Natural Sulfur Compounds in Mineral Waters: Implications for Human Health and Disease
Abstract
1. Introduction
2. Properties of Natural Sulfur Compounds
3. Role of Hydrogen Sulfide in Human Pathophysiology
4. Mechanisms of Action
4.1. Antimicrobial and Immunomodulatory Effects
4.2. Musculoskeletal and Circulatory Benefits
4.3. Oral Health and Biofilm Inhibition
4.4. Detoxification and Metabolic Support
4.5. Dermatological Actions
5. Therapeutic Applications
6. Health Implications
7. Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cirino, G.; Szabo, C.; Papapetropoulos, A. Physiological roles of Hydrogen Sulfide in mammalian cells, tissues and organs. Physiol. Rev. 2023, 103, 31–276. [Google Scholar] [CrossRef] [PubMed]
- Szabo, C. Hydrogen Sulfide and its therapeutic potential. Nat. Rev. Drug Discov. 2007, 6, 917. [Google Scholar] [CrossRef]
- Nahzli, D.; Papapetropoulos, A.; Toliver-Kinsky, T.; Szabo, C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharm. Res. 2020, 161, 105119. [Google Scholar]
- Karagulle, M.Z.; Karagulle, M. Effects of drinking natural hydrogen sulfide (H2S) waters: A systematic review of in vivo animal studies. Int. J. Biometeorol. 2020, 64, 1011–1022. [Google Scholar] [CrossRef]
- Cheleschi, S.; Gallo, I.; Tenti, S. A comprehensive analysis to understand the mechanism of action of balneotherapy: Why, how, and where they can be used? Evidence from in vitro studies performed on human and animal samples. Int. J. Biometeorol. 2020, 64, 1247–1261. [Google Scholar] [CrossRef] [PubMed]
- Vaccarezza, M.; Vitale, M. Crenotherapy: A neglected resource for human health now re-emerging on sound scientific concepts. Int. J. Biometeorol. 2010, 54, 491–493. [Google Scholar] [CrossRef]
- Scapagnini, G.; Davinelli, S.; Fortunati, N.A.; Zella, D.; Vitale, M. Thermal Hydrotherapy as Adaptive Stress Response: Hormetic Significance, Mechanisms, and Therapeutic Implications. In Hormesis in Health and Disease, 1st ed.; Rattan, S.I.S., Le Bourg, E., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 153–166. [Google Scholar]
- Szabo, C. Novel Regulatory Roles of Hydrogen Sulfide in Health and Disease. Biomolecules 2022, 12, 1372. [Google Scholar] [CrossRef] [PubMed]
- Sp, N.; Kang, D.; Kim, H.; Rugamba, A.; Jo, E.; Park, J.; Jang, K. Natural sulfurs inhibit LPS-induced inflammatory responses through NF-κb signaling in ccd-986sk skin fibroblasts. Life 2021, 11, 427. [Google Scholar] [CrossRef]
- Mirandola, P.; Gobbi, G.; Micheloni, C.; Vaccarezza, M.; Di Marcantonio, D.; Ruscitti, F.; de Panfilis, G.; Vitale, M. Hydrogen sulfide inhibits IL-8 expression in human keratinocytes via MAP kinase signaling. Lab. Investig. 2011, 91, 1188–1194. [Google Scholar] [CrossRef]
- Burguera, E.; Vela-Anero, Á.; Gato-Calvo, L.; Vaamonde-García, C.; Meijide-Faílde, R.; Blanco, F. Hydrogen sulfide biosynthesis is impaired in the osteoarthritic joint. Int. J. Biometeorol. 2019, 64, 997–1010. [Google Scholar] [CrossRef]
- Maccarone, M.C.; Magro, G.; Solimene, U.; Scanu, A.; Masiero, S. From in vitro research to real life studies: An extensive narrative review of the effects of balneotherapy on human immune response. Sport. Sci. Health 2021, 17, 817–835. [Google Scholar] [CrossRef]
- Carubbi, C.; Gobbi, G.; Bucci, G.; Gesi, M.; Vitale, M.; Mirandola, P. Skin, Inflammation and sulfurous waters: What is known, what is believed. Eur. J. Inflamm. 2013, 11, 591–599. [Google Scholar] [CrossRef]
- Gross-Amat, O.; Guillen, M.; Gimeno, J.P.; Salzet, M.; Lebonvallet, N.; Misery, L.; Auxenfans, C.; Nataf, S. Molecular Mapping of Hydrogen Sulfide Targets in Normal Human Keratinocytes. Int. J. Mol. Sci. 2020, 21, 4648. [Google Scholar] [CrossRef] [PubMed]
- Karagulle, M.Z.; Karagulle, M.; Kilic, S.; Sevinc, H.; Dundar, C.; Turkoglu, M. In vitro evaluation of natural thermal mineral waters in human keratinocyte cells: A preliminary study. Int. J. Biometeorol. 2018, 62, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Pozsgai, G.; Benko, R.; Bartho, L.; Horvath, K.; Pinter, E. Thermal Spring water drinking attenuates dextran-sulfate-sodium-induced colitis in mice. Inflammopharmacology 2015, 23, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Prandelli, C.; Parola, C.; Buizza, L.; Delbarba, A.; Marziano, M.; Salvi, V.; Zacchi, V.; Memo, M.; Sozzani, S.; Calza, S.; et al. Sulfurous thermal water increases the release of the anti-inflammatory cytokine IL-10 and modulates antioxidant enzyme activity. Int. J. Immunopath Pharm. 2013, 26, 633–646. [Google Scholar] [CrossRef]
- Sieghart, D.; Listz, M.; Wanivenhaus, A.; Broll, H.; Kiener, H.; Klosch, B.; Steiner, G. Hydrogen sulphide decreases Il-beta-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis. J. Cell Mol. Med. 2015, 19, 187–197. [Google Scholar] [CrossRef]
- Lopalco, M.; Proia, A.R.; Fraioli, A.; Serio, A.; Cammarella, I.; Petraccia, L.; Grassi, M. Therapeutic effect of the association between pulmonary ventilation and aerosol-inhalation with sulphureous mineral water in the chronic bronchopneumopathies. Clin. Ther. 2004, 155, 115–120. (In Italian) [Google Scholar]
- Kovacs, C.; Pecze, M.; Tihanyi, A.; Kovacs, L.; Balogh, S.; Bender, T. The effect of sulphurous water in patients with osteoarthritis of hand. Double-blind, randomized, controlled follow-up study. Clin. Rheumatol. 2012, 31, 1437–1442. [Google Scholar] [CrossRef]
- Codish, S.; Dobrovinsky, S.; Abu Shakra, M.; Flusser, D.; Sukenik, S. Spa therapy for ankylosing spondylltis at the Dead Sea. Isr. Med. Assoc. J. 2005, 7, 443–446. [Google Scholar]
- Goszcz, A.; Kostka-Trabka, E.; Grodzinska, L.; Stawinski, M.; Bieron, K.; Jachym, R.; Kucharski, K.; Gryglewski, R.J. The effect of treatment with sulphur water from the spring in Wiesław in Busko-Solec on levels of lipids, the fibrinolytic system and thrombogenic platelet function in patients with arteriosclerosis. Pol. Merkur. Lek. 1997, 3, 33–36. (In Polish) [Google Scholar]
- Soria, M.; Gonzales-Haro, C.; Esteva, S.; Escanero, J.F.; Pin, J.R. Effect of sulphurous mineral water in haematological and biochemical markers of muscle damage after an endurance exercise in well-trained athletes. J. Sports Sci. 2014, 32, 954–962. [Google Scholar] [CrossRef]
- Kovacs, C.; Boszik, A.; Pecze, M.; Borbely, I.; Fogarasi, A.; Kovacs, L.; Tefner, I.K.; Bender, T. Effects of sulfur bath on hip osteoarthritis: A randomized, controlled, single-blind, follow-up trial: A pilot study. Int. J. Biometeorol. 2016, 60, 1675–1680. [Google Scholar] [CrossRef]
- Salami, A.; Dellepiane, M.; Crippa, B.; Mora, F.; Guastini, L.; Jankowska, B.; Mora, R. Sulphurous water inhalations in the prophylaxis of recurrent upper respiratory tract infections. Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 1717–1722. [Google Scholar] [CrossRef]
- Mancini, S., Jr.; Piccinetti, A.; Nappi, G.; Mancini, S.; Caniato, A.; Coccheri, S. Clinical, functional and quality of life changes after balneokinesis with sulphurous water in patients with varicose veins. VASA 2003, 32, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Branco, M.; Rego, N.N.; Silva, P.H.; Archanjo, I.E.; Ribeiro, M.C.; Trevisani, V.F. Bath thermal waters in the treatment of knee osteoarthritis: A randomized controlled clinical trial. Eur. J. Phys. Rehabil. Med. 2016, 52, 422–430. [Google Scholar]
- Staffieri, A.; Marino, F.; Staffieri, C.; Giacomelli, L.; D’Alessandro, E.; Maria Ferraro, S.; Fedrazzoni, U.; Marioni, G. The effects of sulfurous-arsenical-ferruginous thermal water nasal irrigation in wound healing after functional endoscopic sinus surgery for chronic rhinosinusitis: A prospective randomized study. Am. J. Otolaryngol. 2008, 29, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Constantino, M.; Filippelli, A.; Quenau, P.; Nicolas, J.P.; Coiro, V. Sulphur mineral water and SPA therapy in osteoarthritis. Therapies 2012, 67, 43–48. (In French) [Google Scholar] [CrossRef]
- Ottaviano, G.; Marioni, G.; Giacomelli, L.; La Torre, F.B.; Staffieri, C.; Marchese-Ragona, R.; Staffieri, A. Smoking and chronic rhinitis: Effects of nasal irrigations with sulfurous-arsenical-ferruginous thermal water: A prospective, randomized, double-blind study. Am. J. Otolaryngol. 2012, 33, 657–662. [Google Scholar] [CrossRef]
- Benedetti, S.; Benvenuti, F.; Nappi, G.; Fortunati, N.A.; Marino, L.; Aureli, T.; De Luca, S.; Pagliarani, S.; Canestrari, F. Antioxidative effects of sulfurous mineral water: Protection against lipid and protein oxidation. Eur. J. Clin. Nutr. 2009, 63, 106–112. [Google Scholar] [CrossRef]
- Kanwal, S.; Osman, E.Y.; Khiari, I. Comprehensive review of dermatological and cosmeceutical manifestations of thermal water and future insights. Int. J. Biometeorol. 2025, 69, 1783–1817. [Google Scholar] [CrossRef]
- Verhagen, A.P.; Bierma-Zeinstra, S.M.; Boers, M.; Cardoso, J.R.; Lambeck, J.; de Bie, R.; de Vet, H.C. Balneotherapy (or spa therapy) for rheumatoid arthritis. Cochrane Database Syst. Rev. 2015, 2015, CD000518. [Google Scholar] [CrossRef]
- Ottaviano, G.; Marioni, G.; Staffieri, C.; Giacomelli, L.; Marchese-Ragona, R.; Bertolin, A.; Staffieri, A. Effects of sulfurous, salty, bromic, iodic thermal water nasal irrigations in nonallergic chronic rhinosinusitis: A prospective, randomized, double-blind, clinical, and cytological study. Am. J. Otolaryngol. 2011, 32, 235–239. [Google Scholar] [CrossRef]
- Crucianelli, S.; Mariano, A.; Valeriani, F.; Cocomello, N.; Gianfranceschi, G.; Baseggio Conrado, A.; Moretti, F.; Scotto d’Abusco, A.; Mennuni, G.; Fraioli, A.; et al. Effects of sulphur thermal water inhalations in long-COVID syndrome: Spa-centred, double-blinded, randomised case-control pilot study. Clin. Med. 2024, 24, 100251. [Google Scholar] [CrossRef]
- Contoli, M.; Gnesini, G.; Forini, G.; Marku, B.; Pauletti, A.; Padovani, A.; Casolari, P.; Taurino, L.; Ferraro, A.; Chicca, M.; et al. Reducing agents decrease the oxidative burst and improve clinical outcomes in COPD patients: A randomised controlled trial on the effects of sulphurous thermal water inhalation. Sci. World J. 2013, 2013, 927835. [Google Scholar] [CrossRef]
- Szabo, C. A timeline of hydrogen sulfide (H2S) research: From environmental toxin to biological mediator. Biochem. Pharmacol. 2018, 149, 5–19. [Google Scholar] [CrossRef]
- Warenycia, M.W.; Goodwin, L.R.; Benishin, C.G.; Reiffenstein, R.J.; Grancom, D.M.; Taylor, J.D.; Dieken, F.P. Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem. Pharmacol. 1989, 38, 973–981. [Google Scholar] [CrossRef]
- Rana, A.; Katiyar, A.; Arun, A.; Berrios, J.N.; Kumar, G. Natural sulfur compounds in mental health and neurological disorders: Insights from observational and intervention studies. Front. Nutr. 2025, 12, 1534000. [Google Scholar] [CrossRef]
- Mustafa, A.K.; Gadalla, M.M.; Sen, N.; Kim, S.; Mu, W.; Gazi, S.K.; Barrow, R.K.; Yang, G.; Wang, R.; Snyder, S.H. H2S Signals Through Protein S-Sulfhydration. Sci. Signal. 2009, 2, ra72. [Google Scholar] [CrossRef]
- Kimura, H. Hydrogen Sulfide (H2S) and Polysulfide (H2Sn) Signaling: The First 25 Years. Biomolecules 2021, 11, 896. [Google Scholar] [CrossRef]
- Munteanu, C.; Turnea, M.A.; Rotariu, M. Hydrogen Sulfide: An Emerging Regulator of Oxidative Stress and Cellular Homeostasis. Antioxidants 2023, 12, 1737. [Google Scholar] [CrossRef]
- Zhu, Y.Z. Production of H2S—The l-cysteine/CSE-CBS-MST/H2S System. In Gasotransmitters; Wang, R., Ed.; Royal Society of Chemistry: London, UK, 2018. [Google Scholar]
- Rose, P.; Moore, P.K.; Zhu, Y.Z. H2S biosynthesis and catabolism: New insights from molecular studies. Cell Mol. Life Sci. 2017, 74, 1391–1412. [Google Scholar] [CrossRef]
- Menendez, C. Revisiting Redox Biology: The Role of Sulfur-Based Modifications in Cellular Metabolism. Biochem. Anal. Biochem. 2025, 14, 567. [Google Scholar]
- Hou, Y.; Lv, B.; Du, J.; Jin, H.; Yi, Y.; Huang, Y. Sulfide regulation and catabolism in health and disease. Signal Transduct. Target. Ther. 2025, 10, 174. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Lobo, F.; Pérez de la Lastra, J.M.; Munguira, E.B.; Juan, C.A.; Pérez Lebeña, E. Reactive Sulfur Species and Protein Persulfidation: An Emerging Redox Axis in Human Health and Disease. Curr. Issues Mol. Biol. 2025, 47, 765. [Google Scholar] [CrossRef]
- Kopriva, S.; Rahimzadeh Karvansara, P.; Takahashi, H. Adaptive modifications in plant sulfur metabolism over evolutionary time. J. Exp. Bot. 2024, 75, 4697–4711. [Google Scholar] [CrossRef]
- Luo, W.; Zhao, M.; Dwidar, M.; Gao, Y.; Xiang, L.; Wu, X.; Medema, M.H.; Su, X.; Li, X.; Schafer, H.; et al. Microbial assimilatory sulfate reduction-mediated H2S: An overlooked role in Crohn’s disease development. Microbiome 2024, 12, 152. [Google Scholar] [CrossRef]
- Sies, H.; Mailloux, R.J.; Jakob, U. Fundamentals of redox regulation in biology. Nat. Rev. Mol. Cell Biol. 2024, 25, 701–719, Correction in Nat. Rev. Mol. Cell Biol. 2024, 25, 758. [Google Scholar] [CrossRef]
- Rinaldi, L.; Gobbi, G.; Pambianco, M.; Micheloni, C.; Mirandola, P.; Vitale, M. Hydrogen sulfide prevents apoptosis of human PMN via inhibition of p38 and caspase 3. Lab. Investig. 2006, 86, 391–397. [Google Scholar] [CrossRef]
- Lopes, S.; Morgado, S.; Gomes, A.; Lopes, P.; Couto, P.; Correia, M.; Foler-Fraile, J.; Veiga, N. Unraveling the benefits of thermal waters enhancing oral health: A pilot study. BMC Oral. Health 2024, 24, 1502. [Google Scholar] [CrossRef]
- Altaany, Z.; Alkaraki, A.; Abu-Siniyeh, A.; Momani, W.; Taani, O. Evaluation of antioxidant status and oxidative stress markers in thermal sulfurous springs residents. Heliyon 2019, 5, e02885. [Google Scholar] [CrossRef]
- Carubbi, C.; Masselli, E.; Calabrò, E.; Bonati, E.; Galeone, C.; Andreoli, R.; Goldoni, M.; Corradi, M.; Sverzellati, N.; Pozzi, G.; et al. Sulfurous thermal water inhalation impacts respiratory metabolic parameters in heavy smokers. Int. J. Biometeorol. 2019, 63, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Cacciapuoti, S.; Luciano, M.A.; Megna, M.; Annunziata, M.C.; Napolitano, M.; Patruno, C.; Scala, E.; Colicchio, R.; Pagliuca, C.; Salvatore, P.; et al. The Role of Thermal Water in Chronic Skin Diseases Management: A Review of the Literature. J. Clin. Med. 2020, 9, 3047. [Google Scholar] [CrossRef]
- Feknous, N.; Boumendjel, M.; Leblab, F.Z. Updated Insights on the Antimicrobial Activities of Allium Genus. Russ. J. Bioorg Chem. 2024, 50, 806–823. [Google Scholar] [CrossRef]
- Hai, Y.; Wei, M.-Y.; Wang, C.-Y.; Gu, Y.-C.; Shao, C.-L. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms. Mar. Life Sci. Technol. 2021, 3, 488–518. [Google Scholar] [CrossRef]
- Scott, K.A.; Njardarson, J.T. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. Top. Curr. Chem. 2018, 376. [Google Scholar] [CrossRef] [PubMed]
- Amado, F.M.L.; Silva, E.A.F. Healing Sulfurous Thermal Waters in Health Resort Medicine: Therapies, Indications, and Contraindications. In Minerals Latu Sensu and Human Health, 1st ed.; Gomes, C.S., Routureau, M., Eds.; Springer-Nature: Cham, Switzerland, 2021; pp. 607–630. [Google Scholar] [CrossRef]
- Bhatia, M. H2S and inflammation: An overview. Handb. Exp. Pharmacol. 2015, 230, 165–180. [Google Scholar] [CrossRef]
- Jacob, M.M.; Dhanya, K.C. Antibiofilm Activity of Natural Compounds. In Bioactive Ingredients for Healthcare Industry Advances in Therapeutic Applications Volume 2; Lhiri, D., Nag, M., Bhattacharya, D., Pati, S., Sarkar, S., Eds.; Springer-Nature: Cham, Switzerland, 2025; pp. 123–137. [Google Scholar]
- Li, J.; Zhang, Q.; Zhao, J.; Zhang, H.; Chen, W. Streptococcus mutans and Candida albicans Biofilm Inhibitors Produced by Lactiplantibacillus plantarum CCFM8724. Curr. Microbiol. 2022, 79, 143. [Google Scholar] [CrossRef]
- Nwankwo, N.E.; David, J.C. A review of sulfur-containing compounds of natural origin with insights into their Pharmacological and toxicological impacts. Discov. Chem. 2025, 2, 207. [Google Scholar] [CrossRef]
- Govindarajan, D.K.; Mohanarangam, M.; Kadivelu, L.; Sivaramalingam, S.S.; Jothivel, D.; Ravichandran, A.; Rariasamy, S.; Kandaswamy, K. Biofilms and Oral Health: Nanotechnology for Biofilm Control. Discov. Nano 2025, 20, 114. [Google Scholar] [CrossRef]
- Glatt, H. Sulfotransferases. In Encyclopedia of Cancer, 3rd ed.; Schwab, M., Ed.; Spinger: Berlin/Heidelberg, Germany, 2017; pp. 3358–3561. [Google Scholar]
- Chen, C.-H. Phase II Detoxification Enzymes. In Activation and Detoxification Enzymes Functions and Implications, 2nd ed.; Chen, C.-H., Ed.; Springer-Nature: Cham, Switzerland, 2024; pp. 59–70. [Google Scholar]
- Grant, D.M. Detoxification Pathways in the Liver. J. Inherit. Metab. 1999, 14, 421–430. [Google Scholar] [CrossRef]
- Huang, A.; Seite, S.; Adar, T. The use of balneotherapy in dermatology. Clin. Dermatol. 2018, 36, 363–368. [Google Scholar] [CrossRef]
- Carbajo, J.M.; Maraver, F. Sulphurous mineral waters: New applications for health. Evid.-Based Complement. Altern. Med. 2017, 2017, 8034084. [Google Scholar] [CrossRef]
- Kulisch, A.; Mando, Z.; Sandor, E.; Lengyel, Z.; Illes, A.; Kosa, J.; Arvai, K.; Lakatos, P.; Tobias, B.; Papp, M.; et al. Evaluation of Lake Hévíz sulfur thermal water on skin microbiome in plaque psoriasis: An open label, pilot study. Int. J. Biometeorol. 2023, 67, 661–673. [Google Scholar] [CrossRef]
- Beylot-Barry, M.; Mahe, E.; Rolland, C.; de la Breteque, M.A.; Eychenne, C.; Charles, J.; Payen, C.; Machet, L.; Vermorel, C.; Foote, A.; et al. Evaluation of the benefit of thermal spa therapy in plaque psoriasis: The psothermes randomized clinical trial. Int. J. Biometeorol. 2022, 66, 1247–1256. [Google Scholar] [CrossRef]
- Skopljak, A. The Therapeutic Effects of Thermo-Mineral Water Ilidža-Sarajevo in Osteoarthritis of the Knee. World J. Adv. Res. Rev. 2024, 24, 2265. [Google Scholar] [CrossRef]
- Tanović, E. Dilemmas in the Application of Hydrotherapy and Balneotherapy. Acta Sci. Med. Sci. 2019, 3, 146–149. [Google Scholar]
- Fabiani, D.; Partsch, R.; Casale, R.; Matucci Cerinic, M. Rheumatologic Aspects of Mineral Water. Clin. Dermatol. 1996, 14, 571–575. [Google Scholar] [CrossRef]
- Bekaryssova, D.; Yessirkepov, M.; Imanbaeva, A.D. Water-Based Interventions in Rheumatic Diseases: Mechanisms, Benefits, and Clinical Applications. Rheumatol. Int. 2024, 45, 8. [Google Scholar] [CrossRef]
- Bernetti, A.; Mangone, M.; Alviti, F.; Paolucci, T.; Attanasi, C.; Murgia, M.; Di Sante, L.; Agostini, F.; Vitale, M.; Paoloni, M. Spa therapy and rehabilitation of musculoskeletal pathologies: A proposal for best practice in Italy. Int. J. Biometeorol. 2020, 64, 905–914. [Google Scholar] [CrossRef]
- Ariani, A.; Bedogni, G.; Biasi, G.; Cozzi, F.; Formisano, S.; Gorla, R.; Guiducci, S.; Maccarone, M.C.; Masiero, S.; Montalbano, S.; et al. “Thermalism, Rheumatic Disease” study group of the Italian Society of Rheumatology (SIR). Balneotherapy in Fibromyalgia Syndrome: Protocol of “FIBROTHERM”, a prospective multi-center, two-cohort observational study. Int. J. Biometeorol. 2025, 69, 2081–2088. [Google Scholar] [CrossRef]
- Pozzi, G.; Gobbi, G.; Masselli, E.; Carubbi, C.; Presta, V.; Ambrosini, L.; Vitale, M.; Mirandola, P. Buffering Adaptive Immunity by Hydrogen Sulfide. Cells 2022, 11, 325. [Google Scholar] [CrossRef]
- Viegas, J.; Esteves, A.F.; Cardoso, E.M.; Arosa, F.A.; Vitale, M.; Taborda-Barata, L. Biological Effects of Thermal Water-Associated Hydrogen Sulfide on Human Airways and Associated Immune Cells: Implications for Respiratory Diseases. Front. Public. Health 2019, 7, 128. [Google Scholar] [CrossRef]
- Neesby, T.E.; Koff, A.; Pircio, A.W. A preliminary note on the absorption of sulfur and the polythinates into intact skin. J. Am. Pharm. Assoc. 1955, 44, 383. [Google Scholar]
- Neesby, T.E.; Pircio, A.W.; Grattan, J.F. The absorption of sulfur compounds from externally deposited polythionates by the skin of the rat. J. Am. Pharm. Assoc. 1957, 46, 263–266. [Google Scholar] [CrossRef]
- Haftek, M.; Abdayem, R.; Guyonnet-Debersac, P. Skin Minerals: Key Roles of Inorganic Elements in Skin Physiological Functions. Int. J. Mol. Sci. 2022, 23, 6267. [Google Scholar] [CrossRef]
- Antonelli, M.; Fasano, F.; Veronesi, L.; Donelli, D.; Vitale, M.; Pasquarella, C. Balneotherapy and cortisol levels: An updated systematic review and meta-analysis. Int. J. Biometeorol. 2024, 68, 1909–1922. [Google Scholar] [CrossRef]
- Braga, P.C.; Dal Sasso, M.; Culici, M.; Spallino, A.; Marabini, L.; Bianchi, T.; Nappi, G. Effects of sulpurous water on human neutrophil elastase release. Ther. Adv. Resp. Dis. 2010, 4, 333–340. [Google Scholar] [CrossRef]
- Calzetta, L.; Di Daniele, N.; Chetta, A.; Vitale, M.; Gholamalishahi, S.; Cazzola, M.; Rogliani, P. The Impact of Thermal Water in Asthma and COPD: A Systematic Review According to the PRISMA Statement. J. Clin. Med. 2024, 13, 1071. [Google Scholar] [CrossRef]
- Jeddi, S.; Gheibi, S.; Afzali, H.; Carlstrom, M.; Kashfi, K.; Ghasemi, A. Hydrogen sulfide potentiates the protective effects of nitrite against myocardial ischemia-reperfusion injury in type 2 diabetic rats. Nitric Oxide 2022, 124, 15–23. [Google Scholar] [CrossRef]
- Zapolsky, T.; Kornecki, W.; Jaroszynski, A. The Influence of Balneotherapy Using Salty Sulfide–Hydrogen Sulfide Water on Selected Markers of the Cardiovascular System: A Prospective Study. J. Clin. Med. 2024, 13, 3526. [Google Scholar] [CrossRef]
- Hajiaqaei, M.; Ranjbaran, M.; Kadkhodaee, M.; Shafie, A.; Abdi, A.; Lorian, K.; Kianian, F.; Seifi, B. Hydrogen sulfide upregulates hypoxia inducible factors and erythropoietin production in chronic kidney disease induced by 5/6 nephrectomized rats. Mol. Biol. Rep. 2024, 51, 916. [Google Scholar] [CrossRef]
- Tanczos, B.; Vass, V.; Szabo, E.; Lovas, M.; Kattoub, R.G.; Bereczki, I.; Borbas, A.; Herczegh, P.; Tosaki, A. Effects of H2S-donor ascorbic acid derivative and ischemia/reperfusion-induced injury in isolated rat hearts. Eur. J. Pharm. Sci. 2024, 195, 106721. [Google Scholar] [CrossRef]
- Li, T.; Liu, H.; Xue, H.; Zhang, J.; Han, X.; Yan, S.; Bo, S.; Liu, S.; Yuan, L.; Deng, L.; et al. Neuroprotective Effects of Hydrogen Sulfide Against Early Brain Injury abd Secondary Cognitive Deficits Following Subarachnoid Hemorrhage. Brain Pathol. 2017, 27, 51–63. [Google Scholar] [CrossRef]
- Lopez-Preza, F.I.; Huerta de la Cruz, S.; Santiago-Castaneda, C.; Silva-Velasco, D.L.; Beltran-Ornelas, J.H.; Tapia-Martinez, J.; Sanchez-Lopez, A.; Rocha, L.; Centurion., D. Hydrogen sulfide prevents the vascular dysfunction induced by severe traumatic brain injury in rats by reducing reactive oxygen species and modulating eNOS and H2S-synthesizing enzyme expression. Life Sci. 2023, 312, 121218. [Google Scholar] [CrossRef]
- Giuliani, D.; Ottani, A.; Zaffe, D.; Galantucci, M.; Strinati, F.; Lodi, R.; Guarini, S. Hydrogen sulfide slows down progression of experimental Alzheimer’s disease by targeting multiple pathophysiological mechanisms. Neurobiol. Learn. Mem. 2013, 104, 82–91. [Google Scholar] [CrossRef]
- Chen, H.; Sun, H.; Hua, W.; Chang, H.; Chen, W.; Ma, S. Exogenous hydrogen sulfide ameliorates diabetes-associated cognitive dysfunction by regulating the nrf-2/HO-1 axis and the NLRP3 inflammasome pathway in diabetic rats. Eur. J. Pharm. 2024, 966, 176344. [Google Scholar] [CrossRef]
- Munteanu, C.; Iordan, D.A.; Hoteteu, M.; Popescu, C.; Postoiu, R.; Onu, I.; Onose, G. Mechanistic Intimate Insights into the Role of Hydrogen Sulfide in Alzheimer’s Disease: A Recent Systematic Review. Int. J. Mol. Sci. 2023, 24, 15481. [Google Scholar] [CrossRef]
- Shayea, A.M.F.; Mousa, A.M.A.; Renno, W.M.; Shaban Nadar, M.; Qabazard, B.; Yousif, M.H.M. Chronic Treatment with Hydrogen Sulfide Donor GYY4137 Mitigates Microglial and Astrocyte Activation in the Spinal Cord of Streptozotocin-Induced Diabetic Rats. J. Neuropathol. Exp. Neurol. 2020, 79, 1320–1343. [Google Scholar] [CrossRef]
- Truss, N.J.; Warner, T.D. Gasotransmitters and platelets. Pharmacol. Ther. 2011, 132, 196–203. [Google Scholar] [CrossRef]
- Gobbi, G.; Mirandola, P.; Tazzari, P.L.; Ricci, F.; Caimi, L.; Cacchioli, A.; Papa, S.; Conte, R.; Vitale, M. Flow cytometry detection of serotonin content and release in resting and activated platelets. Br. J. Haematol. 2003, 121, 892–896. [Google Scholar] [CrossRef]
- Pozzi, G.; Masselli, E.; Gobbi, G.; Mirandola, P.; Taborda-Barata, L.; Ampollini, L.; Carbognani, P.; Micheloni, C.; Corzza, F.; Galli, D.; et al. Hydrogen Sulfide Inhibits TMPRSS2 in Human Airway Epithelial Cells: Implications for SARS-CoV-2 Infection. Biomedicines 2021, 9, 1273. [Google Scholar] [CrossRef]
- Viegas, J.; Cardoso, E.M.; Bonneau, L.; Esteves, A.F.; Ferreira, C.L.; Alves, G.; Santos-Silva, A.; Vitale, M.; Arosa, F.A.; Taborda-Barata, L. A Novel Bionebulizer Approach to Study the Effects of Natural Mineral Water on a 3D In Vitro Nasal Model from Allergic Rhinitis Patients. Biomedicines 2024, 12, 408. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaccarezza, M.; Vitale, M.; Falletta, P.; di Martino, O. Natural Sulfur Compounds in Mineral Waters: Implications for Human Health and Disease. Int. J. Mol. Sci. 2025, 26, 10807. https://doi.org/10.3390/ijms262110807
Vaccarezza M, Vitale M, Falletta P, di Martino O. Natural Sulfur Compounds in Mineral Waters: Implications for Human Health and Disease. International Journal of Molecular Sciences. 2025; 26(21):10807. https://doi.org/10.3390/ijms262110807
Chicago/Turabian StyleVaccarezza, Mauro, Marco Vitale, Paola Falletta, and Orsola di Martino. 2025. "Natural Sulfur Compounds in Mineral Waters: Implications for Human Health and Disease" International Journal of Molecular Sciences 26, no. 21: 10807. https://doi.org/10.3390/ijms262110807
APA StyleVaccarezza, M., Vitale, M., Falletta, P., & di Martino, O. (2025). Natural Sulfur Compounds in Mineral Waters: Implications for Human Health and Disease. International Journal of Molecular Sciences, 26(21), 10807. https://doi.org/10.3390/ijms262110807

