real-World Use of Finerenone in Patients with Chronic Kidney Disease and Type 2 Diabetes Based on Large-Scale Clinical Studies: FIDELIO-DKD and FIGARO-DKD. Hypertens. Res. 2025, 48, 1929–1938. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Xu, L.; Che, L.; Liu, S.; Wang, Y.; Dong, B. Cardiovascular-Renal Protective Effect and Molecular Mechanism of Finerenone in Type 2 Diabetic Mellitus. Front. Endocrinol. 2023, 14, 1125693. [Google Scholar] [CrossRef]
- Yao, L.; Liang, X.; Liu, Y.; Li, B.; Hong, M.; Wang, X.; Chen, B.; Liu, Z.; Wang, P. Non-Steroidal Mineralocorticoid Receptor Antagonist Finerenone Ameliorates Mitochondrial Dysfunction via PI3K/Akt/ENOS Signaling Pathway in Diabetic Tubulopathy. Redox Biol. 2023, 68, 102946. [Google Scholar] [CrossRef]
- Jerome, J.R.; Deliyanti, D.; Suphapimol, V.; Kolkhof, P.; Wilkinson-Berka, J.L. Finerenone, a Non-Steroidal Mineralocorticoid Receptor Antagonist, Reduces Vascular Injury and Increases Regulatory T-Cells: Studies in Rodents with Diabetic and Neovascular Retinopathy. Int. J. Mol. Sci. 2023, 24, 2334. [Google Scholar] [CrossRef]
- González-Blázquez, R.; Somoza, B.; Gil-Ortega, M.; Martín Ramos, M.; Ramiro-Cortijo, D.; Vega-Martín, E.; Schulz, A.; Ruilope, L.M.; Kolkhof, P.; Kreutz, R.; et al. Finerenone Attenuates Endothelial Dysfunction and Albuminuria in a Chronic Kidney Disease Model by a Reduction in Oxidative Stress. Front. Pharmacol. 2018, 9, 1131. [Google Scholar] [CrossRef]
- Ku, E.; Tighiouart, H.; McCulloch, C.E.; Inker, L.A.; Adingwupu, O.M.; Greene, T.; Estacio, R.O.; Woodward, M.; de Zeeuw, D.; Lewis, J.B.; et al. Association Between Acute Declines in EGFR During Renin-Angiotensin System Inhibition and Risk of Adverse Outcomes. J. Am. Soc. Nephrol. 2024, 35, 1402–1411. [Google Scholar] [CrossRef]
- Holtkamp, F.A.; de Zeeuw, D.; Thomas, M.C.; Cooper, M.E.; de Graeff, P.A.; Hillege, H.J.L.; Parving, H.-H.; Brenner, B.M.; Shahinfar, S.; Lambers Heerspink, H.J. An Acute Fall in Estimated Glomerular Filtration Rate During Treatment with Losartan Predicts a Slower Decrease in Long-Term Renal Function. Kidney Int. 2011, 80, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Eddington, D.; Chaudhari, J.; Estacio, R.; Imai, E.; Goicoechea, M.; Hannedouche, T.; Haynes, R.; Jafar, T.H.; Johnson, D.W.; et al. A Meta-Analysis of Randomized Controlled Clinical Trials for Implications of Acute Treatment Effects on Glomerular Filtration Rate for Long-Term Kidney Protection. Kidney Int. 2024, 106, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Cherney, D.Z.I.; Cosentino, F.; Dagogo-Jack, S.; McGuire, D.K.; Pratley, R.; Frederich, R.; Maldonado, M.; Liu, C.-C.; Liu, J.; Pong, A.; et al. Ertugliflozin and Slope of Chronic EGFR. Clin. J. Am. Soc. Nephrol. 2021, 16, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Kraus, B.J.; Weir, M.R.; Bakris, G.L.; Mattheus, M.; Cherney, D.Z.I.; Sattar, N.; Heerspink, H.J.L.; Ritter, I.; von Eynatten, M.; Zinman, B.; et al. Characterization and Implications of the Initial Estimated Glomerular Filtration Rate ‘Dip’ upon Sodium-Glucose Cotransporter-2 Inhibition with Empagliflozin in the EMPA-REG OUTCOME Trial. Kidney Int. 2021, 99, 750–762. [Google Scholar] [CrossRef]
- Navaneethan, S.D.; Anker, S.D.; Filippatos, G.; Pitt, B.; Rossing, P.; Ruilope, L.M.; August, P.; Brinker, M.; Lage, A.; Roberts, L.; et al. Efficacy and safety of finerenone in patients with an acute change in estimated glomerular filtration rate in the prespecified FIDELITY pool analysis. Kidney Int. 2025, 108, 136–144. [Google Scholar] [CrossRef]
- Matsumoto, S.; Jhund, P.S.; Henderson, A.D.; Bauersachs, J.; Claggett, B.L.; Desai, A.S.; Brinker, M.; Schloemer, P.; Viswanathan, P.; Mares, J.W.; et al. Initial Decline in Glomerular Filtration Rate with Finerenone in HFmrEF/HFpEF. J. Am. Coll. Cardiol. 2025, 85, 173–185. [Google Scholar] [CrossRef] [PubMed]



| Clinical Characteristics | Group with 1 Month of Follow-Up (n = 60) | Group with 6 Months of Follow-Up (n = 34) |
|---|---|---|
| Age, mean (years) | 79 ± 10.12 | 69.15 ± 8.16 |
| Sex, n (men,%) | 39 (65) | 23 (67.6) |
| Smoker (%) | 15 (25) | 10 (29.4) |
| Obesity, n (%) | 23 (38.3) | 16 (47.1) |
| BMI, median (Kg/m2) | 29.32 ± 5.67 | 30.23 ± 5.33 |
| Diabetes mellitus, n (%) | 60 (100) | 34 (100) |
| HbA1c, median (%) | 7.20 [6.40–7.60] | 7.40 [6.60–7.70] |
| Hypertension, n (%) | 59 (98.3) | 34 (100) |
| Dyslipidemia, n (%) | 54 (90) | 30 (88.2) |
| Hypertriglyceridemia, n (%) | 30 (50) | 18 (52.9) |
| Metabolic syndrome, n (%) | 58 (96.7) | 33 (97.1) |
| COPD, n (%) | 9 (15) | 7 (20.6) |
| Heart failure, n (%) | 11 (18.3) | 7 (20.6) |
| Creatinine, mean (mg/dL) | 1.50 ± 0.52 | 1.63 ± 0.55 |
| eGFR, median (mL/min/1.73 m2) | 49.49 [33.50–60.50] | 42 [27.75–58.25] |
| Potassium (mmol/L) | 4.55 ± 0.48 | 4.56 ± 0.47 |
| Albuminuria, median (mg/g) | 479.50 [189.50–1199.50] | 485 [231.75–1118.50] |
| RAS inhibitors, n (%) | 55 (91.7) | 31 (91.20) |
| ARNi, n (%) | 5 (8.3) | 4 (11.80) |
| SGLT2i, n (%) | 51 (85) | 32 (94.10) |
| GLP1a, n (%) | 26 (43.3) | 17 (50) |
| Baseline | 3 Months | P | 6 Months | p | |
|---|---|---|---|---|---|
| Hb (g/dL) | 13.36 ± 1.69 | 13.05 ± 1.78 | 0.846 | 13.43 ± 1.63 | 0.693 |
| Ferritin (ng/mL) | 115.67 ± 97.93 | 120.15 ± 101.62 | 0.193 | 166.28 ± 215.29 | 0.149 |
| HbA1c (%) | 7.40 [6.60–7.70] | 7.00 [6.50–7.50] | 0.019 | 7.05 [6.30–7.60] | 0.049 |
| Glucose (mg/dL) | 133 ± 32.45 | 125.54 ± 33.34 | 0.434 | 133 ± 36.12 | 0.938 |
| Cholesterol (mg/dL) | 204.71 ± 301.69 | 148.15 ± 35.26 | 0.278 | 147.47 ± 36.20 | 0.274 |
| Triglycerides | 201.44 ± 178.98 | 206.81 ± 161.87 | 0.729 | 187.100.79 | 0.596 |
| Creatinine (mg/dL) | 1.63 ± 0.55 | 1.90 ± 0.53 | 0.003 | 1.76 ± 0.68 | 0.007 |
| eGFR (mL/min/1.73 m2) | 42 [27.75–58.25] | 32 [25.25–41.75] | 0.003 | 37 [25.00–55.50] | 0.020 |
| Sodium (mmol/L) | 140.91 ± 3.01 | 140.50 ± 4.01 | 0.170 | 140.79 ± 2.84 | 0.802 |
| Potassium (mmol/L) | 4.56 ± 0.47 | 4.86 ± 0.45 | 0.003 | 4.88 ± 0.43 | <0.001 |
| UACR (mg/g) | 485 [231.75–1118.50] | 339 [124–1338] | 0.012 | 305.50 [99.5–1510] | 0.012 |
| Albuminuria at Month 0 | Albuminuria at 3 Months | p | Albuminuria at 6 Months | p | |
|---|---|---|---|---|---|
| Drop in eGFR ≥20% | n = 10 485 [380–2479.50] | n = 9 276 [73–1572] ↓ 43.09% | 0.012 | n = 10 273 [134–1066] ↓ 43.71% | 0.013 |
| Drop in eGFR <20% | n = 24 514 [193.50–1044.75] | n = 16 437.50 [156.50–1402.50] ↓ 14.88% | 0.301 | n = 24 341.50 [75.25–1770.00] ↓ 33.56% | 0.179 |
| CKD-DM (%) | 27 (64.29) |
|---|---|
| Other concomitant etiologies: | 15 (35.71) |
| Reduced nephron mass (%) | 2 (13.4) |
| Nephroangiosclerosis (%) | 8 (53.3) |
| Chronic interstitial nephritis (%) | 3 (20) |
| MCD (%) | 1 (6.7) |
| FGN (%) | 1 (6.7) |
| Adverse Events | 1 Month n = 60 | 3 Months n = 41 | 6 Months n = 34 |
|---|---|---|---|
| Gynecomastia (%) | 0 (0) | 0 (0) | 0 (0) |
| Hypotension (%) | 1 (1.7) | 0 (0) | 0 (0) |
| Hyperkalemia (%) | 6 (10) | 3 (10.34) | 4 (11.76) |
| AKI stage 1 (%) | 13 (21.67) | 8 (27.59) | 6 (17.65) |
| Hospital admissions due to finerenone complications (%) | 0 (0) | 0 (0) | 0 (0) |
| Hospital admissions for heart failure (%) | 0 (0) | 0 (0) | 0 (0) |
| Deaths | 0 (0) | 0 (0) | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Martínez, M.; León-Román, J.; Suárez, E.; Nuñez-Delgado, S.; Antonieta Azancot, M.; Zamora-Carrillo, J.I.; Patricio-Liébana, M.; Sánchez Olaya, A.; Agraz, I.; Bermejo, S.; et al. Real-World Impact of Finerenone on Albuminuria in Patients with Diabetes and CKD. Int. J. Mol. Sci. 2025, 26, 11584. https://doi.org/10.3390/ijms262311584
López-Martínez M, León-Román J, Suárez E, Nuñez-Delgado S, Antonieta Azancot M, Zamora-Carrillo JI, Patricio-Liébana M, Sánchez Olaya A, Agraz I, Bermejo S, et al. Real-World Impact of Finerenone on Albuminuria in Patients with Diabetes and CKD. International Journal of Molecular Sciences. 2025; 26(23):11584. https://doi.org/10.3390/ijms262311584
Chicago/Turabian StyleLópez-Martínez, Marina, Juan León-Román, Ehimy Suárez, Sara Nuñez-Delgado, María Antonieta Azancot, Jorge Iván Zamora-Carrillo, Marc Patricio-Liébana, Alexander Sánchez Olaya, Irene Agraz, Sheila Bermejo, and et al. 2025. "Real-World Impact of Finerenone on Albuminuria in Patients with Diabetes and CKD" International Journal of Molecular Sciences 26, no. 23: 11584. https://doi.org/10.3390/ijms262311584
APA StyleLópez-Martínez, M., León-Román, J., Suárez, E., Nuñez-Delgado, S., Antonieta Azancot, M., Zamora-Carrillo, J. I., Patricio-Liébana, M., Sánchez Olaya, A., Agraz, I., Bermejo, S., Sans, L., Toapanta, N., Ramos, N., & Soler, M. J. (2025). Real-World Impact of Finerenone on Albuminuria in Patients with Diabetes and CKD. International Journal of Molecular Sciences, 26(23), 11584. https://doi.org/10.3390/ijms262311584

