Feeding for Well-Being: Porcine Blood Hydrolysate Supplementation Improves Metabolic and Welfare-Related Traits in Farmed Gilthead Sea Bream (Sparus aurata)
Abstract
1. Introduction
2. Results
2.1. Growth Performance and Feeding Behavior
2.2. Histopathology Evaluation and Blood Biochemistry
2.3. Tissue Gene Expression Profiles
2.4. Swimming Performance and Fasting/Refeeding Test
2.5. Intestinal Microbiota Diversity and Composition
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Diets
4.3. Animals and Feeding Trial
4.4. Sample Collection Following Feeding Trial
4.5. Behavioral Monitoring and Swimming Performance Test
4.6. Fasting Weight Loss and Re-Feeding Weight Regain
4.7. Biochemical and Gene Expression Analyses
4.8. Histological Analysis
4.9. Bacterial DNA Extraction, Sequencing and Bioinformatic Analysis
4.10. Statistical Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PBSH | Spray-dried Porcine Blood Hydrolysate |
| FM | Fish Meal |
| FO | Fish Oil |
| ABPs | Animal By-Products. |
| PAP | Processed Animal Proteins |
| FAAs | Free Amino Acids |
| CTRL | Control Diet |
| IBW | Initial Body Weight |
| SGR | Specific Growth Rates |
| FCR | Feed Conversion Ratio |
| HIS | Hepatosomatic Index |
| VSI | Viscerosomatic Index |
| AI | Anterior Intestine |
| PI | Posterior Intestine |
| BMR | Basal Metabolic Rate |
| MMR | Maximal Metabolic Rate |
| Ucrit | Critical Speed |
| PAS | Periodic Acid-Schiff |
| OTUs | Operational Taxonomic Units |
References
- FAO. The State of World Fisheries and Aquaculture 2024; FAO: Rome, Italy, 2024. [Google Scholar]
- Zlaugotne, B.; Pubule, J.; Blumberga, D. Advantages and Disadvantages of Using More Sustainable Ingredients in Fish Feed. Heliyon 2022, 8, e10527. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Alvarez, O.; Chamorro, S.; Brenes, A. Protein Hydrolysates from Animal Processing By-Products as a Source of Bioactive Molecules with Interest in Animal Feeding: A Review. Food Res. Int. 2015, 73, 204–212. [Google Scholar] [CrossRef]
- Glencross, B.D.; Baily, J.; Berntssen, M.H.G.; Hardy, R.; MacKenzie, S.; Tocher, D.R. Risk Assessment of the Use of Alternative Animal and Plant Raw Material Resources in Aquaculture Feeds. Rev. Aquac. 2020, 12, 703–758. [Google Scholar] [CrossRef]
- Woodgate, S.L.; Wan, A.H.L.; Hartnett, F.; Wilkinson, R.G.; Davies, S.J. The Utilisation of European Processed Animal Proteins as Safe, Sustainable and Circular Ingredients for Global Aquafeeds. Rev. Aquac. 2022, 14, 1572–1596. [Google Scholar] [CrossRef]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R.; et al. Achieving Sustainable Aquaculture: Historical and Current Perspectives and Future Needs and Challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Regueiro, L.; Newton, R.; Soula, M.; Méndez, D.; Kok, B.; Little, D.C.; Pastres, R.; Johansen, J.; Ferreira, M. Opportunities and Limitations for the Introduction of Circular Economy Principles in EU Aquaculture Based on the Regulatory Framework. J. Ind. Ecol. 2022, 26, 2033–2044. [Google Scholar] [CrossRef]
- Liland, N.S.; Hatlen, B.; Takle, H.; Venegas, C.; Espe, M.; Torstensen, B.E.; Waagbø, R. Including Processed Poultry and Porcine By-Products in Diets High in Plant Ingredients Reduced Liver TAG in Atlantic Salmon, Salmo salar L. Aquac. Nutr. 2015, 21, 655–669. [Google Scholar] [CrossRef]
- Ye, J.D.; Wang, K.; Li, F.D.; Sun, Y.Z.; Liu, X.H. Incorporation of a Mixture of Meat and Bone Meal, Poultry by-Product Meal, Blood Meal and Corn Gluten Meal as a Replacement for Fish Meal in Practical Diets of Pacific White Shrimp Litopenaeus vannamei at Two Dietary Protein Levels. Aquac. Nutr. 2011, 17, e337–e347. [Google Scholar] [CrossRef]
- Takakuwa, F.; Sato, H.; Mineyama, N.; Yamada, S.; Biswas, A.; Tanaka, H. Bioavailability of Porcine Blood Meal as a Fish Meal Substitute in the Diet for Red Sea Bream (Pagrus major, Temminck & Schlegel) Fingerling. Aquac. Res. 2022, 53, 4616–4626. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Costas, B.; Medale, F.; Pérez-Sánchez, J.; Glencross, B. Editorial: Feeding a Sustainable Blue Revolution: The Physiological Consequences of Novel Ingredients on Farmed Fish. Front. Physiol. 2022, 13, 1092064. [Google Scholar] [CrossRef]
- Xing, L.; Li, G.; Toldrá, F.; Zhang, W. The Physiological Activity of Bioactive Peptides Obtained from Meat and Meat By-Products. Adv. Food Nutr. Res. 2021, 97, 147–185. [Google Scholar] [CrossRef]
- Kim, S. A Multi-Omics Approach to Assess Production of the Valuable Peptides and Amino Acids in Porcine Blood Protein Hydrolysate. LWT 2022, 163, 113593. [Google Scholar] [CrossRef]
- Moreno-Mariscal, C.; Moroni, F.; Pérez-Sánchez, J.; Mora, L.; Toldrá, F. Optimization of Sequential Enzymatic Hydrolysis in Porcine Blood and the Influence on Peptide Profile and Bioactivity of Prepared Hydrolysates. Int. J. Mol. Sci. 2025, 26, 3583. [Google Scholar] [CrossRef]
- FAO. Fishery and Aquaculture Statistics—Yearbook 2020; FAO: Rome, Italy, 2023. [Google Scholar]
- Moreno-Mariscal, C.; Moroni, F.; Pérez-Sánchez, J.; Mora, L.; Toldrá, F. Enzymatic Hydrolysis of Porcine Blood as a Strategy to Obtain a Peptide-Rich Functional Ingredient. Int. J. Mol. Sci. 2025, 26, 9863. [Google Scholar] [CrossRef]
- Borges, S.; Odila, J.; Voss, G.; Martins, R.; Rosa, A.; Couto, J.A.; Almeida, A.; Pintado, M. Fish By-Products: A Source of Enzymes to Generate Circular Bioactive Hydrolysates. Molecules 2023, 28, 1155. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.K.; Choi, J.S.; Yim, D.G. Hydrolysis Conditions of Porcine Blood Proteins and Antimicrobial Effects of Their Hydrolysates. Food Sci. Anim. Resour. 2020, 40, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Naya-Català, F.; do Vale Pereira, G.; Piazzon, M.C.; Fernandes, A.M.; Calduch-Giner, J.A.; Sitjà-Bobadilla, A.; Conceição, L.E.C.; Pérez-Sánchez, J. Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream (Sparus aurata) Juveniles: Insights in Fish Feeds for Increased Circularity and Resource Utilization. Front. Physiol. 2021, 12, 748265. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, E.; Skalli, A.; Fernández, I.; Kotzamanis, Y.; Zambonino-Infante, J.L.; Fabregat, R. Protein Hydrolysates from Yeast and Pig Blood as Alternative Raw Materials in Microdiets for Gilthead Sea Bream (Sparus aurata) Larvae. Aquaculture 2012, 338–341, 96–104. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Santivarangkna, C.; Rajput, M.S.; Benjakul, S.; Maqsood, S. Valorization of Fish Byproducts: Sources to End-Product Applications of Bioactive Protein Hydrolysate. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1803–1842. [Google Scholar] [CrossRef]
- Solé-Jiménez, P.; Naya-Català, F.; Piazzon, M.C.; Estensoro, I.; Calduch-Giner, J.; Sitjà-Bobadilla, A.; Van Mullem, D.; Pérez-Sánchez, J. Reshaping of Gut Microbiota in Gilthead Sea Bream Fed Microbial and Processed Animal Proteins as the Main Dietary Protein Source. Front. Mar. Sci. 2021, 8, 705041. [Google Scholar] [CrossRef]
- Hatlen, B.; Oaland, O.; Tvenning, L.; Breck, O.; Jakobsen, J.V.; Skaret, J. Growth Performance, Feed Utilization and Product Quality in Slaughter Size Atlantic Salmon (Salmo salar L.) Fed a Diet with Porcine Blood Meal, Poultry Oil and Salmon Oil. Aquac. Nutr. 2013, 19, 573–584. [Google Scholar] [CrossRef]
- Gisbert, E.; Ibarz, A.; Firmino, J.P.; Fernández-Alacid, L.; Salomón, R.; Vallejos-Vidal, E.; Ruiz, A.; Polo, J.; Sanahuja, I.; Reyes-López, F.E.; et al. Porcine Protein Hydrolysates (Pepteiva®) Promote Growth and Enhance Systemic Immunity in Gilthead Sea Bream (Sparus aurata). Animals 2021, 11, 2122. [Google Scholar] [CrossRef]
- Resende, D.; Costas, B.; Sá, T.; Golfetto, U.; Machado, M.; Pereira, M.; Pereira, C.; Marques, B.; Rocha, C.M.R.; Pintado, M.; et al. Innovative Swine Blood Hydrolysates as Promising Ingredients for European Seabass Diets: Impact on Growth Performance and Resistance to Tenacibaculum maritimum Infection. Aquaculture 2022, 561, 738657. [Google Scholar] [CrossRef]
- Khosravi, S.; Rahimnejad, S.; Herault, M.; Fournier, V.; Lee, C.R.; Dio Bui, H.T.; Jeong, J.B.; Lee, K.J. Effects of Protein Hydrolysates Supplementation in Low Fish Meal Diets on Growth Performance, Innate Immunity and Disease Resistance of Red Sea Bream Pagrus major. Fish Shellfish Immunol. 2015, 45, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, G.; Zhao, X.; Dong, X.; Chi, S.; Tan, B. Addition of Hydrolysed Porcine Mucosa to Low-Fishmeal Feed Improves Intestinal Morphology and the Expressions of Intestinal Amino Acids and Small Peptide Transporters in Hybrid Groupers (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). Aquaculture 2021, 535, 736389. [Google Scholar] [CrossRef]
- Oefner, C.; Pierau, S.; Schulz, H.; Dale, G.E. Structural Studies of a Bifunctional Inhibitor of Neprilysin and DPP-IV. Acta Crystallogr. D Biol. Crystallogr. 2007, 63, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Oikonomidou, E.; Batzina, A.; Karakatsouli, N. Effects of Food Quantity and Distribution on Aggressive Behaviour of Gilthead Seabream and European Seabass. Appl. Anim. Behav. Sci. 2019, 213, 124–130. [Google Scholar] [CrossRef]
- White, S.L.; Volkoff, H.; Devlin, R.H. Regulation of Feeding Behavior and Food Intake by Appetite-Regulating Peptides in Wild-Type and Growth Hormone-Transgenic Coho Salmon. Horm. Behav. 2016, 84, 18–28. [Google Scholar] [CrossRef]
- Assan, D.; Huang, Y.; Mustapha, U.F.; Addah, M.N.; Li, G.; Chen, H. Fish Feed Intake, Feeding Behavior, and the Physiological Response of Apelin to Fasting and Refeeding. Front. Endocrinol. 2021, 12, 798903. [Google Scholar] [CrossRef]
- Ciji, A.; Akhtar, M.S. Stress Management in Aquaculture: A Review of Dietary Interventions. Rev. Aquac. 2021, 13, 2190–2247. [Google Scholar] [CrossRef]
- Herrera, M.; Mancera, J.M.; Costas, B. The Use of Dietary Additives in Fish Stress Mitigation: Comparative Endocrine and Physiological Responses. Front. Endocrinol. 2019, 10, 447. [Google Scholar] [CrossRef]
- Höglund, E.; Bakke, M.J.; Øverli, Ø.; Winberg, S.; Nilsson, G.E. Suppression of Aggressive Behaviour in Juvenile Atlantic Cod (Gadus morhua) by L-Tryptophan Supplementation. Aquaculture 2005, 249, 525–531. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Pérez-Jiménez, A.; Costas, B.; Azeredo, R.; Gesto, M. Physiological Roles of Tryptophan in Teleosts: Current Knowledge and Perspectives for Future Studies. Rev. Aquac. 2019, 11, 3–24. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, Z.; Zhang, Z.; Zhao, L.; Li, Y.; Ma, Q.; Liang, M.; Xu, H. Effects of Dietary Tryptophan Levels on Growth Performance, Serotonin Metabolism, Brain 5-HT and Cannibalism Activities in Tiger Puffer, Takifugu rubripes Fingerlings. Aquaculture 2024, 593, 741313. [Google Scholar] [CrossRef]
- Pulido-Rodriguez, L.F.; Cardinaletti, G.; Secci, G.; Randazzo, B.; Bruni, L.; Cerri, R.; Olivotto, I.; Tibaldi, E.; Parisi, G. Appetite Regulation, Growth Performances and Fish Quality Are Modulated by Alternative Dietary Protein Ingredients in Gilthead Sea Bream (Sparus aurata) Culture. Animals 2021, 11, 1919. [Google Scholar] [CrossRef]
- Migliaro, M.; Ruiz-Contreras, A.E.; Herrera-Solís, A.; Méndez-Díaz, M.; Prospéro-García, O.E. Endocannabinoid System and Aggression across Animal Species. Neurosci. Biobehav. Rev. 2023, 153, 105375. [Google Scholar] [CrossRef]
- Mommsen, T.P.; Vijayan, M.M.; Moon, T.W. Cortisol in Teleosts: Dynamics, Mechanisms of Action, and Metabolic Regulation. Rev. Fish Biol. Fish. 1999, 9, 211–268. [Google Scholar] [CrossRef]
- Metón, I.; Mediavilla, D.; Caseras, A.; Cantó, E.; Fernández, F.; Baanante, I.V. Effect of Diet Composition and Ration Size on Key Enzyme Activities of Glycolysis-Gluconeogenesis, the Pentose Phosphate Pathway and Amino Acid Metabolism in Liver of Gilthead Sea Bream (Sparus aurata). Br. J. Nutr. 1999, 82, 223–232. [Google Scholar] [CrossRef]
- Ibarz, A.; Beltrán, M.; Fernández-Borràs, J.; Gallardo, M.A.; Sánchez, J.; Blasco, J. Alterations in Lipid Metabolism and Use of Energy Depots of Gilthead Sea Bream (Sparus aurata) at Low Temperatures. Aquaculture 2007, 262, 470–480. [Google Scholar] [CrossRef]
- Rimoldi, S.; Benedito-Palos, L.; Terova, G.; Pérez-Sánchez, J. Wide-Targeted Gene Expression Infers Tissue-Specific Molecular Signatures of Lipid Metabolism in Fed and Fasted Fish. Rev. Fish Biol. Fish. 2016, 26, 93–108. [Google Scholar] [CrossRef]
- Yan, J.; Liao, K.; Mai, K.; Ai, Q. Dietary Lipid Levels Affect Lipoprotein Clearance, Fatty Acid Transport, Lipogenesis and Lipolysis at the Transcriptional Level in Muscle and Adipose Tissue of Large Yellow Croaker (Larimichthys crocea). Aquac. Res. 2017, 48, 3925–3934. [Google Scholar] [CrossRef]
- Bermejo-Nogales, A.; Calduch-Giner, J.A.; Pérez-Sánchez, J. Unraveling the Molecular Signatures of Oxidative Phosphorylation to Cope with the Nutritionally Changing Metabolic Capabilities of Liver and Muscle Tissues in Farmed Fish. PLoS ONE 2015, 10, e0122889. [Google Scholar] [CrossRef]
- Holhorea, P.G.; Naya-Català, F.; Belenguer, Á.; Calduch-Giner, J.A.; Pérez-Sánchez, J. Understanding How High Stocking Densities and Concurrent Limited Oxygen Availability Drive Social Cohesion and Adaptive Features in Regulatory Growth, Antioxidant Defense and Lipid Metabolism in Farmed Gilthead Sea Bream (Sparus aurata). Front. Physiol. 2023, 14, 1272267. [Google Scholar] [CrossRef]
- Martos-Sitcha, J.A.; Bermejo-Nogales, A.; Calduch-Giner, J.A.; Pérez-Sánchez, J. Gene Expression Profiling of Whole Blood Cells Supports a More Efficient Mitochondrial Respiration in Hypoxia-Challenged Gilthead Sea Bream (Sparus aurata). Front. Zool. 2017, 14, 34. [Google Scholar] [CrossRef]
- Martos-Sitcha, J.A.; Sosa, J.; Ramos-Valido, D.; Bravo, F.J.; Carmona-Duarte, C.; Gomes, H.L.; Calduch-Giner, J.À.; Cabruja, E.; Vega, A.; Ferrer, M.Á.; et al. Ultra-Low Power Sensor Devices for Monitoring Physical Activity and Respiratory Frequency in Farmed Fish. Front. Physiol. 2019, 10, 667. [Google Scholar] [CrossRef] [PubMed]
- Naya-Català, F.; Martos-Sitcha, J.A.; de las Heras, V.; Simó-Mirabet, P.; Calduch-Giner, J.; Pérez-Sánchez, J. Targeting the Mild-Hypoxia Driving Force for Metabolic and Muscle Transcriptional Reprogramming of Gilthead Sea Bream (Sparus aurata) Juveniles. Biology 2021, 10, 416. [Google Scholar] [CrossRef] [PubMed]
- Archer, L.C.; Hutton, S.A.; Harman, L.; Russell Poole, W.; Gargan, P.; McGinnity, P.; Reed, T.E. Metabolic Traits in Brown Trout (Salmo trutta) Vary in Response to Food Restriction and Intrinsic Factors. Conserv. Physiol. 2020, 8, coaa096. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, J.; Van Leeuwen, T.; Richards, J.; Allen, D. Relationship between Growth and Standard Metabolic Rate: Measurement Artefacts and Implications for Habitat Use and Life-History Adaptation in Salmonids. J. Anim. Ecol. 2015, 84, 4–20. [Google Scholar] [CrossRef]
- Ferrer, M.A.; Calduch-Giner, J.A.; Díaz, M.; Sosa, J.; Rosell-Moll, E.; Santana Abril, J.; Santana Sosa, G.; Bautista Delgado, T.; Carmona, C.; Martos-Sitcha, J.A.; et al. From Operculum and Body Tail Movements to Different Coupling of Physical Activity and Respiratory Frequency in Farmed Gilthead Sea Bream and European Sea Bass. Insights on Aquaculture Biosensing. Comput. Electron. Agric. 2020, 175, 105531. [Google Scholar] [CrossRef]
- Perera, E.; Rosell-Moll, E.; Martos-Sitcha, J.A.; Naya-Català, F.; Simó-Mirabet, P.; Calduch-Giner, J.; Manchado, M.; Afonso, J.M.; Pérez-Sánchez, J. Physiological Trade-Offs Associated with Fasting Weight Loss, Resistance to Exercise and Behavioral Traits in Farmed Gilthead Sea Bream (Sparus aurata) Selected by Growth. Aquac. Rep. 2021, 20, 100645. [Google Scholar] [CrossRef]
- Teulier, L.; Omlin, T.; Weber, J.M. Lactate Kinetics of Rainbow Trout during Graded Exercise: Do Catheters Affect the Cost of Transport? J. Exp. Biol. 2013, 216, 4549–4556. [Google Scholar] [CrossRef] [PubMed]
- Barcellos, L.J.G.; Marqueze, A.; Trapp, M.; Quevedo, R.M.; Ferreira, D. The Effects of Fasting on Cortisol, Blood Glucose and Liver and Muscle Glycogen in Adult Jundiá Rhamdia Quelen. Aquaculture 2010, 300, 231–236. [Google Scholar] [CrossRef]
- Dai, Y.; Shen, Y.; Guo, J.; Yang, H.; Chen, F.; Zhang, W.; Wu, W.; Xu, X.; Li, J. Glycolysis and Gluconeogenesis Are Involved of Glucose Metabolism Adaptation during Fasting and Re-Feeding in Black Carp (Mylopharyngodon piceus). Aquac. Fish. 2024, 9, 226–233, Correction in Aquac. Fish. 2025, 10, 1107–1113. https://doi.org/10.1016/j.aaf.2025.09.001. [Google Scholar] [CrossRef]
- Gou, N.; Wang, K.; Jin, T.; Yang, B. Effects of Starvation and Refeeding on Growth, Digestion, Nonspecific Immunity and Lipid-Metabolism-Related Genes in Onychostoma macrolepis. Animals 2023, 13, 1168. [Google Scholar] [CrossRef]
- Li, H.; Xu, W.; Jin, J.; Yang, Y.; Zhu, X.; Han, D.; Liu, H.; Xie, S. Effects of Starvation on Glucose and Lipid Metabolism in Gibel Carp (Carassius auratus Gibelio Var. CAS III). Aquaculture 2018, 496, 166–175. [Google Scholar] [CrossRef]
- Lavajoo, F.; Perelló-Amorós, M.; Vélez, E.J.; Sánchez-Moya, A.; Balbuena-Pecino, S.; Riera-Heredia, N.; Fernández-Borràs, J.; Blasco, J.; Navarro, I.; Capilla, E.; et al. Regulatory Mechanisms Involved in Muscle and Bone Remodeling during Refeeding in Gilthead Sea Bream. Sci. Rep. 2020, 10, 184. [Google Scholar] [CrossRef]
- Nebo, C.; Portella, M.C.; Carani, F.R.; de Almeida, F.L.A.; Padovani, C.R.; Carvalho, R.F.; Dal-Pai-Silva, M. Short Periods of Fasting Followed by Refeeding Change the Expression of Muscle Growth-Related Genes in Juvenile Nile Tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2013, 164, 268–274. [Google Scholar] [CrossRef]
- Elbialy, Z.I.; Gamal, S.; Al-Hawary, I.I.; Shukry, M.; Salah, A.S.; Aboshosha, A.A.; Assar, D.H. Exploring the Impacts of Different Fasting and Refeeding Regimes on Nile Tilapia (Oreochromis niloticus L.): Growth Performance, Histopathological Study, and Expression Levels of Some Muscle Growth-Related Genes. Fish. Physiol. Biochem. 2022, 48, 973–989. [Google Scholar] [CrossRef]
- Domingo-Bretón, R.; Cools, S.; Moroni, F.; Belenguer, A.; Calduch-Giner, J.A.; Croes, E.; Holhorea, P.G.; Naya-Català, F.; Boon, H.; Pérez-Sánchez, J. Intestinal Microbiota Shifts by Dietary Intervention during Extreme Heat Summer Episodes in Farmed Gilthead Sea Bream (Sparus aurata). Aquac. Rep. 2025, 40, 102566. [Google Scholar] [CrossRef]
- Chiang, J.Y.L. Bile Acid Metabolism and Signaling. Compr. Physiol. 2013, 3, 1191–1212. [Google Scholar] [CrossRef]
- Murashita, K.; Yoshiura, Y.; Chisada, S.I.; Furuita, H.; Sugita, T.; Matsunari, H.; Yamamoto, T. Postprandial Response and Tissue Distribution of the Bile Acid Synthesis-Related Genes, Cyp7a1, Cyp8b1 and Shp, in Rainbow Trout Oncorhynchus mykiss. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013, 166, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Miao, L.; Abba, B.S.A.; Lin, Y.; Jiang, W.; Chen, S.; Luo, C.; Liu, B.; Ge, X. Molecular Characterization and Expression of Sirtuin 2, Sirtuin 3, and Sirtuin 5 in the Wuchang Bream (Megalobrama amblycephala) in Response to Acute Temperature and Ammonia Nitrogen Stress. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2021, 252, 110520. [Google Scholar] [CrossRef] [PubMed]
- Simó-Mirabet, P.; Naya-Català, F.; Calduch-Giner, J.A.; Pérez-Sánchez, J. The Expansion of Sirtuin Gene Family in Gilthead Sea Bream (Sparus aurata)—Phylogenetic, Syntenic, and Functional Insights across the Vertebrate/Fish Lineage. Int. J. Mol. Sci. 2024, 25, 6273. [Google Scholar] [CrossRef]
- Pepino, M.Y.; Kuda, O.; Samovski, D.; Abumrad, N.A. Structure-Function of CD36 and Importance of Fatty Acid Signal Transduction in Fat Metabolism. Annu. Rev. Nutr. 2014, 34, 281–303. [Google Scholar] [CrossRef]
- Secombes, C.J.; Wang, T.; Bird, S. The Interleukins of Fish. Dev. Comp. Immunol. 2011, 35, 1336–1345. [Google Scholar] [CrossRef]
- Li, S.; Wang, N.; Zhang, T.; Feng, Y.; Wang, L.; Sun, J. Characterization of Three Connexin32 Genes and Their Role in Inflammation-Induced ATP Release in the Japanese Flounder Paralichthys olivaceus. Fish Shellfish Immunol. 2020, 106, 181–189. [Google Scholar] [CrossRef]
- Shang, Y.; Coppo, M.; He, T.; Ning, F.; Yu, L.; Kang, L.; Zhang, B.; Ju, C.; Qiao, Y.; Zhao, B.; et al. The Transcriptional Repressor Hes1 Attenuates Inflammation by Regulating Transcription Elongation. Nat. Immunol. 2016, 17, 930–937. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Zhao, Y.; Zhang, Q.; Wang, Q. Nutrient Sensing Signaling Integrates Nutrient Metabolism and Intestinal Immunity in Grass Carp, Ctenopharyngodon idellus after Prolonged Starvation. Fish Shellfish Immunol. 2017, 71, 50–57. [Google Scholar] [CrossRef]
- Liu, L.; Huang, X.; Tu, C.; Chen, B.; Bai, Y.; Yang, S.; Zhang, L.; Lin, L.; Qin, Z. The Effects of Starvation Stress on Intestinal Morphology and Flora of Grass Carp (Ctenopharyngodon idella). Microb. Pathog. 2024, 186, 106502. [Google Scholar] [CrossRef]
- Zeng, L.Q.; Li, F.J.; Li, X.M.; Cao, Z.D.; Fu, S.J.; Zhang, Y.G. The Effects of Starvation on Digestive Tract Function and Structure in Juvenile Southern Catfish (Silurus meridionalis Chen). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2012, 162, 200–211. [Google Scholar] [CrossRef]
- Antonopoulou, E.; Kentepozidou, E.; Feidantsis, K.; Roufidou, C.; Despoti, S.; Chatzifotis, S. Starvation and Re-Feeding Affect Hsp Expression, MAPK Activation and Antioxidant Enzymes Activity of European Sea Bass (Dicentrarchus labrax). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013, 165, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Pascual, P.; Pedrajas, J.R.; Toribio, F.; López-Barea, J.; Peinado, J. Effect of Food Deprivation on Oxidative Stress Biomarkers in Fish (Sparus aurata). Chem. Biol. Interact. 2003, 145, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Sakyi, M.E.; Cai, J.; Tang, J.; Abarike, E.D.; Xia, L.; Li, P.; Kuebutornye, F.K.A.; Zou, Z.; Liang, Z.; Jian, J. Effects of Starvation and Subsequent Re-Feeding on Intestinal Microbiota, and Metabolic Responses in Nile Tilapia, Oreochromis niloticus. Aquac. Rep. 2020, 17, 100370. [Google Scholar] [CrossRef]
- Sun, S.; Su, Y.; Yu, H.; Ge, X.; Zhang, C. Starvation Affects the Intestinal Microbiota Structure and the Expression of Inflammatory-Related Genes of the Juvenile Blunt Snout Bream, Megalobrama amblycephala. Aquaculture 2020, 517, 734764. [Google Scholar] [CrossRef]
- Butt, R.L.; Volkoff, H. Gut Microbiota and Energy Homeostasis in Fish. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef]
- Ou, W.; Yu, G.; Zhang, Y.; Mai, K. Recent Progress in the Understanding of the Gut Microbiota of Marine Fishes. Mar. Life Sci. Technol. 2021, 3, 434–448. [Google Scholar] [CrossRef]
- Sommer, F.; Bäckhed, F. The Gut Microbiota-Masters of Host Development and Physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef]
- Schlomann, B.H.; Parthasarathy, R. Timescales of Gut Microbiome Dynamics. Curr. Opin. Microbiol. 2019, 50, 56–63. [Google Scholar] [CrossRef]
- Jernberg, C.; Löfmark, S.; Edlund, C.; Jansson, J.K. Long-Term Ecological Impacts of Antibiotic Administration on the Human Intestinal Microbiota. ISME J. 2007, 1, 56–66, Erratum in ISME J. 2013, 7, 456. https://doi.org/10.1038/ismej.2012.91. [Google Scholar] [CrossRef]
- Palleja, A.; Mikkelsen, K.H.; Forslund, S.K.; Kashani, A.; Allin, K.H.; Nielsen, T.; Hansen, T.H.; Liang, S.; Feng, Q.; Zhang, C.; et al. Recovery of Gut Microbiota of Healthy Adults Following Antibiotic Exposure. Nat. Microbiol. 2018, 3, 1255–1265. [Google Scholar] [CrossRef]
- Jakobsson, H.E.; Jernberg, C.; Andersson, A.F.; Sjölund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-Term Antibiotic Treatment Has Differing Long- Term Impacts on the Human Throat and Gut Microbiome. PLoS ONE 2010, 5, e9836. [Google Scholar] [CrossRef] [PubMed]
- Taur, Y.; Coyte, K.; Schluter, J.; Robilotti, E.; Figueroa, C.; Gjonbalaj, M.; Littmann, E.R.; Ling, L.; Miller, L.; Gyaltshen, Y.; et al. Reconstitution of the Gut Microbiota of Antibiotic-Treated Patients by Autologous Fecal Microbiota Transplant. Sci. Transl. Med. 2018, 10, eaap9489. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Du, D.; Bo, Z.; Sui, L. Poly-β-Hydroxybutyrate (PHB)-Accumulating Halomonas Improves the Survival, Growth, Robustness and Modifies the Gut Microbial Composition of Litopenaeus vannamei Postlarvae. Aquaculture 2019, 500, 607–612. [Google Scholar] [CrossRef]
- Gao, M.; Li, Y.; Xie, W.; Duan, H.; Du, D.; Sui, L. Effect of Halomonas Storage Poly-β-Hydroxybutyrates on Survival, Growth and Vibriosis Resistance of Half-Smooth Tongue Sole Cynoglossus semilaevis Juveniles. Aquac. Res. 2020, 51, 4631–4637. [Google Scholar] [CrossRef]
- Xie, W.; Ma, H.; Gao, M.; Du, D.; Liu, L.; Sui, L. Effect of Amorphous Halomonas-PHB on Growth, Body Composition, Immune-Related Gene Expression and Vibrio anguillarum Resistance of Hybrid Grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatu ♂) Juveniles. Animals 2024, 14, 2649. [Google Scholar] [CrossRef]
- Piazzon, M.C.; Naya-català, F.; Perera, E.; Palenzuela, O.; Sitjà-bobadilla, A.; Pérez-Sánchez, J. Genetic Selection for Growth Drives Differences in Intestinal Microbiota Composition and Parasite Disease Resistance in Gilthead Sea Bream. Microbiome 2020, 8, 168. [Google Scholar] [CrossRef]
- Naya-Català, F.; Torrecillas, S.; Piazzon, M.C.; Sarih, S.; Calduch-Giner, J.; Fontanillas, R.; Hostins, B.; Sitjà-Bobadilla, A.; Acosta, F.; Pérez-Sánchez, J.; et al. Can the Genetic Background Modulate the Effects of Feed Additives? Answers from Gut Microbiome and Transcriptome Interactions in Farmed Gilthead Sea Bream (Sparus aurata) Fed with a Mix of Phytogenics, Organic Acids or Probiotics. Aquaculture 2024, 586, 740770. [Google Scholar] [CrossRef]
- Moroni, F.; Naya-Català, F.; Hafez, A.I.; Domingo-Bretón, R.; Soriano, B.; Llorens, C.; Pérez-Sánchez, J. Beyond Microbial Variability: Disclosing the Functional Redundancy of the Core Gut Microbiota of Farmed Gilthead Sea Bream from a Bayesian Network Perspective. Microorganisms 2025, 13, 198. [Google Scholar] [CrossRef]
- Piazzon, M.C.; Naya-català, F.; Simó-Mirabet, P.; Picard-sánchez, A.; Roig, F.J.; Calduch-giner, J.A.; Sitjà-Bobadilla, A.; Pérez-Sánchez, J. Sex, Age, and Bacteria: How the Intestinal Microbiota Is Modulated in a Protandrous Hermaphrodite Fish. Front. Microbiol. 2019, 10, 2512. [Google Scholar] [CrossRef]
- Domingo-Bretón, R.; Moroni, F.; Toxqui-Rodríguez, S.; Belenguer, Á.; Piazzon, M.C.; Pérez-Sánchez, J.; Naya-Català, F. Moving Beyond Oxford Nanopore Standard Procedures: New Insights from Water and Multiple Fish Microbiomes. Int. J. Mol. Sci. 2024, 25, 12603. [Google Scholar] [CrossRef]
- Toxqui-Rodríguez, S.; Naya-Català, F.; Sitjà-Bobadilla, A.; Piazzon, M.C.; Pérez-Sánchez, J. Fish Microbiomics: Strengths and Limitations of MinION Sequencing of Gilthead Sea Bream (Sparus aurata) Intestinal Microbiota. Aquaculture 2023, 569, 739388. [Google Scholar] [CrossRef]
- De Coster, W.; Rademakers, R. NanoPack2: Population-Scale Evaluation of Long-Read Sequencing Data. Bioinformatics 2023, 39, btad311. [Google Scholar] [CrossRef]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-Species Living Tree Project (LTP)” Taxonomic Frameworks. Nucleic Acids Res. 2014, 42, D643–D648. [Google Scholar] [CrossRef]
- Mcmurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]







| CTRL | PBSH | p 1 | |
|---|---|---|---|
| Initial body weight (g) | 19.45 ± 0.01 | 19.47 ± 0.08 | 0.815 |
| Final body weight (g) | 105.91 ± 0.43 | 105.90 ± 0.66 | 0.991 |
| Initial body length (cm) | 9.28 ± 0.04 | 9.32 ± 0.03 | 0.419 |
| Final body length (cm) | 15.87 ± 0.07 | 15.88 ± 0.06 | 0.860 |
| Feed intake (g DM/fish) | 86.16 ± 1.08 | 86.78 ± 0.11 | 0.621 |
| Initial CFK 2 | 2.43 ± 0.04 | 2.41 ± 0.02 | 0.658 |
| Final CFK | 2.65 ± 0.05 | 2.64 ± 0.02 | 0.895 |
| Viscera weight (g) | 6.71 ± 0.21 | 6.52 ± 0.20 | 0.505 |
| Liver weight (g) | 1.33 ± 0.08 | 1.25 ± 0.06 | 0.421 |
| VSI (%) 3 | 6.30 ± 0.20 | 6.22 ± 0.15 | 0.740 |
| HSI (%) 4 | 1.34 ± 0.05 | 1.19 ± 0.05 | 0.041 |
| SGR (%) 5 | 2.30 ± 0.01 | 2.29 ± 0.00 | 0.423 |
| FCR 6 | 1.00 ± 0.01 | 1.01 ± 0.01 | 0.293 |
| FA 7 | 0.18 ± 0.01 | 0.12 ± 0.02 | 0.021 |
| Function | Gene | Symbol | GenBank |
|---|---|---|---|
| GH/IGF system | Growth hormone receptor I | ghr1 | AF438176 |
| Growth hormone receptor II | ghr2 | AY573601 | |
| Insulin-like growth factor-I | igf1 | AY996779 | |
| Insulin-like growth factor-II | igf2 | AY996778 | |
| Insulin-like growth factor binding protein 1a | igfbp1a | KM522771 | |
| Insulin-like growth factor binding protein 1b | igfbp1b | MH577189 | |
| Insulin-like growth factor binding protein 2a | igfbp2a | MH577190 | |
| Insulin-like growth factor binding protein 2b | igfbp2b | AF377998 | |
| Insulin-like growth factor binding protein 4 | igfbp4 | KM658998 | |
| Lipid metabolism | Fatty acid synthase | fasn | JQ277708 |
| Elongation of very long chain fatty acids 1 | elovl1 | JX975700 | |
| Elongation of very long chain fatty acids 4 | elovl4 | JX975701 | |
| Elongation of very long chain fatty acids 5 | elovl5 | AY660879 | |
| Elongation of very long chain fatty acids 6 | elovl6 | JX975702 | |
| Fatty acid desaturase 2 | fads2 | AY055749 | |
| Stearoyl-CoA desaturase 1a | scd1a | JQ277703 | |
| Stearoyl-CoA desaturase 1b | scd1b | JQ277704 | |
| Cholesterol 7-alpha-monooxygenase | cyp7a1 | KX122017 | |
| Adipose triglyceride lipase | atgl | JX975711 | |
| Hepatic lipase | hl | EU254479 | |
| Lipoprotein lipase | lpl | AY495672 | |
| 85kDa calcium-independent phospholipase A2 | pla2g6 | JX975708 | |
| Hormone sensitive lipase | hsl | EU254478 | |
| Transcription factors and nuclear receptors | Hepatocyte nuclear factor 4 alpha | hnf4a | FJ360721 |
| Sterol regulatory element-binding proteins 1 | srebp1 | JQ277709 | |
| Sterol regulatory element-binding protein 2 | srebp2 | XM_030408996 | |
| Farnesoid X receptor | fxr | XM_030426192 | |
| Liver X receptor α | lxra | FJ502320 | |
| Peroxisome proliferator-activated receptor α | pparα | AY590299 | |
| Peroxisome proliferator-activated receptor β | pparβ | AY590301 | |
| Peroxisomeproliferator-activated receptor γ | pparγ | AY590304 | |
| Oxidative metabolism and energy sensing | Hypoxia inducible factor-1 alpha | hif1α | JQ308830 |
| Carnitine palmitoyltransferase 1A | cpt1a | JQ308822 | |
| Fatty acid trasnlocase/CD36 | fat/cd36 | XM_030440140 | |
| Fatty acid binding protein, heart | h-fabp | JQ308834 | |
| Citrate synthase | cs | JX975229 | |
| NADH-ubiquinone oxidoreductase chain 2 | nd2 | KC217558 | |
| NADH-ubiquinone oxidoreductase chain 5 | nd5 | KC217559 | |
| Cytochrome c oxidase subunit I | cox1 | KC217652 | |
| Cytochrome c oxidase subunit II | cox2 | KC217653 | |
| Proliferator-activated receptor gamma coactivator 1 alpha | pgc1α | JX975264 | |
| Sirtuin 1 | sirt1 | KF018666 | |
| Sirtuin 2 | sirt2 | KF018667 | |
| Sirtuin 3.1a/Sirtuin 3.1b | sirt3.1a/b | OR394775(6) | |
| Sirtuin 3.2 | sirt3.2 | AHX56275 | |
| Sirtuin 5a | sirt5a | AHX56277 | |
| Sirtuin 5b | sirt5b | OR394777 | |
| Antioxidant defense | Uncoupling protein 1 | ucp1 | FJ710211 |
| Glutathione peroxidase 1 | gpx1 | DQ524992 | |
| Glutathione peroxidase 4 | gpx4 | AM977818 | |
| Peroxiredoxin 3 | prdx3 | GQ252681 | |
| Peroxiredoxin 5 | prdx5 | GQ252683 | |
| Superoxide dismutase [Cu-Zn] | cu-zn-sod/sod1 | JQ308832 | |
| Superoxide dismutase [Mn] | mn-sod/sod2 | JQ308833 | |
| Glucose-regulated protein 170 kDa | grp170 | JQ308821 | |
| Glucose-regulated protein 94 kDa | grp94 | JQ308820 | |
| Glucose-regulated protein 75 kDa | grp75 | DQ524993 |
| Function | Gene | Symbol | GenBank |
|---|---|---|---|
| Epithelial integrity | Proliferating cell nuclear antigen | pcna | KF857335 |
| Transcription factor HES-1-B | hes1b | KF857344 | |
| Krueppel-like factor 4 | klf4 | KF857346 | |
| Claudin-12 | cldn12 | KF861992 | |
| Claudin-15 | cldn15 | KF861993 | |
| Cadherin-1 | cdh1 | KF861995 | |
| Cadherin-17 | cdh17 | KF861996 | |
| Tight junction protein ZO-1 | tjp1 | KF861994 | |
| Desmoplakin | dsp | KF861999 | |
| Gap junction Cx32.2 protein | cx32.2 | KF862000 | |
| Coxsackievirus and adenovirus receptor homolog | cxadr | KF861998 | |
| Mucus production | Mucin 2 | muc2 | JQ277710 |
| Mucin 13 | muc13 | JQ277713 | |
| Nutrient transport | Intestinal-type alkaline phosphatase | alpi | KF857309 |
| Liver type fatty acid-binding protein | fabp1 | KF857311 | |
| Intestinal fatty acid-binding protein | fabp2 | KF857310 | |
| Ileal fatty acid-binding protein | fabp6 | KF857312 | |
| Cytokines and chemokine-related proteins | Tumor necrosis factor alpha | tnfα | AJ413189 |
| Interleukin-1 beta | il1β | AJ419178 | |
| Interleukin-6 | il6 | EU244588 | |
| Interleukin-7 | il7 | JX976618 | |
| Interleukin-8 | il8 | JX976619 | |
| Interleukin-10 | il10 | JX976621 | |
| Interleukin-12 subunit beta | il12 β | JX976624 | |
| Interleukin-15 | il15 | JX976625 | |
| Interleukin-34 | il34 | JX976629 | |
| C-C chemokine receptor type 3 | ccr3 | KF857317 | |
| C-C chemokine receptor type 9 | ccr9 | KF857318 | |
| C-C chemokine receptor type 11 | ccr11 | KF857319 | |
| C-C chemokine CK8/C-C motif chemokine 20 | ck8/ccl20 | GU181393 | |
| T cell and monocyte/macrophage markers | Cluster of differentiation 4 | cd4-1 | AM489485 |
| Cluster of differentiation 8 beta | cd8b | KX231275 | |
| Macrophage colony-stimulating factor 1 receptor 1 | csf1r1 | AM050293 | |
| Macrophage mannose receptor 1 | mrc1 | KF857326 | |
| Pattern recognition receptors (PRRs) | Galectin-1 | lgals1 | KF862003 |
| Galectin-8 | lgals8 | KF862004 | |
| Toll-like receptor 2 | tlr2 | KF857323 | |
| Toll-like receptor 5 | tlr5 | KF857324 | |
| Toll-like receptor 9 | tlr9 | AY751797 | |
| CD209 antigen-like protein D | cd209d | KF857327 | |
| CD302 antigen | cd302 | KF857328 | |
| Fucolectin | fcl | KF857331 | |
| Immunoglobulins | Immunoglobulin M | igm | JQ811851 |
| Immunoglobulin T membrane-bound form | igt-m | KX599201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Mariscal, C.; Holhorea, P.; Moroni, F.; Mora, L.; Toldrá, F.; Pérez-Sánchez, J. Feeding for Well-Being: Porcine Blood Hydrolysate Supplementation Improves Metabolic and Welfare-Related Traits in Farmed Gilthead Sea Bream (Sparus aurata). Int. J. Mol. Sci. 2025, 26, 10725. https://doi.org/10.3390/ijms262110725
Moreno-Mariscal C, Holhorea P, Moroni F, Mora L, Toldrá F, Pérez-Sánchez J. Feeding for Well-Being: Porcine Blood Hydrolysate Supplementation Improves Metabolic and Welfare-Related Traits in Farmed Gilthead Sea Bream (Sparus aurata). International Journal of Molecular Sciences. 2025; 26(21):10725. https://doi.org/10.3390/ijms262110725
Chicago/Turabian StyleMoreno-Mariscal, Cristina, Paul Holhorea, Federico Moroni, Leticia Mora, Fidel Toldrá, and Jaume Pérez-Sánchez. 2025. "Feeding for Well-Being: Porcine Blood Hydrolysate Supplementation Improves Metabolic and Welfare-Related Traits in Farmed Gilthead Sea Bream (Sparus aurata)" International Journal of Molecular Sciences 26, no. 21: 10725. https://doi.org/10.3390/ijms262110725
APA StyleMoreno-Mariscal, C., Holhorea, P., Moroni, F., Mora, L., Toldrá, F., & Pérez-Sánchez, J. (2025). Feeding for Well-Being: Porcine Blood Hydrolysate Supplementation Improves Metabolic and Welfare-Related Traits in Farmed Gilthead Sea Bream (Sparus aurata). International Journal of Molecular Sciences, 26(21), 10725. https://doi.org/10.3390/ijms262110725

