Whole-Genome Sequence Analysis and Subtractive Screening of Lactobacilli in the Searching for New Probiotics to Protect the Mammary Glands
Abstract
1. Introduction
2. Results and Discussion
2.1. Bacterial Identification
2.2. Safety Assessment
2.2.1. Phenotype Antibiotic Resistance
2.2.2. Enzyme Activities
2.2.3. Biofilm Formation
2.2.4. Antimicrobial Activity of Neutralized Cell Free Supernatant from Individual Lactobacilli
2.3. WGS of Ligilactobacillus Salivarius 48
2.3.1. Prediction of the Salivaricin Gene Cluster
2.3.2. Prediction of the Bacterial Type III Polyketide Synthases Gene Cluster
3. Materials and Methods
3.1. Bacterial Isolation and Identification
3.2. Antibiotic Susceptibility Testing
3.3. Enzyme Activities
3.4. Biofilm Production
3.5. Antimicrobial Activity of NCFSs from Individual Lactobacilli
3.6. Extraction of Genomic DNA
3.7. WGS
3.8. WGS Characterization
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BM | Bovine Mastitis |
| MALDI-ToF | Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry |
| EFSA | European Food Safety Authority |
| FEEDAP | Panel on Additives and Products or Substances used in Animal Feed |
| MIC | Minimum inhibitory concentration |
| MIC50 | Minimum inhibitory concentration that inhibited 50% of the tested microorganisms |
| MIC90 | Minimum inhibitory concentration that inhibited 90% of the tested microorganisms |
| WGS | Whole- Genome Sequencing |
| CARD | The Comprehensive Antibiotic Resistance Database |
| CFSs | Cell–free supernatants |
| NCFSs | Neutralized cell free supernatants |
| CCM | The Czech Collection of Microorganisms |
| NCBI | National Centre for Biotechnology Information |
| BLAST | Basic Local Alignment Search Tool |
| CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
| MGEs | Mobile genetic elements |
| RiPP | ribosomally synthesized and post-translationally modified peptides |
| ARGs | antimicrobial resistance genes |
| T3PKSs | bacterial type III polyketide synthases |
| VFDB | Virulence Factor Database |
| CFU | Colony Forming Units |
| PBS | Phosphate-Buffered Saline solution |
| MRS | De Man–Rogosa–Sharpe broth |
| MH | Muller Hinton broth |
References
- Holko, I.; Tančin, V.; Vršková, M.; Tvarožková, K. Prevalence and antimicrobial susceptibility of udder pathogens isolated from dairy cows in Slovakia. J. Dairy Res. 2019, 86, 436–439. [Google Scholar] [CrossRef]
- Webster, J. Understanding the Dairy Cow, 3rd ed.; Wiley Blackwell: Chichester, UK, 2020; p. 258. [Google Scholar]
- Pyörälä, S. Treatment of Mastitis during Lactation. Ir. Vet. J. 2009, 62 (Suppl. 4), S40. [Google Scholar] [CrossRef] [PubMed]
- Bruckmaier, R.M.; Wellnitz, O. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Pathogen-Specific Immune Response and Changes in the Blood–Milk Barrier of the Bovine Mammary Gland1. J. Anim. Sci. 2017, 95, 5720–5728. [Google Scholar] [CrossRef]
- Gomes, F.; Henriques, M. Control of Bovine Mastitis: Old and Recent Therapeutic Approaches. Curr. Microbiol. 2016, 72, 377–382. [Google Scholar] [CrossRef]
- Oliver, S.P.; Murinda, S.E. Antimicrobial Resistance of Mastitis Pathogens. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 165–185. [Google Scholar] [CrossRef]
- Cheng, G.; Hao, H.; Xie, S.; Wang, X.; Dai, M.; Huang, L.; Yuan, Z. Antibiotic Alternatives: The Substitution of Antibiotics in Animal Husbandry? Front. Microbiol. 2014, 5, 217. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Mansilla, F.; Takagi, M.; Garcia-Castillo, V.; Aso, H.; Nader-Macias, M.E.; Vignolo, G.; Kitazawa, H.; Villena, J. Modulation of Toll-like Receptor-Mediated Innate Immunity in Bovine Intestinal Epithelial Cells by Lactic Acid Bacteria Isolated from Feedlot Cattle. Benef. Microbes 2020, 11, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Roe, A.L.; Boyte, M.-E.; Elkins, C.A.; Goldman, V.S.; Heimbach, J.; Madden, E.; Oketch-Rabah, H.; Sanders, M.E.; Sirois, J.; Smith, A. Considerations for Determining Safety of Probiotics: A USP Perspective. Regul. Toxicol. Pharmacol. 2022, 136, 105266. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the Assessment of Bacterial Susceptibility to Antimicrobials of Human and Veterinary Importance. EFSA J. 2012, 10, 2740. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.d.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; et al. Guidance on the Characterisation of Microorganisms Used as Feed Additives or as Production Organisms. EFSA J. 2018, 16, 5206. [Google Scholar] [CrossRef]
- Campedelli, I.; Mathur, H.; Salvetti, E.; Clarke, S.; Rea, M.C.; Torriani, S.; Ross, R.P.; Hill, C.; O’Toole, P.W. Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appl. Environ. Microbiol. 2019, 85, e01738–18. [Google Scholar] [CrossRef]
- Anisimova, E.A.; Yarullina, D.R. Antibiotic Resistance of LACTOBACILLUS Strains. Curr. Microbiol. 2019, 76, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, G.; Saigal, S.; Elongavan, A. Action and Resistance Mechanisms of Antibiotics: A Guide for Clinicians. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Colautti, A.; Arnoldi, M.; Comi, G.; Iacumin, L. Antibiotic Resistance and Virulence Factors in Lactobacilli: Something to Carefully Consider. Food Microbiol. 2022, 103, 103934. [Google Scholar] [CrossRef]
- Boyd, D.A.; Du, T.; Hizon, R.; Kaplen, B.; Murphy, T.; Tyler, S.; Brown, S.; Jamieson, F.; Weiss, K.; Mulvey, M.R.; et al. VanG-Type Vancomycin-Resistant Enterococcus faecalis Strains Isolated in Canada. Antimicrob. Agents Chemother. 2006, 50, 2217–2221. [Google Scholar] [CrossRef]
- Hillege, L.E.; Stevens, M.A.M.; Kristen, P.A.J.; De Vos-Geelen, J.; Penders, J.; Redinbo, M.R.; Smidt, M.L. The Role of Gut Microbial β-Glucuronidases in Carcinogenesis and Cancer Treatment: A Scoping Review. J. Cancer Res. Clin. Oncol. 2024, 150, 495. [Google Scholar] [CrossRef]
- Brás, N.F.; Fernandes, P.A.; Ramos, M.J. QM/MM Studies on the β-Galactosidase Catalytic Mechanism: Hydrolysis and Transglycosylation Reactions. J. Chem. Theory Comput. 2010, 6, 421–433. [Google Scholar] [CrossRef]
- Lu, L.; Guo, L.; Wang, K.; Liu, Y.; Xiao, M. β-Galactosidases: A Great Tool for Synthesizing Galactose-Containing Carbohydrates. Biotechnol. Adv. 2020, 39, 107465. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Hu, X.; Cang, W.; Ji, S.; Wu, R.; Wu, J. Biofilm-Based Probiotic Delivery System and Its Application in the Food Industry. Food Biosci. 2024, 62, 105172. [Google Scholar] [CrossRef]
- Pellegrino, M.S.; Frola, I.D.; Natanael, B.; Gobelli, D.; Nader-Macias, M.E.F.; Bogni, C.I. In Vitro Characterization of Lactic Acid Bacteria Isolated from Bovine Milk as Potential Probiotic Strains to Prevent Bovine Mastitis. Probiotics Antimicrob. Prot. 2019, 11, 74–84. [Google Scholar] [CrossRef]
- Santarelli, G.; Rosato, R.; Cicchinelli, M.; Iavarone, F.; Urbani, A.; Sanguinetti, M.; Delogu, G.; De Maio, F. The Activity of Cell-Free Supernatant of Lactobacillus Crispatus M247: A Promising Treatment against Vaginal Infections. Front. Cell. Infect. Microbiol. 2025, 15, 1586442. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Song, X.; Xiong, Z.; Xia, Y.; Wang, G.; Ai, L. Complete Genome Sequence of Lactobacillus Salivarius AR809, a Probiotic Strain with Oropharyngeal Tract Resistance and Adhesion to the Oral Epithelial Cells. Curr. Microbiol. 2022, 79, 280. [Google Scholar] [CrossRef]
- Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1423799 (accessed on 24 June 2025).
- Kim, M.; Oh, H.-S.; Park, S.-C.; Chun, J. Towards a Taxonomic Coherence between Average Nucleotide Identity and 16S rRNA Gene Sequence Similarity for Species Demarcation of Prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64 Pt 2, 346–351. [Google Scholar] [CrossRef]
- Vera Pingitore, E.; Hébert, E.M.; Nader-Macías, M.E.; Sesma, F. Characterization of Salivaricin CRL 1328, a Two-Peptide Bacteriocin Produced by Lactobacillus salivarius. Res. Microbiol. 2009, 160, 401–408. [Google Scholar] [CrossRef]
- Marta Dec, O.; Puchalski, A. Antimicrobial Activity of Lactobacillus Strains of Chicken Origin against Bacterial Pathogens. Int. Microbiol. 2016, 19, 57–67. [Google Scholar] [CrossRef]
- Wayah, S.B.; Philip, K. Purification, Characterization, Mode of Action, and Enhanced Production of Salivaricin Mmaye1, a Novel Bacteriocin from Lactobacillus Salivarius SPW1 of Human Gut Origin. Electron. J. Biotechnol. 2018, 35, 39–47. [Google Scholar] [CrossRef]
- Darbandi, A.; Asadi, A.; Mahdizade Ari, M.; Ohadi, E.; Talebi, M.; Halaj Zadeh, M.; Darb Emamie, A.; Ghanavati, R.; Kakanj, M. Bacteriocins: Properties and Potential Use as Antimicrobials. Clin. Lab. Anal. 2022, 36, e24093. [Google Scholar] [CrossRef]
- Messaoudi, S.; Manai, M.; Kergourlay, G.; Prévost, H.; Connil, N.; Chobert, J.-M.; Dousset, X. Lactobacillus Salivarius: Bacteriocin and Probiotic Activity. Food Microbiol. 2013, 36, 296–304. [Google Scholar] [CrossRef]
- Busarcevic, M.; Dalgalarrondo, M. Purification and Genetic Characterisation of the Novel Bacteriocin LS2 Produced by the Human Oral Strain Lactobacillus Salivarius BGHO1. Int. J. Antimicrob. Agents 2012, 40, 127–134. [Google Scholar] [CrossRef]
- Katsuyama, Y.; Ohnishi, Y. Type III Polyketide Synthases in Microorganisms. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 515, pp. 359–377. [Google Scholar] [CrossRef]
- Bessède, E.; Angla-gre, M.; Delagarde, Y.; Sep Hieng, S.; Ménard, A.; Mégraud, F. Matrix-Assisted Laser-Desorption/Ionization BIOTYPER: Experience in the Routine of a University Hospital. Clin. Microbiol. Infect. 2011, 17, 533–538. [Google Scholar] [CrossRef] [PubMed]
- ISO 10932:2010; Milk and Milk Products—Determination of the Minimal Inhibitory Concentration (MIC) of Antibiotics Applicable to Bifidobacteria and Non-Enterococcal Lactic Acid Bacteria (LAB). International Organization for Standardization: Geneva, Switzerland, 2010.
- Arora, G.; Lee, B.H.; Lamoureux, M. Characterization of Enzyme Profiles of Lactobacillus Casei Species by a Rapid API ZYM System. J. Dairy Sci. 1990, 73, 264–273. [Google Scholar] [CrossRef]
- Bujňáková, D.; Kmeť, V. Functional Properties of Lactobacillus Strains Isolated from Dairy Products. Folia Microbiol. 2012, 57, 263–267. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Raethong, N.; Santivarangkna, C.; Visessanguan, W.; Santiyanont, P.; Mhuantong, W.; Chokesajjawatee, N. Whole-Genome Sequence Analysis for Evaluating the Safety and Probiotic Potential of Lactiplantibacillus pentosus 9D3, a Gamma-Aminobutyric Acid (GABA)-Producing Strain Isolated from Thai Pickled Weed. Front. Microbiol. 2022, 13, 969548. [Google Scholar] [CrossRef]
- Kaas, R.S.; Leekitcharoenphon, P.; Aarestrup, F.M.; Lund, O. Solving the Problem of Comparing Whole Bacterial Genomes across Different Sequencing Platforms. PLoS ONE 2014, 9, e104984. [Google Scholar] [CrossRef] [PubMed]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA–DNA Hybridization Values and Their Relationship to Whole-Genome Sequence Similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids Using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Vader, L.; Szenei, J.; Reitz, Z.L.; Augustijn, H.E.; Cediel-Becerra, J.D.D.; de Crécy-Lagard, V.; Koetsier, R.A.; Williams, S.E.; et al. antiSMASH 8.0: Extended Gene Cluster Detection Capabilities and Analyses of Chemistry, Enzymology, and Regulation. Nucleic Acids Res. 2025, 53, W32–W38. [Google Scholar] [CrossRef] [PubMed]






| MIC (µg/mL) | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | MIC50 | MIC90 | |
| Gentamicin | 6 | 3 | 9 | 13 | 4 | 3 | 4 | 8 | ||||||||
| Kanamycin | 1 | 1 | 3 | 7 | 7 | 9 | 6 | 4 | 64 | 128 | ||||||
| Streptomycin | 5 | 2 | 10 | 15 | 5 | 1 | 32 | 64 | ||||||||
| Neomycin | 6 | 6 | 8 | 11 | 6 | 1 | 8 | 16 | ||||||||
| Tetracycline | 3 | 15 | 16 | 2 | 1 | 1 | 2 | 4 | ||||||||
| Erythromycin | 4 | 7 | 12 | 13 | 1 | 1 | 0.25 | 0.5 | ||||||||
| Clindamycin | 3 | 3 | 11 | 8 | 3 | 8 | 2 | 0.125 | 0.25 | |||||||
| Chloramphenicol | 1 | 16 | 14 | 7 | 4 | 8 | ||||||||||
| Positive Enzymatic Activity (no) | Species (n) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Ligilactobacillus salivarius (15) | Lactobacillus paracasei (6) | Ligilactobacillus agilis (6) | Lactobacillus casei (3) | Lactobacillus mucosae (3) | Lactobacillus ingluviei (2) | Lactobacillus fermentum (2) | Ligilactobacillus ruminis (2) | Lactobacillus plantarum (1) | |
| alkaline phosphatase | 1 | ||||||||
| esterase | 2 | ||||||||
| leucine arylamidase | 10 | 6 | 2 | 3 | 2 | 2 | 1 | 2 | 1 |
| valine arylamidase | 2 | 6 | 3 | 1 | |||||
| cystine arylamidase | 2 | 1 | |||||||
| acid phosphatase | 10 | 3 | 6 | 3 | 2 | ||||
| naphthol-AS-B1-phosphohydrolase | 9 | 4 | 2 | 1 | 1 | 1 | 1 | ||
| α-galactosidase | 5 | 1 | 2 | 2 | 2 | 1 | |||
| β-galactosidase | 7 | 1 | 3 | 3 | 2 | 2 | 1 | ||
| β-glucoronidase | 1 | ||||||||
| α-glucosidase | 6 | 1 | 1 | 2 | 1 | 1 | |||
| β-glucosidase | 1 | 2 | 2 | 3 | 1 | ||||
| N-acetyl-β-glucosamidase | 1 | ||||||||
| NCFSs | A600 ± SD | |||
|---|---|---|---|---|
| Staphylococcus aureus (from Mastitis) | Salmonella enteritidis CCM 4420 | Escherichia coli C 1971 | Bacillus cereus CCM 869 | |
| Control | 0.887 ± 0.008 | 0.806 ± 0.011 | 0.470 ± 0.063 | 1.043 ± 0.032 |
| Ligilactobacillus salivarius 100/3 | 0.139 ± 0.002 *** | 0.125 ± 0.006 *** | 0.150 ± 0.004 *** | 0.125 ± 0.002 *** |
| Ligilactobacillus salivarius 48 | 0.119 ± 0.002 *** | 0.110 ± 0.006 *** | 0.153 ± 0.005 *** | 0.125 ± 0.004 *** |
| Lactobacillus fermentum 106 | 0.133 ± 0.009 *** | 0.096 ± 0.006 *** | 0.159 ± 0.008 *** | 0.117 ± 0.004 *** |
| Lactobacillus paracasei 53 | 0.118 ± 0.005 *** | 0.115 ± 0.013 *** | 0.150 ± 0.002 *** | 0.159 ± 0.012 *** |
| Ligilactobacillus salivarius 105/2 | 0.118 ± 0.002 *** | 0.120 ± 0.007 *** | 0.149 ± 0.004 *** | 0.129 ± 0.002 *** |
| Lactobacillus paracasei 1 | 0.119 ± 0.002 *** | 0.132 ± 0.007 *** | 0.157 ± 0.002 *** | 0.145 ± 0.002 *** |
| Lactobacillus paracasei 29 | 0.385 ± 0.060 *** | 0.353 ± 0.093 *** | 0.157 ± 0.004 *** | 0.735 ± 0.085 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bujňáková, D.; Galambošiová, T.; Karahutová, L. Whole-Genome Sequence Analysis and Subtractive Screening of Lactobacilli in the Searching for New Probiotics to Protect the Mammary Glands. Int. J. Mol. Sci. 2025, 26, 10809. https://doi.org/10.3390/ijms262110809
Bujňáková D, Galambošiová T, Karahutová L. Whole-Genome Sequence Analysis and Subtractive Screening of Lactobacilli in the Searching for New Probiotics to Protect the Mammary Glands. International Journal of Molecular Sciences. 2025; 26(21):10809. https://doi.org/10.3390/ijms262110809
Chicago/Turabian StyleBujňáková, Dobroslava, Tímea Galambošiová, and Lívia Karahutová. 2025. "Whole-Genome Sequence Analysis and Subtractive Screening of Lactobacilli in the Searching for New Probiotics to Protect the Mammary Glands" International Journal of Molecular Sciences 26, no. 21: 10809. https://doi.org/10.3390/ijms262110809
APA StyleBujňáková, D., Galambošiová, T., & Karahutová, L. (2025). Whole-Genome Sequence Analysis and Subtractive Screening of Lactobacilli in the Searching for New Probiotics to Protect the Mammary Glands. International Journal of Molecular Sciences, 26(21), 10809. https://doi.org/10.3390/ijms262110809

