Resveratrol as an Adjunct Antiviral Agent in Pediatric Viral Infections: A Review on Mechanistic Insights and Gut Microbiota Modulation
Abstract
1. Introduction
2. Outline of the Review
3. Viral Infections and Gut Microbiota Alterations in Children
4. Effect of Resveratrol on Gut Microbiota Composition
5. Antiviral Activity of Resveratrol in Children
5.1. Resveratrol Activity Against SARS-CoV2 and MERS-CoV
5.2. Resveratrol Activity Against Respiratory Syncytial Virus
5.3. Resveratrol Activity Against Other Respiratory Tract Infections in Children
5.4. Resveratrol Activity Against Rotavirus
5.5. Resveratrol Activity Against Norovirus
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACE2 | Angiotensin-converting enzyme 2 |
| AHR | Airway hyperresponsiveness |
| ALRI | Acute lower respiratory infection(s) |
| ARDS | Acute respiratory distress syndrome |
| BDNF | Brain-derived neurotrophic factor |
| CC50 | Concentration causing 50% cytotoxicity |
| CCK-8 | Cell Counting Kit-8 |
| CPE | Cytopathic effect |
| COVID-19 | Coronavirus disease 2019 |
| db/db | Diabetic (db/db) mice genotype |
| DMEM | Dulbecco’s Modified Eagle’s Medium |
| EC50 | Half-effective inhibitory concentration |
| ELISA | Enzyme-linked immunosorbent assay |
| F/B ratio | Firmicutes/Bacteroidetes ratio |
| FBS | Fetal bovine serum |
| GI | Gastrointestinal |
| GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
| HCoV | Human coronavirus |
| HSP90 | Heat shock protein 90 |
| HSPGs | Heparan sulfate proteoglycans |
| HRV | Human rhinovirus |
| HT-29 | Human colorectal adenocarcinoma cell line (HT-29) |
| IFN-γ | Interferon-gamma |
| IFN-β | Interferon-beta |
| IC50 | Half-maximal inhibitory concentration |
| ICAM-1 | Intercellular adhesion molecule 1 |
| IL-1β | Interleukin-1 beta |
| IL-1α | Interleukin-1 alpha |
| IL-2 | Interleukin-2 |
| IL-6 | Interleukin-6 |
| IL-8 | Interleukin-8 |
| IL-10 | Interleukin-10 |
| KEAP1 | Kelch-like ECH-associated protein 1 |
| MAPK | Mitogen-activated protein kinase |
| MEK | Mitogen-activated protein kinase kinase |
| MERS-CoV | Middle East respiratory syndrome coronavirus |
| Mx | Myxovirus resistance protein (Mx) |
| MNV-1 | Murine norovirus 1 |
| MOI | Multiplicity of infection |
| NGF | Nerve growth factor |
| NF-κB | Nuclear factor kappa B |
| Nrf2 | Nuclear factor erythroid 2–related factor 2 |
| PFU | Plaque-forming units |
| PKC | Protein kinase C |
| PVDF | Polyvinylidene difluoride |
| qRT-PCR | Quantitative reverse-transcription PCR |
| RNPs | Ribonucleoproteins |
| Res NPs | Resveratrol nanoparticles |
| RNA | Ribonucleic acid |
| RSV | Respiratory syncytial virus |
| RRTIs | Recurrent respiratory tract infections |
| RT-PCR | Reverse-transcription polymerase chain reaction |
| SCFAs | Short-chain fatty acids |
| SIRT1 | Sirtuin 1 |
| SARM | Sterile α and HEAT/Armadillo motif–containing protein |
| SDS-PAGE | Sodium dodecyl sulfate–polyacrylamide gel electrophoresis |
| SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
| TBK1 | TANK-binding kinase 1 |
| TLR | Toll-like receptor |
| TLR2/TLR3/TLR9 | Toll-like receptor 2, 3, and 9 |
| TNF-α | Tumor necrosis factor alpha |
| TRIF | TIR-domain-containing adapter inducing interferon-β |
| URTIs | Upper respiratory tract infections |
| VZV | Varicella-zoster virus |
| Caco-2 | Human intestinal epithelial cell line |
| MA-104 | Monkey kidney cell line (MA-104) |
| RAW264.7 | Murine monocyte-macrophage cell line |
| DMSO | Dimethyl sulfoxide |
| PBS | Phosphate-buffered saline |
| PBST | PBS with Tween-20 |
| IFA | Indirect immunofluorescence assay |
| CCK-8 | Cell Counting Kit-8 (viability assay) |
References
- Troeger, C.; Forouzanfar, M.; Rao, P.C.; Khalil, I.; Brown, A.; Swartz, S.; Fullman, N.; Mosser, J.; Thompson, R.L.; Reiner, R.C.; et al. Estimates of the Global, Regional, and National Morbidity, Mortality, and Aetiologies of Lower Respiratory Tract Infections in 195 Countries: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis. 2017, 17, 1133–1161. [Google Scholar] [CrossRef] [PubMed]
- Alonso, W.J.; Laranjeira, B.J.; Pereira, S.A.R.; Florencio, C.M.G.D.; Moreno, E.C.; Miller, M.A.; Giglio, R.; Schuck-Paim, C.; Moura, F.E.A. Comparative Dynamics, Morbidity and Mortality Burden of Pediatric Viral Respiratory Infections in an Equatorial City. Pediatr. Infect. Dis. J. 2012, 31, e9–e14. [Google Scholar] [CrossRef] [PubMed]
- Nair, H.; Nokes, D.J.; Gessner, B.D.; Dherani, M.; Madhi, S.A.; Singleton, R.J.; O’Brien, K.L.; Roca, A.; Wright, P.F.; Bruce, N.; et al. Global Burden of Acute Lower Respiratory Infections Due to Respiratory Syncytial Virus in Young Children: A Systematic Review and Meta-Analysis. Lancet 2010, 375, 1545–1555. [Google Scholar] [CrossRef]
- Pappa, S.; Haidopoulou, K.; Zarras, C.; Theodorakou, E.; Papadimitriou, E.; Iosifidis, E.; Gkeka, I.; Stoikou, K.; Vagdatli, E.; Skoura, L.; et al. Early Initiation of the Respiratory Syncytial Virus Season in 2021-2022, Greece. J. Med. Virol. 2022, 94, 3453–3456. [Google Scholar] [CrossRef]
- Barchha, S.; Shobhavat, L.; Solomon, R.; Harnal, S. Etiology of Acute Respiratory Infections Using Multiplex Polymerase Chain Reaction in Children Admitted to Pediatric Intensive Care Unit: A Single-Centered Retrospective Observational Study from Western India. J. Pediatr. Crit. Care 2023, 10, 257. [Google Scholar] [CrossRef]
- Meskill, S.D.; O’Bryant, S.C. Respiratory Virus Co-Infection in Acute Respiratory Infections in Children. Curr. Infect. Dis. Rep. 2020, 22, 3. [Google Scholar] [CrossRef]
- Stefanska, I.; Romanowska, M.; Donevski, S.; Gawryluk, D.; Brydak, L.B. Co-Infections with Influenza and Other Respiratory Viruses. Adv. Exp. Med. Biol. 2013, 756, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Calvo, C.; García-García, M.L.; Pozo, F.; Paula, G.; Molinero, M.; Calderón, A.; González-Esguevillas, M.; Casas, I. Respiratory Syncytial Virus Coinfections With Rhinovirus and Human Bocavirus in Hospitalized Children. Medicine 2015, 94, e1788. [Google Scholar] [CrossRef]
- Ching, N.S.; Kotsanas, D.; Easton, M.L.; Francis, M.J.; Korman, T.M.; Buttery, J.P. Respiratory Virus Detection and Co-infection in Children and Adults in a Large Australian Hospital in 2009–2015. J. Paediatr. Child Health 2018, 54, 1321–1328. [Google Scholar] [CrossRef]
- Dikranian, L.; Barry, S.; Ata, A.; Chiotos, K.; Gist, K.; Bhalala, U.; Danesh, V.; Heavner, S.; Gharpure, V.; Bjornstad, E.C.; et al. SARS-CoV-2 With Concurrent Respiratory Viral Infection as a Risk Factor for a Higher Level of Care in Hospitalized Pediatric Patients. Pediatr. Emerg. Care 2022, 38, 472–476. [Google Scholar] [CrossRef]
- Dallmeyer, L.K.; Schüz, M.L.; Fragkou, P.C.; Omony, J.; Krumbein, H.; Dimopoulou, D.; Dimopoulou, K.; Skevaki, C. Epidemiology of respiratory viruses among children during the SARS-CoV-2 pandemic: A systematic review and meta-analysis. Int. J. Infect. Dis. 2024, 138, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Shao, J.; Guo, Y.; Peng, X.; Li, Z.; Hu, D. Clinical and CT Features in Pediatric Patients with COVID-19 Infection: Different Points from Adults. Pediatr. Pulmonol. 2020, 55, 1169–1174. [Google Scholar] [CrossRef]
- Yonker, L.M.; Boucau, J.; Regan, J.; Choudhary, M.C.; Burns, M.D.; Young, N.; Farkas, E.J.; Davis, J.P.; Moschovis, P.P.; Kinane, T.B.; et al. Virologic Features of SARS-CoV-2 Infection in Children. MedRxiv Prepr. Serv. Health Sci. 2021, 224, 1821–1829. [Google Scholar] [CrossRef]
- Karampatsas, K.; Osborne, L.; Seah, M.-L.; Tong, C.Y.W.; Prendergast, A.J. Clinical Characteristics and Complications of Rotavirus Gastroenteritis in Children in East London: A Retrospective Case-Control Study. PLoS ONE 2018, 13, e0194009. [Google Scholar] [CrossRef] [PubMed]
- Farahmand, M.; Moghoofei, M.; Dorost, A.; Shoja, Z.; Ghorbani, S.; Kiani, S.J.; Khales, P.; Esteghamati, A.; Sayyahfar, S.; Jafarzadeh, M.; et al. Global Prevalence and Genotype Distribution of Norovirus Infection in Children with Gastroenteritis: A Meta-Analysis on 6 Years of Research from 2015 to 2020. Rev. Med. Virol. 2022, 32, e2237. [Google Scholar] [CrossRef]
- Lima, R.; Gootkind, E.F.; De la Flor, D.; Yockey, L.J.; Bordt, E.A.; D’Avino, P.; Ning, S.; Heath, K.; Harding, K.; Zois, J.; et al. Establishment of a Pediatric COVID-19 Biorepository: Unique Considerations and Opportunities for Studying the Impact of the COVID-19 Pandemic on Children. BMC Med. Res. Methodol. 2020, 20, 228. [Google Scholar] [CrossRef]
- Chen, C.-J.; Wu, F.-T.; Huang, Y.-C.; Chang, W.-C.; Wu, H.-S.; Wu, C.-Y.; Lin, J.-S.; Huang, F.-C.; Hsiung, C.A. Clinical and Epidemiologic Features of Severe Viral Gastroenteritis in Children: A 3-Year Surveillance, Multicentered Study in Taiwan With Partial Rotavirus Immunization. Medicine 2015, 94, e1372. [Google Scholar] [CrossRef]
- Mathew, S.; Smatti, M.K.; Al Ansari, K.; Nasrallah, G.K.; Al Thani, A.A.; Yassine, H.M. Mixed Viral-Bacterial Infections and Their Effects on Gut Microbiota and Clinical Illnesses in Children. Sci. Rep. 2019, 9, 865. [Google Scholar] [CrossRef]
- Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology 2020, 159, 944–955.e8. [Google Scholar] [CrossRef]
- Harding, J.N.; Siefker, D.; Vu, L.; You, D.; DeVincenzo, J.; Pierre, J.F.; Cormier, S.A. Altered Gut Microbiota in Infants Is Associated with Respiratory Syncytial Virus Disease Severity. BMC Microbiol. 2020, 20, 140. [Google Scholar] [CrossRef] [PubMed]
- Sencio, V.; Machado, M.G.; Trottein, F. The Lung-Gut Axis during Viral Respiratory Infections: The Impact of Gut Dysbiosis on Secondary Disease Outcomes. Mucosal Immunol. 2021, 14, 296–304. [Google Scholar] [CrossRef]
- Sales, J.M.; Resurreccion, A.V.A. Resveratrol in Peanuts. Crit. Rev. Food Sci. Nutr. 2014, 54, 734–770. [Google Scholar] [CrossRef]
- Malaguarnera, L. Influence of Resveratrol on the Immune Response. Nutrients 2019, 11, 946. [Google Scholar] [CrossRef]
- Malaguarnera, G.; Pennisi, M.; Bertino, G.; Motta, M.; Borzì, A.M.; Vicari, E.; Bella, R.; Drago, F.; Malaguarnera, M. Resveratrol in Patients with Minimal Hepatic Encephalopathy. Nutrients 2018, 10, 329. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Khan, H.; Cauli, O. Resveratrol in Autism Spectrum Disorders: Behavioral and Molecular Effects. Antioxidants 2020, 9, 188. [Google Scholar] [CrossRef]
- Vicari, E.; Arancio, A.; Catania, V.E.; Vicari, B.O.; Sidoti, G.; Castiglione, R.; Malaguarnera, M. Resveratrol Reduces Inflammation-Related Prostate Fibrosis. Int. J. Med. Sci. 2020, 17, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Filardo, S.; Di Pietro, M.; Mastromarino, P.; Sessa, R. Therapeutic Potential of Resveratrol against Emerging Respiratory Viral Infections. Pharmacol. Ther. 2020, 214, 107613. [Google Scholar] [CrossRef] [PubMed]
- Docherty, J.J.; Fu, M.M.; Stiffler, B.S.; Limperos, R.J.; Pokabla, C.M.; DeLucia, A.L. Resveratrol Inhibition of Herpes Simplex Virus Replication. Antiviral. Res. 1999, 43, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Docherty, J.J.; Sweet, T.J.; Bailey, E.; Faith, S.A.; Booth, T. Resveratrol Inhibition of Varicella-Zoster Virus Replication In Vitro. Antiviral. Res. 2006, 72, 171–177. [Google Scholar] [CrossRef]
- Palamara, A.T.; Nencioni, L.; Aquilano, K.; De Chiara, G.; Hernandez, L.; Cozzolino, F.; Ciriolo, M.R.; Garaci, E. Inhibition of Influenza A Virus Replication by Resveratrol. J. Infect. Dis. 2005, 191, 1719–1729. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Li, Z.-L.; Zhao, W.-J.; Wen, R.-X.; Meng, Q.-W.; Zeng, Y. Synthesis of Stilbene Derivatives with Inhibition of SARS Coronavirus Replication. Eur. J. Med. Chem. 2006, 41, 1084–1089. [Google Scholar] [CrossRef]
- Bode, L.M.; Bunzel, D.; Huch, M.; Cho, G.-S.; Ruhland, D.; Bunzel, M.; Bub, A.; Franz, C.M.A.P.; Kulling, S.E. In Vivo and In Vitro Metabolism of Trans-Resveratrol by Human Gut Microbiota. Am. J. Clin. Nutr. 2013, 97, 295–309. [Google Scholar] [CrossRef]
- Carrera-Quintanar, L.; López Roa, R.I.; Quintero-Fabián, S.; Sánchez-Sánchez, M.A.; Vizmanos, B.; Ortuño-Sahagún, D. Phytochemicals That Influence Gut Microbiota as Prophylactics and for the Treatment of Obesity and Inflammatory Diseases. Mediators. Inflamm. 2018, 2018, 9734845. [Google Scholar] [CrossRef]
- Chaplin, A.; Carpéné, C.; Mercader, J. Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients 2018, 10, 1651. [Google Scholar] [CrossRef]
- Rishi, P.; Thakur, K.; Vij, S.; Rishi, L.; Singh, A.; Kaur, I.P.; Patel, S.K.S.; Lee, J.-K.; Kalia, V.C. Diet, Gut Microbiota and COVID-19. Indian J. Microbiol. 2020, 60, 420–429. [Google Scholar] [CrossRef]
- Al Azzaz, J.; Al Tarraf, A.; Heumann, A.; Da Silva Barreira, D.; Laurent, J.; Assifaoui, A.; Rieu, A.; Guzzo, J.; Lapaquette, P. Resveratrol Favors Adhesion and Biofilm Formation of Lacticaseibacillus Paracasei Subsp. Paracasei Strain ATCC334. Int. J. Mol. Sci. 2020, 21, 5423. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The Human Microbiome Project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Li, F.; Lu, H.; Li, X.; Wang, X.; Zhang, Q.; Mi, L. The Impact of COVID-19 on Intestinal Flora. Medicine 2020, 99, e22273. [Google Scholar] [CrossRef] [PubMed]
- Budden, K.F.; Gellatly, S.L.; Wood, D.L.A.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging Pathogenic Links between Microbiota and the Gut-Lung Axis. Nat. Rev. Microbiol. 2017, 15, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Durack, J.; Lynch, S.V. The Gut Microbiome: Relationships with Disease and Opportunities for Therapy. J. Exp. Med. 2019, 216, 20–40. [Google Scholar] [CrossRef]
- Schuijt, T.J.; Lankelma, J.M.; Scicluna, B.P.; de Sousa e Melo, F.; Roelofs, J.J.T.H.; de Boer, J.D.; Hoogendijk, A.J.; de Beer, R.; de Vos, A.; Belzer, C.; et al. The Gut Microbiota Plays a Protective Role in the Host Defence against Pneumococcal Pneumonia. Gut 2016, 65, 575–583. [Google Scholar] [CrossRef]
- Zhang, S.-F.; Tuo, J.-L.; Huang, X.-B.; Zhu, X.; Zhang, D.-M.; Zhou, K.; Yuan, L.; Luo, H.-J.; Zheng, B.-J.; Yuen, K.-Y.; et al. Epidemiology Characteristics of Human Coronaviruses in Patients with Respiratory Infection Symptoms and Phylogenetic Analysis of HCoV-OC43 during 2010-2015 in Guangzhou. PLoS ONE 2018, 13, e0191789. [Google Scholar] [CrossRef]
- Men, Z.; Chen, Z.; Gu, X.; Wang, Y.; Zhang, X.; Fang, F.; Shen, M.; Huang, S.; Wu, S.; Zhou, L.; et al. Clinical Relevance of Lung Microbiota Composition in Critically Ill Children with Acute Lower Respiratory Tract Infections: Insights from a Retrospective Analysis of Metagenomic Sequencing. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 83–98. [Google Scholar] [CrossRef]
- Narendrakumar, L.; Ray, A. Respiratory Tract Microbiome and Pneumonia. Prog. Mol. Biol. Transl. Sci. 2022, 192, 97–124. [Google Scholar] [CrossRef] [PubMed]
- McAleer, J.P.; Kolls, J.K. Contributions of the Intestinal Microbiome in Lung Immunity. Eur. J. Immunol. 2018, 48, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Groves, H.T.; Cuthbertson, L.; James, P.; Moffatt, M.F.; Cox, M.J.; Tregoning, J.S. Respiratory Disease Following Viral Lung Infection Alters the Murine Gut Microbiota. Front. Immunol. 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]
- Keely, S.; Kelly, C.J.; Weissmueller, T.; Burgess, A.; Wagner, B.D.; Robertson, C.E.; Harris, J.K.; Colgan, S.P. Activated Fluid Transport Regulates Bacterial-Epithelial Interactions and Significantly Shifts the Murine Colonic Microbiome. Gut Microbes 2012, 3, 250–260. [Google Scholar] [CrossRef]
- Zama, D.; Totaro, C.; Biscardi, L.; Rocca, A.; Turroni, S.; Brigidi, P.; Lanari, M. The Relationship between Gut Microbiota and Respiratory Tract Infections in Childhood: A Narrative Review. Nutrients 2022, 14, 2992. [Google Scholar] [CrossRef]
- Nelson, A.M.; Walk, S.T.; Taube, S.; Taniuchi, M.; Houpt, E.R.; Wobus, C.E.; Young, V.B. Disruption of the Human Gut Microbiota Following Norovirus Infection. PLoS ONE 2012, 7, e48224. [Google Scholar] [CrossRef]
- Fadlyana, E.; Soemarko, D.S.; Endaryanto, A.; Haryanto, B.; Darma, A.; Dewi, D.K.; Chandra, D.N.; Hartono, B.; Buftheim, S.; Wasito, E.; et al. The Impact of Air Pollution on Gut Microbiota and Children’s Health: An Expert Consensus. Children 2022, 9, 765. [Google Scholar] [CrossRef]
- Song, L.; Huang, Y.; Liu, G.; Li, X.; Xiao, Y.; Liu, C.; Zhang, Y.; Li, J.; Xu, J.; Lu, S.; et al. A Novel Immunobiotics Bacteroides Dorei Ameliorates Influenza Virus Infection in Mice. Front. Immunol. 2021, 12, 828887. [Google Scholar] [CrossRef]
- Altomare, A.; Giovanetti, M.; Baldaro, F.; Ciccozzi, M.; Cicala, M.; Guarino, M.P.L. The Prevention of Viral Infections: The Role of Intestinal Microbiota and Nutritional Factors. Nutrients 2024, 16, 2445. [Google Scholar] [CrossRef]
- Liu, Y.; Kuang, D.; Li, D.; Yang, J.; Yan, J.; Xia, Y.; Zhang, F.; Cao, H. Roles of the Gut Microbiota in Severe SARS-CoV-2 Infection. Cytokine Growth Factor Rev. 2022, 63, 98–107. [Google Scholar] [CrossRef]
- Xu, R.; Liu, P.; Zhang, T.; Wu, Q.; Zeng, M.; Ma, Y.; Jin, X.; Xu, J.; Zhang, Z.; Zhang, C. Progressive Deterioration of the Upper Respiratory Tract and the Gut Microbiomes in Children during the Early Infection Stages of COVID-19. J. Genet. Genom. Yi Chuan Xue Bao 2021, 48, 803–814. [Google Scholar] [CrossRef]
- Yagi, K.; Asai, N.; Huffnagle, G.B.; Lukacs, N.W.; Fonseca, W. Early-Life Lung and Gut Microbiota Development and Respiratory Syncytial Virus Infection. Front. Immunol. 2022, 13, 877771. [Google Scholar] [CrossRef]
- Hasegawa, K.; Linnemann, R.W.; Mansbach, J.M.; Ajami, N.J.; Espinola, J.A.; Petrosino, J.F.; Piedra, P.A.; Stevenson, M.D.; Sullivan, A.F.; Thompson, A.D.; et al. The Fecal Microbiota Profile and Bronchiolitis in Infants. Pediatrics 2016, 138, e20160218. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, F.; Liu, Y.; Gu, F. Intestinal Microbiota Dysbiosis in Children with Recurrent Respiratory Tract Infections. Microb. Pathog. 2019, 136, 103709. [Google Scholar] [CrossRef]
- Li, K.-L.; Wang, B.-Z.; Li, Z.-P.; Li, Y.-L.; Liang, J.-J. Alterations of Intestinal Flora and the Effects of Probiotics in Children with Recurrent Respiratory Tract Infection. World J. Pediatr. 2019, 15, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, N.; Zheng, H.; Zheng, X.; Xu, Y.; Weng, Y.; Jiang, F.; Wang, C.; Chang, P. Investigation of Gut Microbiota Disorders in Norovirus Infected Children Patients Based on 16s rRNA Sequencing. Ann. Med. 2024, 56, 2412834. [Google Scholar] [CrossRef]
- Yan, Q.; Chen, Y.; Gao, E.-B.; Lu, Y.; Wu, J.; Qiu, H. The Characteristics of Intestinal Microflora in Infants with Rotavirus Enteritis, Changes in Microflora before and after Treatment and Their Clinical Values. Sci. Rep. 2025, 15, 4312. [Google Scholar] [CrossRef] [PubMed]
- Marsland, B.J.; Trompette, A.; Gollwitzer, E.S. The Gut-Lung Axis in Respiratory Disease. Ann. Am. Thorac. Soc. 2015, 12 (Suppl. S2), S150–S156. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Chen, Y.; Wu, Z.; Chen, Y.; Gao, H.; Lv, L.; Guo, F.; Zhang, X.; Luo, R.; Huang, C.; et al. Alterations of the Gut Microbiota in Patients With Coronavirus Disease 2019 or H1N1 Influenza. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 71, 2669–2678. [Google Scholar] [CrossRef]
- Geva-Zatorsky, N.; Sefik, E.; Kua, L.; Pasman, L.; Tan, T.G.; Ortiz-Lopez, A.; Yanortsang, T.B.; Yang, L.; Jupp, R.; Mathis, D.; et al. Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell 2017, 168, 928–943.e11. [Google Scholar] [CrossRef]
- Zuo, T.; Liu, Q.; Zhang, F.; Lui, G.C.-Y.; Tso, E.Y.; Yeoh, Y.K.; Chen, Z.; Boon, S.S.; Chan, F.K.; Chan, P.K.; et al. Depicting SARS-CoV-2 Faecal Viral Activity in Association with Gut Microbiota Composition in Patients with COVID-19. Gut 2021, 70, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Penninger, J.M.; Grant, M.B.; Sung, J.J.Y. The Role of Angiotensin Converting Enzyme 2 in Modulating Gut Microbiota, Intestinal Inflammation, and Coronavirus Infection. Gastroenterology 2021, 160, 39–46. [Google Scholar] [CrossRef]
- Viana, S.D.; Nunes, S.; Reis, F. ACE2 Imbalance as a Key Player for the Poor Outcomes in COVID-19 Patients with Age-Related Comorbidities—Role of Gut Microbiota Dysbiosis. Ageing Res. Rev. 2020, 62, 101123. [Google Scholar] [CrossRef]
- He, Y.; Wang, J.; Li, F.; Shi, Y. Main Clinical Features of COVID-19 and Potential Prognostic and Therapeutic Value of the Microbiota in SARS-CoV-2 Infections. Front. Microbiol. 2020, 11, 1302. [Google Scholar] [CrossRef]
- Korsholm, A.S.; Kjær, T.N.; Ornstrup, M.J.; Pedersen, S.B. Comprehensive Metabolomic Analysis in Blood, Urine, Fat, and Muscle in Men with Metabolic Syndrome: A Randomized, Placebo-Controlled Clinical Trial on the Effects of Resveratrol after Four Months’ Treatment. Int. J. Mol. Sci. 2017, 18, 554. [Google Scholar] [CrossRef]
- Larrosa, M.; Yañéz-Gascón, M.J.; Selma, M.V.; González-Sarrías, A.; Toti, S.; Cerón, J.J.; Tomás-Barberán, F.; Dolara, P.; Espín, J.C. Effect of a Low Dose of Dietary Resveratrol on Colon Microbiota, Inflammation and Tissue Damage in a DSS-Induced Colitis Rat Model. J. Agric. Food Chem. 2009, 57, 2211–2220. [Google Scholar] [CrossRef]
- Vernocchi, P.; Del Chierico, F.; Putignani, L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front. Microbiol. 2016, 7, 1144. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, D.; Zheng, P.; Yu, J.; He, J.; Mao, X.; Yu, B. The Bidirectional Interactions between Resveratrol and Gut Microbiota: An Insight into Oxidative Stress and Inflammatory Bowel Disease Therapy. BioMed Res. Int. 2019, 2019, 5403761. [Google Scholar] [CrossRef]
- Springer, M.; Moco, S. Resveratrol and Its Human Metabolites-Effects on Metabolic Health and Obesity. Nutrients 2019, 11, 143. [Google Scholar] [CrossRef] [PubMed]
- Etxeberria, U.; Fernández-Quintela, A.; Milagro, F.I.; Aguirre, L.; Martínez, J.A.; Portillo, M.P. Impact of Polyphenols and Polyphenol-Rich Dietary Sources on Gut Microbiota Composition. J. Agric. Food Chem. 2013, 61, 9517–9533. [Google Scholar] [CrossRef]
- Giuliani, C.; Marzorati, M.; Innocenti, M.; Vilchez-Vargas, R.; Vital, M.; Pieper, D.H.; de Wiele, T.V.; Mulinacci, N. Dietary Supplement Based on Stilbenes: A Focus on Gut Microbial Metabolism by the In Vitro Simulator M-SHIME®. Food Funct. 2016, 7, 4564–4575. [Google Scholar] [CrossRef]
- Healey, G.R.; Murphy, R.; Brough, L.; Butts, C.A.; Coad, J. Interindividual Variability in Gut Microbiota and Host Response to Dietary Interventions. Nutr. Rev. 2017, 75, 1059–1080. [Google Scholar] [CrossRef] [PubMed]
- Catinean, A.; Neag, M.A.; Muntean, D.M.; Bocsan, I.C.; Buzoianu, A.D. An Overview on the Interplay between Nutraceuticals and Gut Microbiota. PeerJ 2018, 6, e4465. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Sun, J.; Xia, S.; Tang, X.; Shi, Y.; Le, G. Effects of Resveratrol on Gut Microbiota and Fat Storage in a Mouse Model with High-Fat-Induced Obesity. Food Funct. 2014, 5, 1241–1249. [Google Scholar] [CrossRef]
- Jaimes, J.D.; Jarosova, V.; Vesely, O.; Mekadim, C.; Mrazek, J.; Marsik, P.; Killer, J.; Smejkal, K.; Kloucek, P.; Havlik, J. Effect of Selected Stilbenoids on Human Fecal Microbiota. Molecules 2019, 24, 744. [Google Scholar] [CrossRef]
- Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; et al. Association between Body Mass Index and Firmicutes/Bacteroidetes Ratio in an Adult Ukrainian Population. BMC Microbiol. 2017, 17, 120. [Google Scholar] [CrossRef]
- Most, J.; Penders, J.; Lucchesi, M.; Goossens, G.H.; Blaak, E.E. Gut Microbiota Composition in Relation to the Metabolic Response to 12-Week Combined Polyphenol Supplementation in Overweight Men and Women. Eur. J. Clin. Nutr. 2017, 71, 1040–1045. [Google Scholar] [CrossRef]
- Li, F.; Han, Y.; Cai, X.; Gu, M.; Sun, J.; Qi, C.; Goulette, T.; Song, M.; Li, Z.; Xiao, H. Dietary Resveratrol Attenuated Colitis and Modulated Gut Microbiota in Dextran Sulfate Sodium-Treated Mice. Food Funct. 2020, 11, 1063–1073. [Google Scholar] [CrossRef]
- Meng, T.; Wen, Z.; Cheng, X.; Li, C.; Zhang, P.; Xiao, D.; Xu, Y. Unlocking Gut Health: The Potent Role of Stilbenoids in Intestinal Homeostasis. Animals 2025, 15, 417. [Google Scholar] [CrossRef]
- Cai, T.-T.; Ye, X.-L.; Li, R.-R.; Chen, H.; Wang, Y.-Y.; Yong, H.-J.; Pan, M.-L.; Lu, W.; Tang, Y.; Miao, H.; et al. Resveratrol Modulates the Gut Microbiota and Inflammation to Protect Against Diabetic Nephropathy in Mice. Front. Pharmacol. 2020, 11, 1249. [Google Scholar] [CrossRef]
- Fu, Q.; Tan, Z.; Shi, L.; Xun, W. Resveratrol Attenuates Diquat-Induced Oxidative Stress by Regulating Gut Microbiota and Metabolome Characteristics in Piglets. Front. Microbiol. 2021, 12, 695155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, Y.; Liu, X.; Yin, J.; Li, X.; Zhang, X.; Xing, X.; Wang, J.; Wang, S. Differential Protective Effect of Resveratrol and Its Microbial Metabolites on Intestinal Barrier Dysfunction Is Mediated by the AMPK Pathway. J. Agric. Food Chem. 2022, 70, 11301–11313. [Google Scholar] [CrossRef]
- Riaz Rajoka, M.S.; Jin, M.; Haobin, Z.; Li, Q.; Shao, D.; Huang, Q.; Shi, J. Impact of Dietary Compounds on Cancer-Related Gut Microbiota and microRNA. Appl. Microbiol. Biotechnol. 2018, 102, 4291–4303. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-C.; Ho, C.-T.; Chuo, W.-H.; Li, S.; Wang, T.T.; Lin, C.-C. Effective Inhibition of MERS-CoV Infection by Resveratrol. BMC Infect. Dis. 2017, 17, 144. [Google Scholar] [CrossRef] [PubMed]
- Wahedi, H.M.; Ahmad, S.; Abbasi, S.W. Stilbene-Based Natural Compounds as Promising Drug Candidates against COVID-19. J. Biomol. Struct. Dyn. 2021, 39, 3225–3234. [Google Scholar] [CrossRef]
- Paraiso, I.L.; Revel, J.S.; Stevens, J.F. Potential Use of Polyphenols in the Battle against COVID-19. Curr. Opin. Food Sci. 2020, 32, 149–155. [Google Scholar] [CrossRef]
- Horne, J.R.; Vohl, M.-C. Biological Plausibility for Interactions between Dietary Fat, Resveratrol, ACE2, and SARS-CoV Illness Severity. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E830–E833. [Google Scholar] [CrossRef]
- Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 Signaling Pathway: Pivotal Roles in Inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 585–597. [Google Scholar] [CrossRef]
- Komaravelli, N.; Kelley, J.P.; Garofalo, M.P.; Wu, H.; Casola, A.; Kolli, D. Role of Dietary Antioxidants in Human Metapneumovirus Infection. Virus Res. 2015, 200, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Bagi, Z.; Feher, A.; Recchia, F.A.; Sonntag, W.E.; Pearson, K.; de Cabo, R.; Csiszar, A. Resveratrol Confers Endothelial Protection via Activation of the Antioxidant Transcription Factor Nrf2. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H18–H24. [Google Scholar] [CrossRef]
- Zinovkin, R.A.; Grebenchikov, O.A. Transcription Factor Nrf2 as a Potential Therapeutic Target for Prevention of Cytokine Storm in COVID-19 Patients. Biochemistry 2020, 85, 833–837. [Google Scholar] [CrossRef]
- Marinella, M.A. Indomethacin and Resveratrol as Potential Treatment Adjuncts for SARS-CoV-2/COVID-19. Int. J. Clin. Pract. 2020, 74, e13535. [Google Scholar] [CrossRef]
- Kenmoe, S.; Kengne-Nde, C.; Ebogo-Belobo, J.T.; Mbaga, D.S.; Fatawou Modiyinji, A.; Njouom, R. Systematic Review and Meta-Analysis of the Prevalence of Common Respiratory Viruses in Children < 2 Years with Bronchiolitis in the Pre-COVID-19 Pandemic Era. PLoS ONE 2020, 15, e0242302. [Google Scholar] [CrossRef]
- Rossi, G.A.; Colin, A.A. Respiratory Syncytial Virus-Host Interaction in the Pathogenesis of Bronchiolitis and Its Impact on Respiratory Morbidity in Later Life. Pediatr. Allergy Immunol. Off. Publ. Eur. Soc. Pediatr. Allergy Immunol. 2017, 28, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Suleiman-Martos, N.; Caballero-Vázquez, A.; Gómez-Urquiza, J.L.; Albendín-García, L.; Romero-Béjar, J.L.; Cañadas-De la Fuente, G.A. Prevalence and Risk Factors of Respiratory Syncytial Virus in Children under 5 Years of Age in the WHO European Region: A Systematic Review and Meta-Analysis. J. Pers. Med. 2021, 11, 416. [Google Scholar] [CrossRef]
- Collins, P.L.; Fearns, R.; Graham, B.S. Respiratory Syncytial Virus: Virology, Reverse Genetics, and Pathogenesis of Disease. Curr. Top. Microbiol. Immunol. 2013, 372, 3–38. [Google Scholar] [CrossRef]
- Mitra, R.; Baviskar, P.; Duncan-Decocq, R.R.; Patel, D.; Oomens, A.G.P. The Human Respiratory Syncytial Virus Matrix Protein Is Required for Maturation of Viral Filaments. J. Virol. 2012, 86, 4432–4443. [Google Scholar] [CrossRef]
- Zang, N.; Li, S.; Li, W.; Xie, X.; Ren, L.; Long, X.; Xie, J.; Deng, Y.; Fu, Z.; Xu, F.; et al. Resveratrol Suppresses Persistent Airway Inflammation and Hyperresponsivess Might Partially via Nerve Growth Factor in Respiratory Syncytial Virus-Infected Mice. Int. Immunopharmacol. 2015, 28, 121–128. [Google Scholar] [CrossRef]
- Rodrigues, T.; Busso, J.D.S.; Dias, R.V.R.; Ottenio Lourenço, I.; de Sa, J.M.; de Carvalho, S.J.; Caruso, I.P.; de Souza, F.P.; Fossey, M.A. Interaction of Human Respiratory Syncytial Virus (HRSV) Matrix Protein with Resveratrol Shows Antiviral Effect. Int. J. Mol. Sci. 2024, 25, 12790. [Google Scholar] [CrossRef]
- Xiong, Y.; Tao, K.; Li, T.; Ou, W.; Zhou, Y.; Zhang, W.; Wang, S.; Qi, R.; Ji, J. Resveratrol Inhibits Respiratory Syncytial Virus Replication by Targeting Heparan Sulfate Proteoglycans. Food Funct. 2024, 15, 1948–1962. [Google Scholar] [CrossRef]
- Mazur, N.I.; Martinón-Torres, F.; Baraldi, E.; Fauroux, B.; Greenough, A.; Heikkinen, T.; Manzoni, P.; Mejias, A.; Nair, H.; Papadopoulos, N.G.; et al. Lower Respiratory Tract Infection Caused by Respiratory Syncytial Virus: Current Management and New Therapeutics. Lancet Respir. Med. 2015, 3, 888–900. [Google Scholar] [CrossRef]
- Xie, X.-H.; Zang, N.; Li, S.; Wang, L.; Deng, Y.; He, Y.; Yang, X.; Liu, E. Resveratrol Inhibits Respiratory Syncytial Virus-Induced IL-6 Production, Decreases Viral Replication, and Downregulates TRIF Expression in Airway Epithelial Cells. Inflammation 2012, 35, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zang, N.; Zhou, N.; Li, W.; Xie, X.; Deng, Y.; Ren, L.; Long, X.; Li, S.; Zhou, L.; et al. Resveratrol Inhibits the TRIF-Dependent Pathway by Upregulating Sterile Alpha and Armadillo Motif Protein, Contributing to Anti-Inflammatory Effects after Respiratory Syncytial Virus Infection. J. Virol. 2014, 88, 4229–4236. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Xie, J.; Zhao, K.; Li, W.; Tang, W.; Chen, S.; Zang, N.; Ren, L.; Deng, Y.; Xie, X.; et al. NK Cells Contribute to Persistent Airway Inflammation and AHR during the Later Stage of RSV Infection in Mice. Med. Microbiol. Immunol. 2016, 205, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Zang, N.; Xie, X.; Deng, Y.; Wu, S.; Wang, L.; Peng, C.; Li, S.; Ni, K.; Luo, Y.; Liu, E. Resveratrol-Mediated Gamma Interferon Reduction Prevents Airway Inflammation and Airway Hyperresponsiveness in Respiratory Syncytial Virus-Infected Immunocompromised Mice. J. Virol. 2011, 85, 13061–13068. [Google Scholar] [CrossRef]
- Ross, S.M. Resveratrol: The Anti-Inflammatory Effects of a Phytochemical Compound on Pneumonia, Respiratory Syncytial Virus, and Severe Acute Respiratory Syndrome (SARS-CoV-2). Holist. Nurs. Pract. 2023, 37, 110–112. [Google Scholar] [CrossRef]
- Chang, C.; Lu, C.; Zheng, Y.; Ji, J.; Lin, L.; Chen, L.; Chen, Z.; Chen, R. Sonication-Assisted Self-Assembled Resveratrol Nanoparticles with Enhanced Antiviral and Anti-Inflammatory Activity against Respiratory Syncytial Virus-Induced Pneumonia. ACS Appl. Mater. Interfaces 2024, 16, 50442–50458, Correction in ACS Appl. Mater. Interfaces 2025, 17, 30362–30363. [Google Scholar] [CrossRef]
- Drysdale, S.B.; Cathie, K.; Flamein, F.; Knuf, M.; Collins, A.M.; Hill, H.C.; Kaiser, F.; Cohen, R.; Pinquier, D.; Felter, C.T.; et al. Nirsevimab for Prevention of Hospitalizations Due to RSV in Infants. N. Engl. J. Med. 2023, 389, 2425–2435. [Google Scholar] [CrossRef]
- Lee, B.Y.; Shah, M. Prevention of Influenza in Healthy Children. Expert Rev. Anti Infect. Ther. 2012, 10, 1139–1152. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Narayanan, S.; Chang, K.-O. Inhibition of Influenza Virus Replication by Plant-Derived Isoquercetin. Antivial. Res. 2010, 88, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, R.; Celestino, I.; Costi, R.; Cuzzucoli Crucitti, G.; Pescatori, L.; Mattiello, L.; Novellino, E.; Checconi, P.; Palamara, A.T.; Nencioni, L.; et al. Effects of Polyphenol Compounds on Influenza A Virus Replication and Definition of Their Mechanism of Action. Bioorg. Med. Chem. 2012, 20, 5046–5052. [Google Scholar] [CrossRef]
- Lin, C.-J.; Lin, H.-J.; Chen, T.-H.; Hsu, Y.-A.; Liu, C.-S.; Hwang, G.-Y.; Wan, L. Polygonum Cuspidatum and Its Active Components Inhibit Replication of the Influenza Virus through Toll-like Receptor 9-Induced Interferon Beta Expression. PLoS ONE 2015, 10, e0117602, Correction in PLoS ONE 2015, 10, e0125288. [Google Scholar] [CrossRef]
- Parisi, G.F.; Carota, G.; Castruccio Castracani, C.; Spampinato, M.; Manti, S.; Papale, M.; Di Rosa, M.; Barbagallo, I.; Leonardi, S. Nutraceuticals in the Prevention of Viral Infections, Including COVID-19, among the Pediatric Population: A Review of the Literature. Int. J. Mol. Sci. 2021, 22, 2465. [Google Scholar] [CrossRef]
- Mastromarino, P.; Capobianco, D.; Cannata, F.; Nardis, C.; Mattia, E.; De Leo, A.; Restignoli, R.; Francioso, A.; Mosca, L. Resveratrol Inhibits Rhinovirus Replication and Expression of Inflammatory Mediators in Nasal Epithelia. Antiviral. Res. 2015, 123, 15–21. [Google Scholar] [CrossRef]
- Chiappini, E.; Santamaria, F.; Marseglia, G.L.; Marchisio, P.; Galli, L.; Cutrera, R.; de Martino, M.; Antonini, S.; Becherucci, P.; Biasci, P.; et al. Prevention of Recurrent Respiratory Infections: Inter-Society Consensus. Ital. J. Pediatr. 2021, 47, 211. [Google Scholar] [CrossRef] [PubMed]
- Varricchio, A.M.; Capasso, M.; Della Volpe, A.; Malafronte, L.; Mansi, N.; Varricchio, A.; Ciprandi, G. Resveratrol plus Carboxymethyl-β-Glucan in Children with Recurrent Respiratory Infections: A Preliminary and Real-Life Experience. Ital. J. Pediatr. 2014, 40, 93. [Google Scholar] [CrossRef]
- Baldassarre, M.E.; Di Mauro, A.; Labellarte, G.; Pignatelli, M.; Fanelli, M.; Schiavi, E.; Mastromarino, P.; Capozza, M.; Panza, R.; Laforgia, N. Resveratrol plus Carboxymethyl-β-Glucan in Infants with Common Cold: A Randomized Double-Blind Trial. Heliyon 2020, 6, e03814. [Google Scholar] [CrossRef]
- Indolfi, C.; Mignini, C.; Valitutti, F.; Bizzarri, I.; Dinardo, G.; Klain, A.; Miraglia Del Giudice, M.; Di Cara, G. Effects of Nasal Solution Incorporating Resveratrol and Carboxymethyl-Β-Glucan in Preschool Non-Atopic Children with Wheezing. Nutrients 2024, 16, 2197. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.K.C.; Kellner, J.D.; Dele Davies, H. Rotavirus Gastroenteritis. Adv. Ther. 2005, 22, 476–487. [Google Scholar] [CrossRef]
- Huang, H.; Liao, D.; Zhou, G.; Zhu, Z.; Cui, Y.; Pu, R. Antiviral Activities of Resveratrol against Rotavirus In Vitro and In Vivo. Phytomedicine 2020, 77, 153230. [Google Scholar] [CrossRef]
- Abba, Y.; Hassim, H.; Hamzah, H.; Noordin, M.M. Antiviral Activity of Resveratrol against Human and Animal Viruses. Adv. Virol. 2015, 2015, 184241. [Google Scholar] [CrossRef] [PubMed]
- Bonjardim, C.A. Viral Exploitation of the MEK/ERK Pathway—A Tale of Vaccinia Virus and Other Viruses. Virology 2017, 507, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Cuadras, M.A.; Feigelstock, D.A.; An, S.; Greenberg, H.B. Gene Expression Pattern in Caco-2 Cells Following Rotavirus Infection. J. Virol. 2002, 76, 4467–4482. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, F.; Wang, R.; Li, F.; Wu, Y.; Kitazato, K.; Wang, Y. HSP90: A Promising Broad-Spectrum Antiviral Drug Target. Arch. Virol. 2017, 162, 3269–3282. [Google Scholar] [CrossRef]
- Baur, J.A.; Sinclair, D.A. Therapeutic Potential of Resveratrol: The In Vivo Evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506. [Google Scholar] [CrossRef]
- Pleschka, S. RNA Viruses and the Mitogenic Raf/MEK/ERK Signal Transduction Cascade. Biol. Chem. 2008, 389, 1273–1282. [Google Scholar] [CrossRef]
- Gandhi, G.R.; Santos, V.S.; Denadai, M.; da Silva Calisto, V.K.; de Souza Siqueira Quintans, J.; de Oliveira e Silva, A.M.; de Souza Araújo, A.A.; Narain, N.; Cuevas, L.E.; Júnior, L.J.Q.; et al. Cytokines in the Management of Rotavirus Infection: A Systematic Review of In Vivo Studies. Cytokine 2017, 96, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Wang, J.; Song, M.; Dai, X. The Inhibitory Effect of Resveratrol from Reynoutria Japonica on MNV-1, a Human Norovirus Surrogate. Food Environ. Virol. 2024, 16, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Periferakis, A.; Periferakis, A.T.; Troumpata, L.; Periferakis, K.; Georgatos-Garcia, S.; Touriki, G.; Dragosloveanu, C.D.M.; Caruntu, A.; Savulescu-Fiedler, I.; Dragosloveanu, S.; et al. Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential. Curr. Issues Mol. Biol. 2025, 47, 204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]



| Virus | Gut Microbiota Alterations | Reference |
|---|---|---|
| SARS-CoV2 | Increased representation of Bacteroidetes and Firmicutes; decreased Proteobacteria. Significant increase in opportunistic/environmental bacteria (Pseudomonas, Herbaspirillum, Burkholderia, Streptococcus, Erysipelatoclostridium, Rothia, Actinomyces, and Veillonella). Reduction in typical commensals. | [54] |
| RSV | Enrichment of S24_7, Clostridiales, Odoribacteraceae, Lactobacillaceae, and Actinomyces. Bacteroides-dominant profile linked to higher likelihood of severe bronchiolitis. Significant beta diversity alterations. Lower alpha diversity observed in severe RSV disease, indicating reduced richness and evenness. | [20,55,56] |
| Other Respiratory Tract Infections (RRTIs) | Significant reduced alpha diversity; reduction in lactobacilli and bifidobacteria. Reduced Verrucomicrobia and Tenericutes phyla; increased Enterococcus and decreased Eubacterium. | [57,58] |
| Norovirus | Marked dysbiosis, with Veillonella emerging as the dominant genus in infected children, alongside Enterococcus faecium. Significant depletion of butyrate-producing genera (Faecalibacterium, Blautia, Subdoligranulum, Eubacterium hallii group, Fusicatenibacter, Agathobacter, Roseburia, and Dorea) | [59] |
| Rotavirus | Reduced alpha diversity in RV-infected group vs. controls. Increased Proteobacteria abundance and decreased beneficial microbes. | [60] |
| Reference | Study Type | Species/Population | Dose/Regimen | Main Findings |
|---|---|---|---|---|
| [68] | Randomized, placebo-controlled clinical trial (substudy of metabolic trial) | Adult men | Combined polyphenol supplementation arm included resveratrol 80 mg/day | Resveratrol-containing supplementation altered urinary metabolome (microbiota-derived metabolites) and was associated with changes in fecal phyla (decrease in Bacteroidetes in men after resveratrol). Evidence indicates resveratrol (within the supplement) modulates host–microbial metabolic output rather than large, reproducible taxonomic shifts in all participants. |
| [69] | Controlled preclinical study | Rodents | Low-dose dietary resveratrol (reported as low mg·kg−1 range, e.g., approx. ~1 mg·kg−1·day−1 in the low-dose arm). | Resveratrol attenuated colonic inflammation and altered gut community composition; there was a reduction in opportunistic/pathogenic taxa and relative increases in protective genera (Lactobacillus, and Bifidobacterium) alongside improvements in mucosal damage markers. |
| [74] | Preclinical study | Human fecal microbiota (in vitro colon simulator) | Continuous administration of a stilbene-based supplement (resveratrol + viniferin and other stilbenes); multiple concentrations/timepoints. | It showed formulation-dependent effects: in some conditions an increase in Enterobacteriaceae and a decrease in Bifidobacteriales were observed (i.e., not all stilbene mixtures produce the same ‘prebiotic’ outcome); microbial metabolism of stilbenes produced specific metabolites that correlated with shifts in taxa. |
| [77] | Preclinical study | High-fat diet-fed mice (obesity model) | Resveratrol dietary supplementation (reported, e.g., 200 mg·kg−1·day−1 given for 8–12 weeks depending on experiment). | Resveratrol reversed high-fat diet-induced dysbiosis, increased relative abundance of Bacteroidetes and selected beneficial genera (e.g., Bifidobacterium, Lactobacillus) while reducing obesity-associated taxa; it was associated with decreased fat accumulation and improved metabolic endpoints. |
| [78] | Preclinical study | Human fecal inocula from healthy donors | Anaerobic incubation with several stilbenoids (including resveratrol) at defined concentrations for 0 and 24 h; sequencing at endpoints. | Stilbenoids (resveratrol and others) modulated community composition in donor-dependent fashion; common observations included decreased Firmicutes/Bacteroidetes ratio, reductions in certain Clostridium spp., and, in several donors, an increase in Faecalibacterium prausnitzii (and other beneficial taxa) depending on the stilbenoid. Effects were compound- and donor-specific. |
| [80] | Randomized, double-blind, placebo-controlled clinical trial | Adult men and women who were overweight/obese (37 completers) | Combined supplement EGCG 282 mg/day + resveratrol 80 mg/day for 12 weeks (epigallocatechin-3-gallate +resveratrol vs. placebo). | In men (not women) epigallocatechin-3-gallate + resveratrol decreased fecal Bacteroidetes and tended to decrease Faecalibacterium prausnitzii; baseline Bacteroidetes abundance predicted the metabolic response to supplementation (increase in fat oxidation). The authors note the contribution of resveratrol per se cannot be isolated because of the combined supplement. |
| [83] | Preclinical study | Diabetic mice model | Resveratrol administered 10 mg·kg−1·day−1 by oral gavage for 12 weeks; fecal microbiota transplantation (FMT) from RES-treated donors to recipients was also performed. | Resveratrol increased α-diversity and selectively enriched genera including Alistipes, Odoribacter, and Rikenella (and other taxa associated with improved metabolic/inflammatory profiles); concomitant decrease in taxa linked to endotoxemia. |
| [84] | Preclinical study | Piglet oxidative-stress model | Dietary resveratrol included in feed. Main reported regimen: resveratrol supplementation at ~90 mg·kg−1 feed in challenged piglets (experimental group vs. diquat control). See Methods for timing relative to diquat exposure. | Resveratrol supplementation restored diversity and shifted composition: it decreased Firmicutes (certain Clostridia), Actinobacteria, and specific opportunistic taxa (e.g., Lachnoclostridium, Acinetobacter, Serratia), and increased beneficial taxa such as Clostridium sensu stricto 1 and members of Lachnospiraceae; changes accompanied by altered metabolome. |
| [85] | Preclinical study | In vitro (intestinal epithelial barrier assays) and complementary in vivo assays assessing barrier function and metabolite effects | Study focused on resveratrol and its microbial metabolites (e.g., 3-(4-hydroxyphenyl)-propionic acid, and dihydroresveratrol). Concentrations in cell assays were in the micromolar range (physiologically relevant); in vivo dosing details are model-dependent—see full text for exact mg·kg−1 regimens. | The paper shows that microbial metabolites derived from resveratrol (not only parent molecule) enhance tight junction protein expression and reduce cytokine production; metabolites such as 3-(4-hydroxyphenyl)-propionic acid exert anti-inflammatory effects and contribute to barrier integrity. |
| Affected Proteins/Pathways | Mechanism Type | Cellular Response | Reference | Study Type |
|---|---|---|---|---|
| Heparan sulfate proteoglycans (HSPGs); | Protein–carbohydrate interaction; | Disruption of early stages of infection; | [103] | In vivo animal study |
| HRSV Matrix Protein | Protein–protein interaction | Inhibition of viral budding | [102] | Cell line study |
| TLR3, and TRIF signaling pathway | Signaling pathway modulation | Reduction in airway inflammation and hyperresponsiveness | [108] | In vivo animal study |
| Study Reference | Study Type | Population | Intervention | Outcomes | Key Findings |
|---|---|---|---|---|---|
| [121] | Prospective single-blind randomized controlled trial. | A total of 42 non-atopic preschool children (39 completed follow-up); mean age 4.2 years (range 3.6–5.0); 24 males, 15 females, with recurrent wheezing triggered by upper respiratory tract infections. | Nasal solution containing resveratrol (0.05%) and carboxymethyl-β-glucan (0.33%) administered four times daily for 7 days at the onset of upper airway symptoms. | Fewer wheezing episodes, reduced hospital admissions, and decreased oral corticosteroid usage, implying a decrease in infection severity and respiratory complications. | The use of nasal lavage as a delivery method may contribute to the effectiveness of the treatment via direct targeting. The combination of resveratrol and carboxymethyl-β-glucan suggests a potential synergistic effect. |
| [120] | Randomized double-blind trial. | A total of 89 infants with respiratory infection symptoms. | Nasal resveratrol + carboxymethyl-β-glucan solution, 3 drops/nostril, 4×/day for 7 days. | Marked reduction in sneezing and coughing, especially in infants with HRV; upregulation of TLR-2 expression, suggesting enhanced innate immune defense. | Highlights resveratrol’s ability to alleviate cold symptoms and reduce relapse in early childhood, reinforcing its supportive antiviral effect. |
| [119] | Open-label, real-world, randomized study. | A total of 82 children (49 males, mean age 8.1 years) with acute rhinopharyngitis and recurrent respiratory infections. | Resveratrol + carboxymethyl-β-glucan nasal irrigation, for 20 days. | Significant decreases in nasal obstruction, rhinorrhea, sneezing, cough, fever episodes, medication usage, medical visits, and school absences over a 90-day follow-up, compared with saline solution. | Indicates resveratrol’s supportive role in managing recurrent pediatric respiratory infections, potentially extending benefits of standard treatments. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonardi, R.; Lo Bianco, M.; Spinello, S.; Betta, P.; Gagliano, C.; Calabrese, V.; Polizzi, A.; Malaguarnera, G. Resveratrol as an Adjunct Antiviral Agent in Pediatric Viral Infections: A Review on Mechanistic Insights and Gut Microbiota Modulation. Int. J. Mol. Sci. 2025, 26, 11341. https://doi.org/10.3390/ijms262311341
Leonardi R, Lo Bianco M, Spinello S, Betta P, Gagliano C, Calabrese V, Polizzi A, Malaguarnera G. Resveratrol as an Adjunct Antiviral Agent in Pediatric Viral Infections: A Review on Mechanistic Insights and Gut Microbiota Modulation. International Journal of Molecular Sciences. 2025; 26(23):11341. https://doi.org/10.3390/ijms262311341
Chicago/Turabian StyleLeonardi, Roberta, Manuela Lo Bianco, Salvatore Spinello, Pasqua Betta, Caterina Gagliano, Vittorio Calabrese, Agata Polizzi, and Giulia Malaguarnera. 2025. "Resveratrol as an Adjunct Antiviral Agent in Pediatric Viral Infections: A Review on Mechanistic Insights and Gut Microbiota Modulation" International Journal of Molecular Sciences 26, no. 23: 11341. https://doi.org/10.3390/ijms262311341
APA StyleLeonardi, R., Lo Bianco, M., Spinello, S., Betta, P., Gagliano, C., Calabrese, V., Polizzi, A., & Malaguarnera, G. (2025). Resveratrol as an Adjunct Antiviral Agent in Pediatric Viral Infections: A Review on Mechanistic Insights and Gut Microbiota Modulation. International Journal of Molecular Sciences, 26(23), 11341. https://doi.org/10.3390/ijms262311341

