Dissecting the Genetic Contribution of Tooth Agenesis
Abstract
1. Introduction
Search Strategy
2. Phenotypic Variability
2.1. Different Types of Dental Agenesis
- Hypodontia: the absence of five or fewer teeth,
- Oligodontia: the absence of six or more teeth
- Anodontia: the complete absence of all teeth.
2.2. Comorbidity with Other Diseases
- Trichothiodystrophy 2, photosensitive (OMIM: 616390) is an autosomal recessive disorder caused by mutations in ERCC3/XPB (2q14), which encodes a helicase subunit of the transcription/repair factor TFIIH. Patients exhibit brittle, sulfur-deficient hair with the characteristic “tiger-tail banding” pattern under polarized light, along with agenesis of the second upper incisor. Additional features include ichthyosis, intellectual or developmental disabilities, decreased fertility, ocular abnormalities, short stature, and recurrent infections.
- Arthrogryposis, distal type 12 (OMIM: 620545) is caused by homozygous mutations in ADAMTS15 (11q25) and is associated with craniofacial and skeletal anomalies together with tooth agenesis, particularly involving the maxillary incisors.
- Pallister-W syndrome (ORPHA: 2804) is a rare congenital disorder characterized by moderate to severe intellectual disability, seizures, spasticity, strabismus, and facial dysmorphism. Although the underlying genetic defect remains unknown, an X-linked inheritance pattern has been suggested. Dental anomalies, including maxillary incisor agenesis, are frequently described.
- Peters-plus syndrome (OMIM: 261540) results from homozygous or compound heterozygous mutations in B3GALTL (13q12). It is characterized by ocular malformations, cleft lip/palate, short stature, brachydactyly, and developmental delay. Tooth agenesis has also been consistently reported.
- Bloom syndrome (OMIM: 210900), caused by homozygous or compound heterozygous mutations in RECQL3 (15q26), is an autosomal recessive condition marked by growth retardation, photosensitive skin changes, immunodeficiency, insulin resistance, and a high risk of multiple early-onset cancers due to chromosomal instability. Hypodontia, particularly involving the upper lateral incisors, is a common finding.
- Microphthalmia, syndromic 1 (OMIM: 309800) is an X-linked disorder caused by mutations in NAA10 (Xq28). It presents with unilateral or bilateral microphthalmia or anophthalmia, together with developmental delay, dysplastic ears with skin tags, cleft palate, urogenital anomalies, skeletal defects, and dental anomalies including agenesis.
- CHAND syndrome (OMIM: 214350; ORPHA: 1401) is an autosomal recessive disorder caused by homozygous mutations in RIPK4 (21q22). It is characterized by ankyloblepharon, sparse curly hair, nail dysplasia, oral frenula, and dental agenesis.
- Cherubism (OMIM: 118400) is caused by heterozygous mutations in SH3BP2 (4p16). The condition is characterized by progressive bone loss confined to the jaws, replaced by fibrous tissue, resulting in bilateral facial swelling. According to the OMIM clinical synopsis, affected individuals may present with oligodontia, tooth agenesis, and displaced or impacted teeth.
- Eiken syndrome (OMIM: 600002) is a rare autosomal recessive skeletal dysplasia caused by homozygous mutations in PTHR1 (3p21). It is defined by delayed bone ossification, epiphyseal dysplasia, and abnormalities in bone remodeling, with dental phenotypes that include agenesis and eruption defects.
- Hutchinson–Gilford progeria syndrome (HGPS) (ORPHA: 740; OMIM: 176670) arises from de novo heterozygous mutations in LMNA (1q22). While Orphanet describes both autosomal dominant and recessive inheritance patterns, HGPS is typically sporadic. Clinically, it is characterized by short stature, alopecia, lipodystrophy, scleroderma-like skin, joint stiffness, osteolysis, and a prematurely aged facial appearance. As reported in OMIM, dental findings include delayed eruption, hypodontia, and crowding.
2.3. Chromosomal Disorders Associated with Dental Agenesis
3. Genetic Insights of Dental Agenesis
3.1. Genes and Polymorphisms Associated with Dental Agenesis
3.2. Signaling Pathways Associated with DA
4. Therapies and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DA | Dental agenesis |
| DS | Down syndrome |
| GWAS | Genome wide association study |
| HPO | Human Phenotype Ontology |
| ID | Intellectual disability |
| KS | Kabuki syndrome |
| TA | Tooth agenesis |
| TS | Turner Syndrome |
| WES | Whole exome sequencing |
| WHS | Wolf–Hirschhorn syndrome |
| WS | Williams syndrome |
References
- Lan, R.; Wu, Y.; Dai, Q.; Wang, F. Gene Mutations and Chromosomal Abnormalities in Syndromes with Tooth Agenesis. Oral Dis. 2023, 29, 2401–2408. [Google Scholar] [CrossRef]
- Brézulier, D.; Raimbault, P.; Jeanne, S.; Davit-Béal, T.; Cathelineau, G. Association between Dental Agenesis and Facial Morphology. A Cross-Sectional Study in France. PLoS ONE 2024, 19, e0314404. [Google Scholar] [CrossRef] [PubMed]
- Borges, G.H.; Lins-Candeiro, C.L.; Henriques, I.V.; De Brito Junior, R.B.; Pithon, M.M.; Paranhos, L.R. Exploring the Genetics, Mechanisms, and Therapeutic Innovations in Non-Syndromic Tooth Agenesis. Morphologie 2025, 109, 100941. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Attaie, A.B. Genetic Basis of Nonsyndromic and Syndromic Tooth Agenesis. J. Pediatr. Genet. 2016, 5, 198–208. [Google Scholar] [CrossRef]
- Souza-Silva, B.N.; de Andrade Vieira, W.; Bernardino, Í.d.M.; Batista, M.J.; Bittencourt, M.A.V.; Paranhos, L.R. Non-Syndromic Tooth Agenesis Patterns and Their Association with Other Dental Anomalies: A Retrospective Study. Arch. Oral Biol. 2018, 96, 26–32. [Google Scholar] [CrossRef]
- Albu, C.-C.; Pavlovici, R.-C.; Imre, M.; Ţâncu, A.M.C.; Stanciu, I.A.; Vasilache, A.; Milicescu, Ş.; Ion, G.; Albu, Ş.-D.; Tănase, M. Research Algorithm for the Detection of Genetic Patterns and Phenotypic Variety of Non-Syndromic Dental Agenesis. Rom. J. Morphol. Embryol. 2021, 62, 53–62. [Google Scholar] [CrossRef]
- Scheiwiller, M.; Oeschger, E.S.; Gkantidis, N. Third Molar Agenesis in Modern Humans with and without Agenesis of Other Teeth. PeerJ 2020, 8, e10367. [Google Scholar] [CrossRef]
- Kanchanasevee, C.; Chantarangsu, S.; Pittayapat, P.; Porntaveetus, T. Patterns of Nonsyndromic Tooth Agenesis and Sexual Dimorphism. BMC Oral Health 2023, 23, 37. [Google Scholar] [CrossRef]
- Fan, L.; Ma, L.; Zhu, G.; Yao, S.; Li, X.; Yu, X.; Pan, Y.; Wang, L. A Genome-wide Association Study of Premolar Agenesis in a Chinese Population. Oral Dis. 2023, 29, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, R.N.; Howe, B.J.; Moreno Uribe, L.M.; Valencia Ramirez, C.; Restrepo, C.; Deleyiannis, F.W.B.; Padilla, C.; Orioli, I.M.; Buxó, C.J.; Hecht, J.T.; et al. Multivariate GWAS of Structural Dental Anomalies and Dental Caries in a Multi-Ethnic Cohort. Front. Dent. Med. 2022, 2, 771116. [Google Scholar] [CrossRef]
- Jonsson, L.; Magnusson, T.E.; Thordarson, A.; Jonsson, T.; Geller, F.; Feenstra, B.; Melbye, M.; Nohr, E.A.; Vucic, S.; Dhamo, B.; et al. Rare and Common Variants Conferring Risk of Tooth Agenesis. J. Dent. Res. 2018, 97, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Cammarata-Scalisi, F.; Willoughby, C.E.; El-Feghaly, J.R.; Tadich, A.C.; Castillo, M.A.; Alkhatib, S.; Elsherif, M.A.E.; El-Ghandour, R.K.; Coletta, R.; Morabito, A.; et al. Main Genetic Entities Associated with Tooth Agenesis. Clin. Oral Investig. 2024, 29, 9. [Google Scholar] [CrossRef] [PubMed]
- Fournier, B.P.; Bruneau, M.H.; Toupenay, S.; Kerner, S.; Berdal, A.; Cormier-Daire, V.; Hadj-Rabia, S.; Coudert, A.E.; de La Dure-Molla, M. Patterns of Dental Agenesis Highlight the Nature of the Causative Mutated Genes. J. Dent. Res. 2018, 97, 1306–1316. [Google Scholar] [CrossRef]
- Calheiros-Lobo, M.J.; Calheiros-Lobo, M.; Pinho, T. Esthetic Perception of Different Clinical Situations of Maxillary Lateral Incisor Agenesis According to Populations with Dental and Non-Dental Backgrounds: A Systematic Review and Meta-Analysis. Dent. J. 2023, 11, 105. [Google Scholar] [CrossRef]
- Desingu, V.; Adapa, A.; Devi, S. Dental Anomalies in Down Syndrome Individuals: A Review. J. Sci. Dent. 2019, 9, 6–8. [Google Scholar] [CrossRef]
- Küchler, E.C.; Reis, C.L.B.; Silva-Sousa, A.C.; Marañón-Vásquez, G.A.; Matsumoto, M.A.N.; Sebastiani, A.; Scariot, R.; Paddenberg, E.; Proff, P.; Kirschneck, C. Exploring the Association Between Genetic Polymorphisms in Genes Involved in Craniofacial Development and Isolated Tooth Agenesis. Front. Physiol. 2021, 12, 723105. [Google Scholar] [CrossRef]
- Germec Cakan, D.; Nur Yilmaz, R.B.; Bulut, F.N.; Aksoy, A. Dental Anomalies in Different Types of Cleft Lip and Palate: Is There Any Relation? J. Craniofac. Surg. 2018, 29, 1316–1321. [Google Scholar] [CrossRef]
- Janes, L.E.; Bazina, M.; Morcos, S.S.; Ukaigwe, A.; Valiathan, M.; Jacobson, R.; Gosain, A.K. The Relationship Between Dental Agenesis and Maxillary Hypoplasia in Patients with Cleft Lip and Palate. J. Craniofac. Surg. 2021, 32, 2012–2015. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Ferrara, I.; Viapiano, F.; Ciocia, A.M.; Palumbo, I.; Guglielmo, M.; Inchingolo, A.D.; Palermo, A.; Bordea, I.R.; Inchingolo, A.M.; et al. Primary Failure Eruption: Genetic Investigation, Diagnosis and Treatment: A Systematic Review. Children 2023, 10, 1781. [Google Scholar] [CrossRef]
- Taskiran, E.Z.; Karaosmanoglu, B.; Koşukcu, C.; Doğan, Ö.A.; Taylan-Şekeroğlu, H.; Şimşek-Kiper, P.Ö.; Utine, E.G.; Boduroğlu, K.; Alikaşifoğlu, M. Homozygous Indel Mutation in CDH11 as the Probable Cause of Elsahy–Waters Syndrome. Am. J. Med. Genet. Part A 2017, 173, 3143–3152. [Google Scholar] [CrossRef]
- Minatogawa, M.; Tsukahara, Y.; Yuzuriha, S.; Kosho, T. Detailed Clinical and Radiological Features of the First Patient with Elsahy–Waters Syndrome in East Asia. Am. J. Med. Genet. Part A 2021, 185, 3909–3915. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Antunes, L.S.; Pinheiro, L.H.M.; Guimarães, L.S.; Calansans-Maia, J.D.A.; Küchler, E.C.; Antunes, L.A.A. Is Dental Agenesis Associated with Craniofacial Morphology Pattern? A Systematic Review and Meta-Analysis. Eur. J. Orthod. 2020, 42, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.N.; Azevedo, I.D.; do Amaral, B.A.; Arrais, N.M.R.; de Lima, K.C. Microcephaly as a Risk Factor for Dental Alterations: A Case-Control Study. Oral Dis. 2023, 29, 2265–2271. [Google Scholar] [CrossRef]
- Nirmala, S.V.S.G.; Saikrishna, D.; Nuvvula, S. Dental Concerns of Children with Intellectual Disability—A Narrative Review. Dent. Oral Craniofac. Res. 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Vicente, A.; Bravo-González, L.-A.; López-Romero, A.; Muñoz, C.S.; Sánchez-Meca, J. Craniofacial Morphology in down Syndrome: A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 19895. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Lima, R.; Lopes, A.; De Moura, J.N.F.; Ribeiro, S.N.; Cardoso, M.S.N.T. Dental Findings in Kabuki Syndrome: A Systematic Review for Dentistry. Odovtos-Int. J. Dent. Sci. 2020, 22, 61–69. [Google Scholar] [CrossRef]
- Silva-Andrade, N.; López-Ortega, K.; Gallottini, M. Orofacial Features and Medical Profile of Eight Individuals with Kabuki Syndrome. Med. Oral Patol. Oral Cir. Bucal 2019, 24, e630–e635. [Google Scholar] [CrossRef]
- Bull, M.J. Down Syndrome. N. Engl. J. Med. 2020, 382, 2344–2352. [Google Scholar] [CrossRef]
- Scott, A.M.; Reed, W.M.; Ajwani, S.; Parmenter, T.R. Panoramic Radiographs and Dental Patients with Down Syndrome: A Scoping Review. Spec. Care Dent. 2023, 43, 199–220. [Google Scholar] [CrossRef] [PubMed]
- Palaska, P.K.; Antonarakis, G.S. Prevalence and Patterns of Permanent Tooth Agenesis in Individuals with Down Syndrome: A Meta-Analysis. Eur. J. Oral Sci. 2016, 124, 317–328. [Google Scholar] [CrossRef]
- Nadolinski, M.; Schlenz, M.A.; Rahman, A.; Krämer, N.; Schulz-Weidner, N. A Comparative Retrospective Study on the Prevalence and Therapeutic Treatment of Dental Agenesis between Healthy Children and Children with Systemic Disease or Congenital Malformation. BMC Pediatr. 2023, 23, 322. [Google Scholar] [CrossRef]
- Limeres, J.; Serrano, C.; De Nova, J.M.; Silvestre-Rangil, J.; Machuca, G.; Maura, I.; Cruz Ruiz-Villandiego, J.; Diz, P.; Blanco-Lago, R.; Nevado, J.; et al. Oral Manifestations of Wolf-Hirschhorn Syndrome: Genotype-Phenotype Correlation Analysis. J. Clin. Med. 2020, 9, 3556. [Google Scholar] [CrossRef]
- Klupś, D.; Kaźmierczak, J.; Torlińska-Walkowiak, N. Tooth Agenesis: Genes and Syndromic Diseases-Literature Review. J. Pre-Clin. Clin. Res. 2022, 16, 149–152. [Google Scholar] [CrossRef]
- Tallón-Walton, V.; Sánchez-Molins, M.; Hu, W.; Martínez-Abadías, N.; Casado, A.; Manzanares-Céspedes, M.C. Comprehensive Oral Diagnosis and Management for Women with Turner Syndrome. Diagnostics 2024, 14, 769. [Google Scholar] [CrossRef]
- Morris, C.A.; Mervis, C.B. Williams Syndrome. In Cassidy and Allanson’s Management of Genetic Syndromes; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 1021–1038. ISBN 978-1-119-43269-2. [Google Scholar]
- Castro, T.; de Paula Martins Santos, C.; de Oliveira Lira Ortega, A.; Gallottini, M. Oral Characteristics and Medical Considerations in the Dental Treatment of Individuals with Williams Syndrome. Spec. Care Dent. 2019, 39, 108–113. [Google Scholar] [CrossRef]
- Cazzolla, A.P.; Lacaita, M.G.; Lacarbonara, V.; Zhurakivska, K.; De Franco, A.; Gissi, I.; Testa, N.F.; Marzo, G.; Lo Muzio, L. Orthopedic and Orthodontic Management in a Patient with DiGeorge Syndrome and Familial Mediterranean Fever: A Case Report. Spec. Care Dent. 2019, 39, 340–347. [Google Scholar] [CrossRef]
- Candelo, E.; Estrada-Mesa, M.A.; Jaramillo, A.; Martinez-Cajas, C.H.; Osorio, J.C.; Pachajoa, H. The Oral Health of Patients with DiGeorge Syndrome (22q11) Microdeletion: A Case Report. Appl. Clin. Genet. 2021, 14, 267–277. [Google Scholar] [CrossRef]
- Funato, N. Craniofacial Phenotypes and Genetics of DiGeorge Syndrome. J. Dev. Biol. 2022, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, P.; Mittal, M.; Ganakumar, V.; Garg, M.K. Picking up DiGeorge Syndrome in Hypoparathyroidism: A Hit-and-Miss “Thumbing” Diagnosis. Indian J. Endocrinol. Metab. 2022, 26, S1–S2. [Google Scholar] [CrossRef]
- Papadopoulou, S.; Anagnostopoulou, A.; Katsarou, D.V.; Megari, K.; Efthymiou, E.; Argyriadis, A.; Kougioumtzis, G.; Theodoratou, M.; Sofologi, M.; Argyriadi, A.; et al. Enhancing Communication and Swallowing Skills in Children with Cri Du Chat Syndrome: A Comprehensive Speech Therapy Guide. Children 2024, 11, 1526. [Google Scholar] [CrossRef] [PubMed]
- Kline, A.D.; Nguyen, J.M.; Campbell, D.J. Deletion 5p Syndrome. In Cassidy and Allanson’s Management of Genetic Syndromes; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 281–289. ISBN 978-1-119-43269-2. [Google Scholar]
- Corcuera-Flores, J.-R.; Casttellanos-Cosano, L.; Torres-Lagares, D.; Serrera-Figallo, M.á.; Rodríguez-Caballero, Á.; Machuca-Portillo, G. A Systematic Review of the Oral and Craniofacial Manifestations of Cri Du Chat Syndrome. Clin. Anat. 2016, 29, 555–560. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, H.; Camhi, H.; Seymen, F.; Koruyucu, M.; Kasimoglu, Y.; Kim, J.-W.; Kim-Berman, H.; Yuson, N.M.R.; Benke, P.J.; et al. Analyses of Oligodontia Phenotypes and Genetic Etiologies. Int. J. Oral Sci. 2021, 13, 32. [Google Scholar] [CrossRef]
- Pauws, E.; Stanier, P. Sumoylation in Craniofacial Disorders. In SUMO Regulation of Cellular Processes; Wilson, V.G., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2017; Volume 963, pp. 323–335. ISBN 978-3-319-50043-0. [Google Scholar]
- Kantaputra, P.N.; Kapoor, S.; Verma, P.; Kaewgahya, M.; Kawasaki, K.; Ohazama, A.; Ketudat Cairns, J.R. Al-Awadi-Raas-Rothschild Syndrome with Dental Anomalies and a Novel WNT7A Mutation. Eur. J. Med. Genet. 2017, 60, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yu, Y.; Li, J.; Sun, S.; Han, L.; Wang, S.; Guo, K.; Yang, J.; Qiu, J.; Wei, W. Spatiotemporal Cell Landscape of Human Embryonic Tooth Development. Cell Prolif. 2024, 57, e13653. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lan, Y.; Krumlauf, R.; Jiang, R. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice. J. Dent. Res. 2017, 96, 1273–1281. [Google Scholar] [CrossRef]
- Intarak, N.; Tongchairati, K.; Termteerapornpimol, K.; Chantarangsu, S.; Porntaveetus, T. Tooth Agenesis Patterns and Variants in PAX9: A Systematic Review. Jpn. Dent. Sci. Rev. 2023, 59, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Horakova, L.; Dalecka, L.; Zahradnicek, O.; Lochovska, K.; Lesot, H.; Peterkova, R.; Tucker, A.S.; Hovorakova, M. Eda Controls the Size of the Enamel Knot during Incisor Development. Front. Physiol. 2023, 13, 1033130. [Google Scholar] [CrossRef]
- Nakatomi, M.; Ludwig, K.U.; Knapp, M.; Kist, R.; Lisgo, S.; Ohshima, H.; Mangold, E.; Peters, H. Msx1 Deficiency Interacts with Hypoxia and Induces a Morphogenetic Regulation during Lip Development. Development 2020, 147, dev.189175. [Google Scholar] [CrossRef]
- Shibuya, S.; Nakatomi, M.; Kometani-Gunjigake, K.; Nakao-Kuroishi, K.; Matsuyama, K.; Kataoka, S.; Toyono, T.; Seta, Y.; Kawamoto, T. Msx1 Is Essential for Proper Rostral Tip Formation of the Mouse Mandible. Biochem. Biophys. Res. Commun. 2023, 642, 75–82. [Google Scholar] [CrossRef]
- Yu, M.; Wong, S.-W.; Han, D.; Cai, T. Genetic Analysis: Wnt and Other Pathways in Nonsyndromic Tooth Agenesis. Oral Dis. 2019, 25, 646–651. [Google Scholar] [CrossRef]
- Bonczek, O.; Krejci, P.; Izakovicova-Holla, L.; Cernochova, P.; Kiss, I.; Vojtesek, B. Tooth Agenesis: What Do We Know and Is There a Connection to Cancer? Clin. Genet. 2021, 99, 493–502. [Google Scholar] [CrossRef]
- Trybek, G.; Jaroń, A.; Gabrysz-Trybek, E.; Rutkowska, M.; Markowska, A.; Chmielowiec, K.; Chmielowiec, J.; Grzywacz, A. Genetic Factors of Teeth Impaction: Polymorphic and Haplotype Variants of PAX9, MSX1, AXIN2, and IRF6 Genes. Int. J. Mol. Sci. 2023, 24, 13889. [Google Scholar] [CrossRef] [PubMed]
- Hlouskova, A.; Bielik, P.; Bonczek, O.; Balcar, V.J.; Šerý, O. Mutations in AXIN2 Gene as a Risk Factor for Tooth Agenesis and Cancer: A Review. Neuro Endocrinol. Lett. 2017, 38, 131–137. [Google Scholar] [PubMed]
- Ockeloen, C.W.; Khandelwal, K.D.; Dreesen, K.; Ludwig, K.U.; Sullivan, R.; van Rooij, I.A.L.M.; Thonissen, M.; Swinnen, S.; Phan, M.; Conte, F.; et al. Novel Mutations in LRP6 Highlight the Role of WNT Signaling in Tooth Agenesis. Genet. Med. 2016, 18, 1158–1162. [Google Scholar] [CrossRef]
- Luo, W.; Yue, H.; Song, G.; Cheng, J.; He, M. Identification and Functional Analysis of Novel Mutations in AXIN2 and LRP6 Linked with Non-Syndromic Tooth Agenesis. Mol. Genet. Genom. Med. 2025, 13, e70101. [Google Scholar] [CrossRef]
- Kantaputra, P.; Jatooratthawichot, P.; Chintakanon, K.; Intachai, W.; Pradermdutsadeeporn, P.; Adisornkanj, P.; Tongsima, S.; Ngamphiw, C.; Olsen, B.; Tucker, A.S.; et al. Mutations in LRP6 Highlight the Role of WNT Signaling in Oral Exostoses and Dental Anomalies. Arch. Oral Biol. 2022, 142, 105514. [Google Scholar] [CrossRef]
- Ramanathan, A.; Srijaya, T.C.; Sukumaran, P.; Zain, R.B.; Abu Kasim, N.H. Homeobox Genes and Tooth Development: Understanding the Biological Pathways and Applications in Regenerative Dental Science. Arch. Oral Biol. 2018, 85, 23–39. [Google Scholar] [CrossRef]
- Nie, X.; Zheng, J.; Cruciger, M.; Yang, P.; Mao, J.J. mTOR Plays a Pivotal Role in Multiple Processes of Enamel Organ Development Principally through the mTORC1 Pathway and in Part via Regulating Cytoskeleton Dynamics. Dev. Biol. 2020, 467, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Fons Romero, J.M.; Star, H.; Lav, R.; Watkins, S.; Harrison, M.; Hovorakova, M.; Headon, D.; Tucker, A.S. The Impact of the Eda Pathway on Tooth Root Development. J. Dent. Res. 2017, 96, 1290–1297. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, C.; Cheng, S.; Zhao, Z.; Li, J. MicroRNA Control of Tooth Formation and Eruption. Arch. Oral Biol. 2017, 73, 302–310. [Google Scholar] [CrossRef]
- Giovannetti, A.; Guarnieri, R.; Petrizzelli, F.; Lazzari, S.; Padalino, G.; Traversa, A.; Napoli, A.; Di Giorgio, R.; Pizzuti, A.; Parisi, C.; et al. Small RNAs and Tooth Development: The Role of microRNAs in Tooth Agenesis and Impaction. J. Dent. Sci. 2024, 19, 2150–2156. [Google Scholar] [CrossRef]
- Ranjan, P.; Devi, C.; Verma, N.; Bansal, R.; Srivastava, V.K.; Das, P. Understanding the Role of MicroRNAs in Congenital Tooth Agenesis: A Multi-Omics Integration. Biochem. Genet. 2025. [Google Scholar] [CrossRef]
- Ding, H.; Wu, J.; Zhao, W.; Matinlinna, J.P.; Burrow, M.F.; Tsoi, J.K.H. Artificial Intelligence in Dentistry—A Review. Front. Dent. Med. 2023, 4, 1085251. [Google Scholar] [CrossRef] [PubMed]
- Vinci, M.; Vitello, G.A.; Greco, D.; Treccarichi, S.; Ragalmuto, A.; Musumeci, A.; Fallea, A.; Federico, C.; Calì, F.; Saccone, S.; et al. Next Generation Sequencing and Electromyography Reveal the Involvement of the P2RX6 Gene in Myopathy. Curr. Issues Mol. Biol. 2024, 46, 1150–1163. [Google Scholar] [CrossRef]
- Fallea, A.; Costanza, C.; L’Episcopo, S.; Bartolone, M.; Rundo, F.; Smirni, D.; Roccella, M.; Elia, M.; Ferri, R.; Vetri, L. Virtual Reality-Based Versus Traditional Teaching Approaches in the Oral Hygiene Education of Children with Autism Spectrum Disorder. J. Clin. Med. 2025, 14, 5795. [Google Scholar] [CrossRef] [PubMed]
- Fallea, A.; L’Episcopo, S.; Palmigiano, A.; Lanza, G.; Ferri, R. Odontophobia Across the Lifespan: Clinical Perspectives, Vulnerable Populations, and Inclusive Strategies for Dental Anxiety Management. J. Clin. Med. 2025, 14, 5766. [Google Scholar] [CrossRef] [PubMed]
- Kadi, H.; Kawczynski, M.; Bendjama, S.; Flores, J.Z.; Leong-Hoi, A.; de Lastic, H.; Balbierer, J.; Mabileau, C.; Radoux, J.P.; Grollemund, B.; et al. i-Dent: A Virtual Assistant to Diagnose Rare Genetic Dental Diseases. Comput. Biol. Med. 2024, 180, 108927. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Kiso, H.; Murashima-Suginami, A.; Tokita, Y.; Sugai, M.; Tabata, Y.; Bessho, K. Development of Tooth Regenerative Medicine Strategies by Controlling the Number of Teeth Using Targeted Molecular Therapy. Inflamm. Regen. 2020, 40, 21. [Google Scholar] [CrossRef]
- Dinckan, N.; Du, R.; Petty, L.E.; Coban-Akdemir, Z.; Jhangiani, S.N.; Paine, I.; Baugh, E.H.; Erdem, A.P.; Kayserili, H.; Doddapaneni, H.; et al. Whole-Exome Sequencing Identifies Novel Variants for Tooth Agenesis. J. Dent. Res. 2018, 97, 49–59. [Google Scholar] [CrossRef]
- Ranjan, P.; Devi, C.; Verma, N.; Bansal, R.; Srivastava, V.K.; Das, P. Whole Exome Sequencing Uncovers Key Genetic Variants in Congenital Tooth Agenesis: An Integrative Omics Approach. MedRxiv 2024. [Google Scholar] [CrossRef]










| ID | Name | Description | Disease (n) | Gene (n) |
|---|---|---|---|---|
| HP:0009804 | Tooth agenesis | The absence of one or more teeth from the normal series by a failure to develop | 351 | 361 |
| HP:0001592 | Selective tooth agenesis | Agenesis specifically affecting one of the classes incisor, premolar, or molar. | 44 | 46 |
| HP:0011079 | Impacted tooth | A tooth that has not erupted because of local impediments | 10 | 7 |
| HP:0200160 | Agenesis of maxillary incisor | Failure of development of maxillary incisor | 8 | 19 |
| HP:0000706 | Eruption failure | A tooth which does not erupt within the teeth eruption timeline and after the loss of eruption potential. | 30 | 17 |
| Name | Prevalence | Chromosomal Abnormality | Dental Abnormalities | Reference |
|---|---|---|---|---|
| Down syndrome | 1 in 800–1200 live births | Trisomy 21 | Hypodontia, delayed eruption, microdontia, taurodontism, abnormal crown morphology | [24,25] |
| Wolf–Hirschhorn syndrome | 1 in 50,000 births | 4p16.3 deletion | Tooth agenesis, delayed eruption, micrognathia | [32,33] |
| Turner syndrome | 1 in 2000–2500 female births | Complete/partial monosomy X | Tooth agenesis (especially maxillary incisors, though not present in all individuals), supernumerary teeth, microdontia, enamel defects | [34] |
| Williams syndrome | 1 in 7500–10,000 births | 7q11.23 microdeletion | Hypodontia (50.9%), diastemas (72.5%), malocclusion, enamel defects, microdontia | [35,36] |
| DiGeorge syndrome | 1 in 4000 births | 22q11.2 deletion | Tooth agenesis, enamel hypoplasia, delayed eruption, cleft palate | [37,38] |
| Cri-du-chat syndrome | 1 in 20,000–50,000 births | 5p deletion | Tooth agenesis (not in all individuals), enamel hypoplasia, delayed eruption, dental malocclusion, microcephaly-related craniofacial anomalies | [42,43] |
| Gene | Description | Score | Pathway |
|---|---|---|---|
| MSX1 | Msh Homeobox 1 | 901.83 | GO:0030509—bone morphogenetic protein (BMP) signaling pathway |
| EDA | Ectodysplasin A | 814.5 | GO:0038061—EDA-EDAR-EDARADD signaling pathway |
| PAX9 | Paired Box 9 | 813.93 | GO:0030509—bone morphogenetic protein (BMP) signaling pathway |
| LRP6 | LDL Receptor Related Protein 6 | 800.69 | GO:0016055—Wnt signaling pathway |
| WNT10A | Wnt Family Member 10A | 778.59 | GO:0016055—Wnt signaling pathway |
| AXIN2 | Axin 2 | 427.18 | GO:0016055—Wnt signaling pathway |
| EDAR | Ectodysplasin A Receptor | 417.61 | GO:0038061—EDA-EDAR-EDARADD signaling pathway |
| ITPA | Inosine Triphosphatase | 400 | GO:0009124—nucleoside monophosphate biosynthetic process |
| RANBP2 | RAN Binding Protein 2 | 400 | GO:0005515—protein binding |
| EDARADD | EDAR Associated Via Death Domain | 383.89 | GO:0038061—EDA-EDAR-EDARADD signaling pathway |
| IRF6 | Interferon Regulatory Factor 6 | 375.6 | GO:0030509—bone morphogenetic protein (BMP) signaling pathway |
| WNT10B | Wnt Family Member 10B | 375.22 | GO:0016055—Wnt signaling pathway |
| GREM2 | Gremlin 2, DAN Family BMP Antagonist | 374.85 | GO:0048063—cytokine activity (BMP antagonist) |
| TGFA | Transforming Growth Factor Alpha | 355.85 | GO:0005154—epidermal growth factor receptor binding |
| FGFR1 | Fibroblast Growth Factor Receptor 1 | 355.68 | GO:0004714—transmembrane receptor protein tyrosine kinase activity |
| Pathway | Gene Set | Score | Involved Genes |
|---|---|---|---|
| TNFs bind their physiological receptors | 4/28 | 6.99 | EDA, EDA2R, EDAR, EDARADD |
| mTOR signaling | 5/139 | 5.62 | AXIN2, FGFR1, LRP6, WNT10A, WNT10B |
| Breast cancer pathway | 5/154 | 5.4 | AXIN2, FGFR1, LRP6, WNT10A, WNT10B |
| TNFR2 non-canonical NF-kB pathway | 4/86 | 5 | EDA, EDA2R, EDAR, EDARADD |
| lncRNA in canonical Wnt signaling and colorectal cancer | 4/97 | 4.79 | AXIN2, LRP6, WNT10A, WNT10B |
| Wnt signaling pathway and pluripotency | 4/101 | 4.72 | AXIN2, LRP6, WNT10A, WNT10B |
| Wnt signaling in kidney disease | 3/37 | 4.56 | LRP6, WNT10A, WNT10B |
| Wnt signaling pathways | 4/114 | 4.51 | AXIN2, LRP6, WNT10A, WNT10B |
| Embryonic stem cell pluripotency pathways | 4/116 | 4.48 | FGFR1, LRP6, WNT10A, WNT10B |
| Wnt pathway | 4/134 | 4.24 | AXIN2, LRP6, WNT10A, WNT10B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fallea, A.; Vinci, M.; L’Episcopo, S.; Bartolone, M.; Musumeci, A.; Ragalmuto, A.; Treccarichi, S.; Calì, F. Dissecting the Genetic Contribution of Tooth Agenesis. Int. J. Mol. Sci. 2025, 26, 10485. https://doi.org/10.3390/ijms262110485
Fallea A, Vinci M, L’Episcopo S, Bartolone M, Musumeci A, Ragalmuto A, Treccarichi S, Calì F. Dissecting the Genetic Contribution of Tooth Agenesis. International Journal of Molecular Sciences. 2025; 26(21):10485. https://doi.org/10.3390/ijms262110485
Chicago/Turabian StyleFallea, Antonio, Mirella Vinci, Simona L’Episcopo, Massimiliano Bartolone, Antonino Musumeci, Alda Ragalmuto, Simone Treccarichi, and Francesco Calì. 2025. "Dissecting the Genetic Contribution of Tooth Agenesis" International Journal of Molecular Sciences 26, no. 21: 10485. https://doi.org/10.3390/ijms262110485
APA StyleFallea, A., Vinci, M., L’Episcopo, S., Bartolone, M., Musumeci, A., Ragalmuto, A., Treccarichi, S., & Calì, F. (2025). Dissecting the Genetic Contribution of Tooth Agenesis. International Journal of Molecular Sciences, 26(21), 10485. https://doi.org/10.3390/ijms262110485

