Mild Cognitive Impairment and Sarcopenia: Effects of Resistance Exercise Training on Neuroinflammation, Cognitive Performance, and Structural Brain Changes
Abstract
1. Introduction
2. MCI
3. Sarcopenia and MCI
Crosstalk Between Skeletal Muscle and the Brain in MCI
4. RET and Neuroinflammation
4.1. Microglia and RET
4.2. Astrocytes and RET
4.3. Oligodendrocytes and RET
5. RET and Brain Structural Changes
RET and Cognitive Performance
6. Discussion and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef]
- Moon, J.H.; Moon, J.H.; Kim, K.M.; Choi, S.H.; Lim, S.; Park, K.S.; Jang, H.C.; Kim, K.W.; Cho, N.H.; Chun, S.; et al. Sarcopenia as a predictor of future cognitive impairment in older adults. J. Nutr. Health Aging 2016, 20, 496–502. [Google Scholar] [CrossRef]
- Peng, T.C.; Chen, W.L.; Wu, L.W.; Chang, Y.W.; Kao, T.W. Sarcopenia and cognitive impairment: A systematic review and meta-analysis. Clin. Nutr. Edinb. Scotl. 2020, 39, 2695–2701. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez Rodríguez, J.; Guzmán Gutiérrez, G. Definición y prevalencia del deterioro cognitivo leve. Rev. Española Geriatría Gerontol. 2017, 52, 3–6. [Google Scholar] [CrossRef] [PubMed]
- González Palau, F.; Buonanotte, F.; Cáceres, M.M. Del deterioro cognitivo leve al trastorno neurocognitivo menor: Avances en torno al constructo. Neurol. Argent. 2015, 7, 51–58. [Google Scholar] [CrossRef]
- Won, H.; Singh, D.K.A.; Din, N.C.; Badrasawi, M.; Manaf, Z.A.; Tan, S.T.; Chang, C.K.; Kamaruzzaman, S.B.; Ahmad, S.A.; Lim, W.S.; et al. Relationship between physical performance and cognitive performance measures among community-dwelling older adults. Clin. Epidemiol. 2014, 6, 343–350. [Google Scholar]
- Hoffmann, C.; Weigert, C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb. Perspect. Med. 2017, 7, a029793. [Google Scholar] [CrossRef]
- Jena, B.P.; Larsson, L.; Gatti, D.L.; Ghiran, I.; Cho, W.J. Understanding Brain-Skeletal Muscle Crosstalk Impacting Metabolism and Movement. Discov. Craiova Rom. 2022, 10, e144. [Google Scholar] [CrossRef]
- Ribeiro, I.C.; Teixeira, C.V.L.; de Resende, T.J.R.; de Campos, B.M.; Silva, G.B.; Uchida, M.C.; Alves, R.L.; Nogueira, J.P.; Costa, M.F.; Pereira, J.R.; et al. Resistance training protects the hippocampus and precuneus against atrophy and benefits white matter integrity in older adults with mild cognitive impairment. GeroScience 2025, 47, 5267–5286. [Google Scholar] [CrossRef]
- de Diego-Moreno, M.; Álvarez-Salvago, F.; Martínez-Amat, A.; Boquete-Pumar, C.; Orihuela-Espejo, A.; Aibar-Almazán, A.; Hita-Contreras, F.; Delgado-Floody, P.; Villafaina, S.; Muñoz-Bermejo, L.; et al. Acute Effects of High-Intensity Functional Training and Moderate-Intensity Continuous Training on Cognitive Functions in Young Adults. Int. J. Environ. Res. Public Health 2022, 19, 10608. [Google Scholar] [CrossRef]
- Li, W.; Chen, L.; Mohammad Sajadi, S.; Baghaei Sh Salahshour, S. The impact of acute and chronic aerobic and resistance exercise on stem cell mobilization: A review of effects in healthy and diseased individuals across different age groups. Regen. Ther. 2024, 27, 464–481. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Huenchullan, S.F.; Tam, C.S.; Ban, L.A.; Ehrenfeld-Slater, P.; Mclennan, S.V.; Twigg, S.M. Skeletal muscle adiponectin induction in obesity and exercise. Metabolism 2020, 102, 154008. [Google Scholar] [CrossRef] [PubMed]
- Giudice, J.; Taylor, J.M. Muscle as a paracrine and endocrine organ. Curr. Opin. Pharmacol. 2017, 34, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Piepmeier, A.T.; Etnier, J.L. Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. J. Sport Health Sci. 2015, 4, 14–23. [Google Scholar] [CrossRef]
- van Praag, H.; Christie, B.R.; Sejnowski, T.J.; Gage, F.H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. USA 1999, 96, 13427–13431. [Google Scholar] [CrossRef]
- van Praag, H.; Kempermann, G.; Gage, F.H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 1999, 2, 266–270. [Google Scholar] [CrossRef]
- Singh, M.A.F.; Gates, N.; Saigal, N.; Wilson, G.C.; Meiklejohn, J.; Brodaty, H.; Wen, W.; Singh, N.; Baune, B.T.; Suo, C.; et al. The Study of Mental and Resistance Training (SMART) Study—Resistance Training and/or Cognitive Training in Mild Cognitive Impairment: A Randomized, Double-Blind, Double-Sham Controlled Trial. J. Am. Med. Dir. Assoc. 2014, 15, 873–880, Erratum in J Am Med Dir Assoc. 2021, 22, 479–481. [Google Scholar] [CrossRef] [PubMed]
- Bowman, G.L.; Dayon, L.; Kirkland, R.; Wojcik, J.; Peyratout, G.; Severin, I.C.; Henry, H.; Dorey, A.; Oikonomidi, A.; Migliavacca, E.; et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement. J. Alzheimers Assoc. 2018, 14, 1640–1650, Erratum in Alzheimers Dement. 2019, 15, 319. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, A.; Rehman, S.A.; Subhani, A.; Khan, M.A.; Rahman, Z.; Iqubal, M.K.; Chaudhary, M.; Hoda, N.; Siddiqui, M.A.; Najmi, A.K.; et al. Mechanism of microglia-mediated neuroinflammation, associated cognitive dysfunction, and therapeutic updates in Alzheimer’s disease. hLife 2025, 3, 64–81. [Google Scholar] [CrossRef]
- Jongsiriyanyong, S.; Limpawattana, P. Mild Cognitive Impairment in Clinical Practice: A Review Article. Am. J. Alzheimers Dis. Dement. 2018, 33, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, G.; Vansintjan, A. Memory: An Extended Definition. Front. Psychol. 2019, 10, 487439. Available online: https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2019.02523/full (accessed on 15 August 2025). [CrossRef]
- Ghafarimoghadam, M.; Mashayekh, R.; Gholami, M.; Fereydani, P.; Shelley-Tremblay, J.; Kandezi, N.; Dargahi, L.; Alikhani, M.; Rahbar, M.; Hedayati, M.; et al. A review of behavioral methods for the evaluation of cognitive performance in animal models: Current techniques and links to human cognition. Physiol. Behav. 2022, 244, 113652. [Google Scholar] [CrossRef]
- Gallagher, D.; Fischer, C.E.; Iaboni, A. Neuropsychiatric Symptoms in Mild Cognitive Impairment: An Update on Prevalence, Mechanisms, and Clinical Significance. Can. J. Psychiatry 2017, 62, 161–169. [Google Scholar] [CrossRef]
- Mendonça, M.D.; Alves, L.; Bugalho, P. From Subjective Cognitive Complaints to Dementia: Who is at Risk?: A Systematic Review. Am. J. Alzheimers Dis. Other Demen. 2016, 31, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Libon, D.; Lippa, C. Mild Cognitive Impairment: A Brief Review and Suggested Clinical Algorithm. Am. J. Alzheimers Dis. Other Demen. 2014, 29, 293–302. [Google Scholar] [CrossRef]
- Salemme, S.; Lombardo, F.; Lacorte, E.; Sciancalepore, F.; Remoli, G.; Bacigalupo, I.; Piscopo, P.; Zamboni, G.; Rossini, P.M.; Cappa, S.F.; et al. The prognosis of mild cognitive impairment: A systematic review and meta-analysis. Alzheimers Dement. Diagn. Assess Dis. Monit. 2025, 17, e70074, Erratum in Alzheimers Dement. Diagn. Assess Dis. Monit. 2025, 17, e70150. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Tocino, M.L.; Cigarrán, S.; Ureña, P.; González-Casaus, M.L.; Mas-Fontao, S.; Gracia-Iguacel, C.; Fernández, M.; Reque, J.; Ortiz, A.; Gómez, C.; et al. Definition and evolution of the concept of sarcopenia. Nefrol. Engl. Ed. 2024, 44, 323–330. [Google Scholar] [CrossRef]
- Nunes-Pinto, M.; Bandeira de Mello, R.G.; Pinto, M.N.; Moro, C.; Vellas, B.; Martinez, L.O.; Gonzalez, J.; Blanchard, F.; Oliveira, R.; Martins, R.; et al. Sarcopenia and the biological determinants of aging: A narrative review from a geroscience perspective. Ageing Res. Rev. 2025, 103, 102587. [Google Scholar] [CrossRef]
- Yamada, M.; Nishiguchi, S.; Fukutani, N.; Tanigawa, T.; Yukutake, T.; Kayama, H.; Aoyama, T.; Arai, H.; Okamoto, K.; Tokuda, Y.; et al. Prevalence of sarcopenia in community-dwelling Japanese older adults. J. Am. Med. Dir. Assoc. 2013, 14, 911–915. [Google Scholar] [CrossRef]
- Chang, K.V.; Hsu, T.H.; Wu, W.T.; Huang, K.C.; Han, D.S. Association Between Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2016, 17, 1164.e7–1164.e15. [Google Scholar] [CrossRef] [PubMed]
- Tolea, M.I.; Chrisphonte, S.; Galvin, J.E. Sarcopenic obesity and cognitive performance. Clin. Interv. Aging 2018, 13, 1111–1119. [Google Scholar] [CrossRef]
- Delezie, J.; Handschin, C. Endocrine Crosstalk Between Skeletal Muscle and the Brain. Front. Neurol. 2018, 9, 698. Available online: https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2018.00698/full (accessed on 18 July 2025). [CrossRef] [PubMed]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef] [PubMed]
- Winker, A.J.; Johnson, L.L.; Jadhav, R.; Nguyen, C.; Hitch, E.; McLoon, L.K. Effects of fibroblast growth factor 2 on muscle precursor cells from mouse limb and extraocular muscle. bioRxiv 2025. Available online: https://www.biorxiv.org/content/10.1101/2025.08.17.670754v1 (accessed on 9 October 2025). [CrossRef] [PubMed]
- Isaac, A.R.; Lima-Filho, R.A.S.; Lourenco, M.V. How does the skeletal muscle communicate with the brain in health and disease? Neuropharmacology 2021, 197, 108744. [Google Scholar] [CrossRef]
- Oliff, H.S.; Berchtold, N.C.; Isackson, P.; Cotman, C.W. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Mol. Brain Res. 1998, 61, 147–153. [Google Scholar] [CrossRef]
- Rasmussen, P.; Brassard, P.; Adser, H.; Pedersen, M.V.; Leick, L.; Hart, E.; Secher, N.H.; Quistorff, B.; Saltin, B.; Pilegaard, H.; et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 2009, 94, 1062–1069. [Google Scholar] [CrossRef]
- Seifert, T.; Brassard, P.; Wissenberg, M.; Rasmussen, P.; Nordby, P.; Stallknecht, B.; Secher, N.H.; Pilegaard, H.; Saltin, B.; Mortensen, S.P.; et al. Endurance training enhances BDNF release from the human brain. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2010, 298, R372–R377. [Google Scholar] [CrossRef]
- Soya, H.; Nakamura, T.; Deocaris, C.C.; Kimpara, A.; Iimura, M.; Fujikawa, T.; Chang, H.; McEwen, B.; Nishijima, T.; Ohiwa, N.; et al. BDNF induction with mild exercise in the rat hippocampus. Biochem. Biophys. Res. Commun. 2007, 358, 961–967. [Google Scholar] [CrossRef]
- Sleiman, S.F.; Henry, J.; Al-Haddad, R.; El Hayek, L.; Abou Haidar, E.; Stringer, T.; Ulja, D.; Karuppagounder, S.S.; Holson, E.B.; Ratan, R.R.; et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife 2016, 5, e15092. [Google Scholar] [CrossRef]
- Ben Ezzdine, L.; Dhahbi, W.; Dergaa, I.; Ceylan, H.İ.; Guelmami, N.; Ben Saad, H.; Al-Mohannadi, A.S.; Chaabane, M.; Zguira, M.S.; Souissi, N.; et al. Physical activity and neuroplasticity in neurodegenerative disorders: A comprehensive review of exercise interventions, cognitive training, and AI applications. Front. Neurosci. 2025, 19, 1502417. Available online: https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1502417/full (accessed on 10 October 2025). [CrossRef]
- Lee, M.C.; Okamoto, M.; Liu, Y.F.; Inoue, K.; Matsui, T.; Nogami, H.; Soya, H.; McEwen, B.S.; Okada, T.; Ohiwa, N.; et al. Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling. J. Appl. Physiol. 2012, 113, 1260–1266. [Google Scholar] [CrossRef]
- Vivar, C.; Potter, M.C.; van Praag, H. All About Running: Synaptic Plasticity, Growth Factors and Adult Hippocampal Neurogenesis. In Neurogenesis and Neural Plasticity; Belzung, C., Wigmore, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 189–210. [Google Scholar] [CrossRef]
- Myokines and Resistance Training: A Narrative Review. Available online: https://www.mdpi.com/1422-0067/23/7/3501 (accessed on 10 October 2025).
- Vints, W.A.J.; Levin, O.; Fujiyama, H.; Verbunt, J.; Masiulis, N. Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front. Neuroendocrinol. 2022, 66, 100993. [Google Scholar] [CrossRef]
- Vints, W.A.J.; Gökçe, E.; Langeard, A.; Pavlova, I.; Çevik, Ö.S.; Ziaaldini, M.M.; Todri, J.; Lena, O.; Sakkas, G.K.; Jak, S.; et al. Myokines as mediators of exercise-induced cognitive changes in older adults: Protocol for a comprehensive living systematic review and meta-analysis. Front. Aging Neurosci. 2023, 15, 1213057. Available online: https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2023.1213057/full (accessed on 10 October 2025). [CrossRef]
- Werner, H.; LeRoith, D. Insulin and insulin-like growth factor receptors in the brain: Physiological and pathological aspects. Eur. Neuropsychopharmacol. 2014, 24, 1947–1953. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Chen, Y.; Cheng, P. Unlocking the potential of exercise: Harnessing myokines to delay musculoskeletal aging and improve cognitive health. Front. Physiol. 2024, 15, 1338875. Available online: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2024.1338875/full (accessed on 10 October 2025). [CrossRef] [PubMed]
- Wrann, C.D.; White, J.P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Lin, J.D.; Greenberg, M.E.; Spiegelman, B.M.; Ogasawara, A.; et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013, 18, 649–659. [Google Scholar] [CrossRef]
- Lourenco, M.V.; Frozza, R.L.; de Freitas, G.B.; Zhang, H.; Kincheski, G.C.; Ribeiro, F.C.; Gonçalves, R.A.; Clarke, J.R.; Beckman, D.; Staniszewski, A.; et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat. Med. 2019, 25, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wu, J. Effects of the FNDC5/Irisin on Elderly Dementia and Cognitive Impairment. Front. Aging Neurosci. 2022, 14, 863901. [Google Scholar] [CrossRef]
- Jo, D.; Yoon, G.; Kim, O.Y.; Song, J. A new paradigm in sarcopenia: Cognitive impairment caused by imbalanced myokine secretion and vascular dysfunction. Biomed. Pharmacother. 2022, 147, 112636. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, Z.; Herold, F.; Ludyga, S.; Kuang, J.; Chen, Y.; Müller, P.; Wang, L.; Wu, C.; Zou, L.; et al. Physical activity, cathepsin B, and cognitive health. Trends Mol. Med. 2025, 31, 595–609. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.Y.; Becke, A.; Berron, D.; Becker, B.; Sah, N.; Benoni, G.; Schultes, E.; Wulff, P.; Brandt, M.D.; von Bohlen und Halbach, O.; et al. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function. Cell Metab. 2016, 24, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.M.W.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef]
- Pedersen, B.K. Muscle as a secretory organ. Compr. Physiol. 2013, 3, 1337–1362. [Google Scholar] [CrossRef]
- Sepúlveda-Lara, A.; Sepúlveda, P.; Marzuca-Nassr, G.N. Resistance Exercise Training as a New Trend in Alzheimer’s Disease Research: From Molecular Mechanisms to Prevention. Int. J. Mol. Sci. 2024, 25, 7084. [Google Scholar] [CrossRef]
- Chen, P.; Jia, F.; Wang, M.; Yang, S. Analysis of the mechanism of skeletal muscle atrophy from the pathway of decreased protein synthesis. Front. Physiol. 2025, 16, 1533394. Available online: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2025.1533394/full (accessed on 21 July 2025). [CrossRef]
- Artigas-Arias, M.; Curi, R.; Marzuca-Nassr, G.N. Myogenic microRNAs as Therapeutic Targets for Skeletal Muscle Mass Wasting in Breast Cancer Models. Int. J. Mol. Sci. 2024, 25, 6714. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.Y.; Kim, C.Y. A Comprehensive Review of Pathological Mechanisms and Natural Dietary Ingredients for the Management and Prevention of Sarcopenia. Nutrients 2023, 15, 2625. [Google Scholar] [CrossRef]
- Marzuca-Nassr, G.N.; Alegría-Molina, A.; SanMartín-Calísto, Y.; Artigas-Arias, M.; Huard, N.; Sapunar, J.; Alvear-Ordenes, I.; Castillo, T.; Oyarzún, M.; Pérez, V.; et al. Muscle Mass and Strength Gains Following Resistance Exercise Training in Older Adults 65–75 Years and Older Adults Above 85 Years. Int. J. Sport Nutr. Exerc. Metab. 2024, 34, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Lee, J. Effects of Aerobic and Resistance Exercise Interventions on Cognitive and Physiologic Adaptations for Older Adults with Mild Cognitive Impairment: A Systematic Review and Meta-Analysis of Randomized Control Trials. Int. J. Environ. Res. Public Health 2020, 17, 9216. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Sanchéz, M.A.; Bustos-Cruz, R.H.; Velasco-Orjuela, G.P.; Quintero, A.P.; Tordecilla-Sanders, A.; Correa-Bautista, J.E.; García-Hermoso, A.; Izquierdo, M.; Ramírez-Vélez, R.; Martínez-Vizcaíno, V.; et al. Acute Effects of High Intensity, Resistance, or Combined Protocol on the Increase of Level of Neurotrophic Factors in Physically Inactive Overweight Adults: The BrainFit Study. Front. Physiol. 2018, 9, 741. Available online: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2018.00741/full (accessed on 12 August 2025). [CrossRef] [PubMed]
- Kumar, A. Editorial: Neuroinflammation and Cognition. Front. Aging Neurosci. 2018, 10, 413. Available online: https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2018.00413/full (accessed on 21 July 2025). [CrossRef]
- Bradburn, S.; Murgatroyd, C.; Ray, N. Neuroinflammation in mild cognitive impairment and Alzheimer’s disease: A meta-analysis. Ageing Res. Rev. 2019, 50, 1–8. [Google Scholar] [CrossRef]
- Kim, S.; Sharma, C.; Jung, U.J.; Kim, S.R. Pathophysiological Role of Microglial Activation Induced by Blood-Borne Proteins in Alzheimer’s Disease. Biomedicines 2023, 11, 1383. [Google Scholar] [CrossRef]
- Wang, C.; Zong, S.; Cui, X.; Wang, X.; Wu, S.; Wang, L.; Zhang, J.; Li, Q.; Chen, Y.; Zhao, H.; et al. The effects of microglia-associated neuroinflammation on Alzheimer’s disease. Front. Immunol. 2023, 14, 1117172. [Google Scholar] [CrossRef]
- Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev. Neurol. 2021, 17, 157–172. [Google Scholar] [CrossRef]
- Guo, S.; Wang, H.; Yin, Y. Microglia Polarization From M1 to M2 in Neurodegenerative Diseases. Front. Aging Neurosci. 2022, 14, 815347. [Google Scholar] [CrossRef]
- Eng, L.F.; Ghirnikar, R.S.; Lee, Y.L. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem. Res. 2000, 25, 1439–1451. [Google Scholar] [CrossRef]
- Mandwie, M.; Piper, J.A.; Gorrie, C.A.; Keay, K.A.; Musumeci, G.; Al-Badri, G.; McGowan, E.; Russo, T.; Nasrallah, F.; Smith, M.T.; et al. Rapid GFAP and Iba1 expression changes in the female rat brain following spinal cord injury. Neural Regen. Res. 2021, 17, 378–385. [Google Scholar]
- Imai, Y.; Kohsaka, S. Intracellular signaling in M-CSF-induced microglia activation: Role of Iba1. Glia 2002, 40, 164–174. [Google Scholar] [CrossRef]
- Kim, J.H.; Michiko, N.; Choi, I.S.; Kim, Y.; Jeong, J.Y.; Lee, M.G.; Park, H.; Han, J.; Lim, S.; Cho, S.; et al. Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice. PLoS Biol. 2024, 22, e3002687. [Google Scholar] [CrossRef]
- Meyer-Luehmann, M.; Spires-Jones, T.L.; Prada, C.; Garcia-Alloza, M.; de Calignon, A.; Rozkalne, A.; Koenigsknecht-Talboo, J.; Holtzman, D.M.; Bacskai, B.J.; Hyman, B.T.; et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 2008, 451, 720–724. [Google Scholar] [CrossRef]
- Harry, G.J. Microglia During Development and Aging. Pharmacol. Ther. 2013, 139, 313–326. [Google Scholar] [CrossRef]
- Tang, Y.; Le, W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol. Neurobiol. 2016, 53, 1181–1194. [Google Scholar] [CrossRef]
- Orihuela, R.; McPherson, C.A.; Harry, G.J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol. 2016, 173, 649–665. [Google Scholar] [CrossRef]
- Jensen, S.M.; Bechshøft, C.J.L.; Heisterberg, M.F.; Schjerling, P.; Andersen, J.L.; Kjaer, M.; Reitelseder, S.; Holm, L.; Mikkelsen, U.R.; Mackey, A.L.; et al. Macrophage Subpopulations and the Acute Inflammatory Response of Elderly Human Skeletal Muscle to Physiological Resistance Exercise. Front. Physiol. 2020, 11, 811. Available online: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2020.00811/full (accessed on 21 July 2025). [CrossRef] [PubMed]
- Long, D.E.; Peck, B.D.; Lavin, K.M.; Dungan, C.M.; Kosmac, K.; Tuggle, S.C.; Bamman, M.M.; Kern, P.A.; Peterson, C.A. Skeletal muscle properties show collagen organization and immune cell content are associated with resistance exercise response heterogeneity in older persons. J. Appl. Physiol. 2022, 132, 1432–1447. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhou, J.; Quan, H.; Li, W.; Li, T.; Wang, L. Resistance training alleviates muscle atrophy and muscle dysfunction by reducing inflammation and regulating compromised autophagy in aged skeletal muscle. Front. Immunol. 2025, 16, 1597222. Available online: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2025.1597222/full (accessed on 22 July 2025). [CrossRef] [PubMed]
- Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010, 119, 7–35. [Google Scholar] [CrossRef] [PubMed]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- Escartin, C.; Galea, E.; Lakatos, A.; O’Callaghan, J.P.; Petzold, G.C.; Serrano-Pozo, A.; Agarwal, A.; Allen, N.J.; Araque, A.; Barbeito, L.; et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 2021, 24, 312–325. [Google Scholar] [CrossRef]
- Zamanian, J.L.; Xu, L.; Foo, L.C.; Nouri, N.; Zhou, L.; Giffard, R.G.; Barres, B.A.; Johnson, M.B.; Allen, N.J.; Zhang, Y.; et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 2012, 32, 6391–6410. [Google Scholar] [CrossRef]
- Colombo, E.; Farina, C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol. 2016, 37, 608–620. [Google Scholar] [CrossRef]
- Gomes da Silva, S.; Simões, P.S.R.; Mortara, R.A.; Scorza, F.A.; Cavalheiro, E.A.; da Graça Naffah-Mazzacoratti, M.; Arida, R.M.; Mazzacoratti, M.; Ribeiro, L.F.; Pinto, M.M.; et al. Exercise-induced hippocampal anti-inflammatory response in aged rats. J. Neuroinflamm. 2013, 10, 61. [Google Scholar] [CrossRef]
- Pinto, R.S.; Correa, C.S.; Radaelli, R.; Cadore, E.L.; Brown, L.E.; Bottaro, M. Short-term strength training improves muscle quality and functional capacity of elderly women. Age 2014, 36, 365–372. [Google Scholar] [CrossRef]
- Hu, J.; Huang, B.; Chen, K. The impact of physical exercise on neuroinflammation mechanism in Alzheimer’s disease. Front. Aging Neurosci. 2024, 16, 1444716. [Google Scholar] [CrossRef] [PubMed]
- Duncan, G.J.; Simkins, T.J.; Emery, B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Front. Cell Dev. Biol. 2021, 9, 653101. [Google Scholar] [CrossRef] [PubMed]
- Domingues, H.S.; Cruz, A.; Chan, J.R.; Relvas, J.B.; Rubinstein, B.; Pinto, I.M. Mechanical plasticity during oligodendrocyte differentiation and myelination. Glia 2018, 66, 5–14. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, X.; Li, B.; Cai, Y.; Zhang, S.; Wan, Q.; Wang, L.; Liu, Y.; Chen, X.; Zhou, J.; et al. Comparative efficacy of various exercise interventions on cognitive function in patients with mild cognitive impairment or dementia: A systematic review and network meta-analysis. J. Sport Health Sci. 2022, 11, 212–223. [Google Scholar] [CrossRef]
- Seo, D.Y.; Hwang, B.G. Effects of exercise training on the biochemical pathways associated with sarcopenia. Phys. Act. Nutr. 2020, 24, 32–38. [Google Scholar] [CrossRef]
- Jagielska, A.; Lowe, A.L.; Makhija, E.; Wroblewska, L.; Guck, J.; Franklin, R.J.M.; Franklin, R.; Smith, C.M.; Turner, D.L.; Brown, R.A.; et al. Mechanical Strain Promotes Oligodendrocyte Differentiation by Global Changes of Gene Expression. Front. Cell. Neurosci. 2017, 11, 93. [Google Scholar] [CrossRef]
- Espinosa-Hoyos, D.; Burstein, S.R.; Cha, J.; Jain, T.; Nijsure, M.; Jagielska, A.; Brown, R.A.; Franklin, R.J.M.; Turner, D.L.; Guck, J.; et al. Mechanosensitivity of Human Oligodendrocytes. Front. Cell. Neurosci. 2020, 14, 222. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.W.; Xiao, J.; Kemper, D.; Kilpatrick, T.J.; Murray, S.S. Oligodendroglial expression of TrkB independently regulates myelination and progenitor cell proliferation. J. Neurosci. 2013, 33, 4947–4957. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Y.; Ren, Y.; Yin, S.; Yu, L.; Huang, R.; Wang, X.; Chen, L.; Li, M.; Zhang, J.; et al. Neurogenesis potential of oligodendrocyte precursor cells from oligospheres and injured spinal cord. Front. Cell. Neurosci. 2022, 16, 1049562. [Google Scholar] [CrossRef] [PubMed]
- Vints, W.A.J.; Šeikinaitė, J.; Gökçe, E.; Kušleikienė, S.; Šarkinaite, M.; Valatkeviciene, K.; Jaruševičius, G.; Tamulevičius, T.; Schettino, L.F.; Verhey, F.R.J.; et al. Resistance exercise effects on hippocampus subfield volumes and biomarkers of neuroplasticity and neuroinflammation in older adults with low and high risk of mild cognitive impairment: A randomized controlled trial. GeroScience 2024, 46, 3971–3991. [Google Scholar] [CrossRef] [PubMed]
- Hirao, K.; Yamashita, F.; Tsugawa, A.; Haime, R.; Fukasawa, R.; Sato, T.; Takahashi, K.; Suzuki, M.; Watanabe, Y.; Mori, H.; et al. Association of White Matter Hyperintensity Progression with Cognitive Decline in Patients with Amnestic Mild Cognitive Impairment. J. Alzheimer’s Dis. 2021, 80, 877–883. [Google Scholar] [CrossRef]
- Gao, S.L.; Yue, J.; Li, X.L.; Li, A.; Cao, D.N.; Han, S.W.; Zhao, Y.; Wu, H.; Xu, L.; Wang, Q.; et al. Multimodal magnetic resonance imaging on brain network in amnestic mild cognitive impairment: A mini-review. Medicine 2023, 102, e34994. [Google Scholar] [CrossRef]
- Chandra, A.; Dervenoulas, G.; Politis, M.; for the Alzheimer’s Disease Neuroimaging Initiative. Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J. Neurol. 2019, 266, 1293–1302. [Google Scholar] [CrossRef]
- Broadhouse, K.M.; Singh, M.F.; Suo, C.; Gates, N.; Wen, W.; Brodaty, H.; Baune, B.T.; Singh, N.; Valenzuela, M.J.; Cavuoto, M.G.; et al. Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI. NeuroImage Clin. 2020, 25, 102182. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Lan, K.; Huang, X.; He, Y.; Yang, F.; Wang, L.; Li, Q.; Chen, S.; Zhao, Y.; et al. Gray Matter Atrophy in Amnestic Mild Cognitive Impairment: A Voxel-Based Meta-Analysis. Front. Aging Neurosci. 2021, 13, 627919. Available online: https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2021.627919/full (accessed on 15 August 2025). [CrossRef]
- Csukly, G.; Sirály, E.; Fodor, Z.; Horváth, A.; Salacz, P.; Hidasi, Z.; Csibri, É.; Csukly, Z.; Kovács, T.; Varga, Z.; et al. The Differentiation of Amnestic Type MCI from the Non-Amnestic Types by Structural MRI. Front. Aging Neurosci. 2016, 8, 52. Available online: https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2016.00052/full (accessed on 15 August 2025). [CrossRef]
- Calcetas, A.T.; Thomas, K.R.; Edmonds, E.C.; Holmqvist, S.L.; Edwards, L.; Bordyug, M.; Galasko, D.R.; Bondi, M.W.; Delano-Wood, L.; Nation, D.A.; et al. Increased regional white matter hyperintensity volume in objectively-defined subtle cognitive decline and mild cognitive impairment. Neurobiol. Aging 2022, 118, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, J.M.T.; Yan, T.; Zhang, Y.; Chen, Y.; Chang, R.C.C.; Wong, G.T.C.; Lee, T.M.C.; Mok, V.C.T.; Lai, C.S.W.; et al. Short-term resistance exercise inhibits neuroinflammation and attenuates neuropathological changes in 3xTg Alzheimer’s disease mice. J. Neuroinflamm. 2020, 17, 4. [Google Scholar] [CrossRef]
- Zhang, L.; Li, B.; Yang, J.; Wang, F.; Tang, Q.; Wang, S. Meta-analysis: Resistance Training Improves Cognition in Mild Cognitive Impairment. Int. J. Sports Med. 2020, 41, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Su, W.; Dang, H.; Han, K.; Lu, H.; Yue, S.; Zhang, L.; Chen, X.; Wang, Y.; Zhao, J.; et al. Exercise Training for Mild Cognitive Impairment Adults Older Than 60: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2022, 88, 1263–1278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zeng, S.; Nie, Y.; Xu, K.; Zhang, Q.; Qiu, Y.; Li, Y. Meta-analysis of high-intensity interval training effects on cognitive function in older adults and cognitively impaired patients. Front. Physiol. 2025, 16, 1543217. [Google Scholar] [CrossRef] [PubMed]
- Torma, F.; Gombos, Z.; Jokai, M.; Takeda, M.; Mimura, T.; Radak, Z. High intensity interval training and molecular adaptive response of skeletal muscle. Sports Med. Health Sci. 2019, 1, 24–32. [Google Scholar] [CrossRef]
- Cantó, C.; Auwerx, J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 2009, 20, 98–105. [Google Scholar] [CrossRef]
- Spiering, B.A.; Kraemer, W.J.; Anderson, J.M.; Armstrong, L.E.; Nindl, B.C.; Volek, J.S.; Maresh, C.M. Resistance Exercise Biology. Sports Med. 2008, 38, 527–540. [Google Scholar] [CrossRef]
- Hooshmand-Moghadam, B.; Eskandari, M.; Golestani, F.; Rezae, S.; Mahmoudi, N.; Gaeini, A.A. The effect of 12-week resistance exercise training on serum levels of cellular aging process parameters in elderly men. Exp. Gerontol. 2020, 141, 111090. [Google Scholar] [CrossRef]
- Gómez-Gómez, M.E.; Zapico, S.C. Frailty, Cognitive Decline, Neurodegenerative Diseases and Nutrition Interventions. Int. J. Mol. Sci. 2019, 20, 2842. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Liu, J.; Huang, S.; Wang, X.Y.; Chen, X.; Liu, G.H.; Ye, K.; Song, W.; Masters, C.L.; Wang, J.; et al. Antiageing strategy for neurodegenerative diseases: From mechanisms to clinical advances. Signal Transduct. Target. Ther. 2025, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.Y.; Chen, F.T.; Li, R.H.; Hillman, C.H.; Cline, T.L.; Chu, C.H.; Hung, T.M.; Kao, S.C.; Lin, C.H.; Chang, Y.K.; et al. Effects of Acute Resistance Exercise on Executive Function: A Systematic Review of the Moderating Role of Intensity and Executive Function Domain. Sports Med.—Open 2022, 8, 141. [Google Scholar] [CrossRef] [PubMed]
- Griebler, N.; Schröder, N.; Vieira, W.D.S.; Fagundes, M.G.; Beraldo, L.M.; Machado, G.D.B.; Santos, R.A.; Fernandes, L.; Costa, D.F.; Pinto, R.S.; et al. Single Strength Training Session Improves Short-Term Memory in Cognitively Preserved Older Adults. J. Appl. Gerontol. 2025, 44, 884–892. [Google Scholar] [CrossRef]
- Soga, K.; Masaki, H.; Gerber, M.; Ludyga, S. Acute and Long-term Effects of Resistance Training on Executive Function. J. Cogn. Enhanc. 2018, 2, 200–207. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oporto-Colicoi, V.; Sepúlveda-Lara, A.; Marzuca-Nassr, G.N.; Sepúlveda-Figueroa, P. Mild Cognitive Impairment and Sarcopenia: Effects of Resistance Exercise Training on Neuroinflammation, Cognitive Performance, and Structural Brain Changes. Int. J. Mol. Sci. 2025, 26, 11036. https://doi.org/10.3390/ijms262211036
Oporto-Colicoi V, Sepúlveda-Lara A, Marzuca-Nassr GN, Sepúlveda-Figueroa P. Mild Cognitive Impairment and Sarcopenia: Effects of Resistance Exercise Training on Neuroinflammation, Cognitive Performance, and Structural Brain Changes. International Journal of Molecular Sciences. 2025; 26(22):11036. https://doi.org/10.3390/ijms262211036
Chicago/Turabian StyleOporto-Colicoi, Valeria, Alexis Sepúlveda-Lara, Gabriel Nasri Marzuca-Nassr, and Paulina Sepúlveda-Figueroa. 2025. "Mild Cognitive Impairment and Sarcopenia: Effects of Resistance Exercise Training on Neuroinflammation, Cognitive Performance, and Structural Brain Changes" International Journal of Molecular Sciences 26, no. 22: 11036. https://doi.org/10.3390/ijms262211036
APA StyleOporto-Colicoi, V., Sepúlveda-Lara, A., Marzuca-Nassr, G. N., & Sepúlveda-Figueroa, P. (2025). Mild Cognitive Impairment and Sarcopenia: Effects of Resistance Exercise Training on Neuroinflammation, Cognitive Performance, and Structural Brain Changes. International Journal of Molecular Sciences, 26(22), 11036. https://doi.org/10.3390/ijms262211036

