Improvement in Glucometric Outcomes After Control-IQ Initiation in Pediatric and Adolescent Type 1 Diabetes Patients: The Impact of Basal Time in Range
Abstract
1. Introduction
2. Results
2.1. Study Participants
2.2. Glucometric Outcomes
2.3. Subanalysis in Children ≤6 Years
2.4. Impact of Basal Time in Range
3. Discussion
4. Materials and Methods
- *TIR: percentage of time in which interstitial blood glucose levels are between 70 and 180 mg/dL.
- *TAR1: percentage of time in which interstitial blood glucose levels are between 180 and 250 mg/dL.
- *TAR2: percentage of time in which interstitial blood glucose is above 250 mg/dL.
- *TBR1: percentage of time in which interstitial blood glucose levels are between 70 and 54 mg/dL.
- *TBR2: percentage of time in which interstitial blood glucose is below 54 mg/dL.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHCL | Advanced hybrid closed-loop |
CGM | Continuous glucose monitoring |
CLC | Closed-loop Control IQ |
CSII | Continuous subcutaneous insulin infusion |
CV | Coefficient of variation |
GADA | Glutamic acid decarboxylase autoantibody |
GLUT | Glucose transporter |
GMI | Glucose Management Indicator |
isCGM | Intermittently scanned continuous glucose monitoring |
MDI | Multiple daily injections |
PLGS | Predictive low glucose suspend |
SAP | Sensor-augmented pump |
RCT | Randomized clinical trial |
SGLT | Sodium-glucose linked transporter |
T1D | Type 1 diabetes |
T2D | Type 2 diabetes |
TIR | Time In Range |
TAR1 | Time Above Range level 1 |
TAR2 | Time Above Range level 2 |
TBR1 | Time Below Range level 1 |
TBR2 | Time Below Range level 2 |
References
- Haris, B.; Ahmed, I.; Syed, N.; Almabrazi, H.; Saraswathi, S.; Al-Khawaga, S.; Saeed, A.; Mundekkadan, S.; Mohammed, I.; Sharari, S.; et al. Clinical features, epidemiology, autoantibody status, HLA haplotypes and genetic mechanisms of type 1 diabetes mellitus among children in Qatar. Sci. Rep. 2021, 11, 18887. [Google Scholar] [CrossRef]
- Richardson, S.J.; Morgan, N.G.; Foulis, A.K. Pancreatic pathology in type 1 diabetes mellitus. Endocr. Pathol. 2014, 25, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Quesada, I.; Tudurí, E.; Ripoll, C.; Nadal, A. Physiology of the pancreatic alpha-cell and glucagon secretion: Role in glucose homeostasis and diabetes. J. Endocrinol. 2008, 199, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Eizirik, D.L.; Szymczak, F.; Mallone, R. Why does the immune system destroy pancreatic β-cells but not α-cells in type 1 diabetes? Nat. Rev. Endocrinol. 2023, 19, 425–434. [Google Scholar] [CrossRef]
- Brissova, M.; Haliyur, R.; Saunders, D.; Shrestha, S.; Dai, C.; Blodgett, D.M.; Bottino, R.; Campbell-Thompson, M.; Aramandla, R.; Poffenberger, G.; et al. α Cell Function and Gene Expression Are Compromised in Type 1 Diabetes. Cell Rep. 2018, 22, 2667–2676. [Google Scholar] [CrossRef]
- Conde Barreiro, S.; Rodríguez Rigual, M.; Bueno Lozano, G.; López Siguero, J.P.; González Pelegrín, B.; Rodrigo Val, M.P.; Dea, M.C. Epidemiología de la diabetes mellitus tipo 1 en menores de 15 años en Espanña. An. Pediatr. 2014, 81, 189.e1–189.e12. [Google Scholar] [CrossRef]
- López Siguero, J.P.; Pérez González, O.; Gómez Gila, A.L.; Leiva Gea, I. Situación de la diabetes mellitus tipo 1 en Andalucía. Datos asistenciales, uso de terapias avanzadas y recursos humanos [The situation as regards diabetes mellitus type 1 in Andalusia. Care data, use of advanced therapies and human resources]. An. Pediatr. (Engl. Ed.) 2018, 89, 111–116. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes: Standars of care in diabetes. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef]
- American Diabetes Association. Glycemic Goals and hypoglycemia: Standars of care in diabetes. Diabetes Care 2024, 47, S111–S125. [Google Scholar] [CrossRef]
- Amadou, C.; Franc, S.; Benhamou, P.-Y.; Lablanche, S.; Huneker, E.; Charpentier, G.; Penfornis, A. Diabeloop DBLG1 Closed-Loop System Enables Patients with Type 1 Diabetes to Significantly Improve Their Glycemic Control in Real-Life Situations Without Serious Adverse Events: 6-Month Follow-up. Diabetes Care 2021, 44, 844–846. [Google Scholar] [CrossRef]
- Ng, S.M.; Wright, N.P.; Yardley, D.; Campbell, F.; Randell, T.; Trevelyan, N.; Ghatak, A.; Hindmarsh, P.C. Real world use of hybrid-closed loop in children and young people with type 1 diabetes mellitus-a National Health Service pilot initiative in England. Diabet. Med. 2023, 40, e15015. [Google Scholar] [CrossRef]
- Karakuş, K.E.; Mutlu, G.Y.; Gökçe, T.; Eviz, E.; Can, E.; Muradoğlu, S.; Hatun, Ş. Insulin Requirements for Basal and Auto-Correction Insulin Delivery in Advanced Hybrid Closed-Loop System: 4193 Days’ Real-World Data of Children in Two Different Age Groups. J. Diabetes Sci. Technol. 2024, 18, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Rabbone, I.; Savastio, S.; Pigniatiello, C.; Carducci, C.; Berioli, M.G.; Cherubini, V.; Presti, D.L.; Maltoni, G.; Mameli, C.; Marigliano, M.; et al. Significant and persistent improvements in time in range and positive emotions in children and adolescents with type 1 diabetes using a closed-loop control system after attending a virtual educational camp. Acta Diabetol. 2022, 59, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, A.; Battelino, T.; Scaramuzza, A.E.; Da Silva, J.; Castañeda, J.; Cordero, T.L.; Shin, J.; Cohen, O. Comparison of MiniMed 780G system performance in users aged younger and older than 15 years: Evidence from 12 870 real-world users. Diabetes Obes. Metab. 2022, 24, 1370–1379. [Google Scholar] [CrossRef]
- Lendínez-Jurado, A.; Gómez-Perea, A.; Ariza-Jiménez, A.B.; Tapia-Ceballos, L.; Becerra-Paz, I.; Martos-Lirio, M.F.; Moreno-Jabato, F.; Leiva-Gea, I. Impact on glucometric variables and quality of life of the advanced hybrid closed-loop system in pediatric and adolescent type 1 diabetes. J. Diabetes 2023, 15, 699–708. [Google Scholar] [CrossRef]
- Adolfsson, P.; Heringhaus, A.; Sjunnesson, K.; Mehkri, L.; Bolin, K. Cost-effectiveness of the tandem t: Slim X2 with control-IQ technology automated insulin delivery system in children and adolescents with type 1 diabetes in Sweden. Diabet. Med. 2024, 41, e15432. [Google Scholar] [CrossRef]
- Jendle, J.; Buompensiere, M.I.; Holm, A.L.; de Portu, S.; Malkin, S.J.P.; Cohen, O. The Cost-Effectiveness of an Advanced Hybrid Closed-Loop System in People with Type 1 Diabetes: A Health Economic Analysis in Sweden. Diabetes Ther. 2021, 12, 2977–2991. [Google Scholar] [CrossRef]
- Lambadiari, V.; Saltik, A.Z.O.; de Portu, S.; Buompensiere, M.I.; Kountouri, A.; Korakas, E.; Sharland, H.; Cohen, O. Cost-Effectiveness Analysis of an Advanced Hybrid Closed-Loop Insulin Delivery System in People with Type 1 Diabetes in Greece. Diabetes Technol. Ther. 2022, 24, 316–323. [Google Scholar] [CrossRef]
- Olid-Cárdenas, M.J.; Lendínez-Jurado, A.; Monroy-Rodríguez, G.; Gómez-Perea, A.; Cano-Ortiz, A.; Ariza-Jiménez, A.B.; García-Ruiz, A.; Jiménez-Cuenca, P.; Picón-César, M.J.; Leiva-Gea, I. Real-World Use of Hybrid Closed-Loop Systems during Diabetes Camp: A Preliminary Study for Secure Configuration Strategies in Children and Adolescents. Nutrients 2024, 16, 2210. [Google Scholar] [CrossRef]
- Hasan, I.; Chowdhury, A.B.M.A.; Haque, M.I.; Patterson, C.C. Changes in glycated hemoglobin, diabetes knowledge, quality of life, and anxiety in children and adolescents with type 1 diabetes attending summer camps: A systematic review and meta-analysis. Pediatr. Diabetes 2021, 22, 124–131. [Google Scholar] [CrossRef]
- Weissberg-Benchell, J.; Vesco, A.T.; Rychlik, K. Diabetes camp still matters: Relationships with diabetes-specific distress, strengths, and self-care skills. Pediatr. Diabetes 2019, 20, 353–360. [Google Scholar] [CrossRef]
- Breton, M.D.; Kanapka, L.G.; Beck, R.W.; Ekhlaspour, L.; Forlenza, G.P.; Cengiz, E.; Schoelwer, M.; Ruedy, K.J.; Jost, E.; Carria, L.; et al. A Randomized Trial of Closed-Loop Control in Children with Type 1 Diabetes. N. Engl. J. Med. 2020, 383, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Kovatchev, B.P.; Raghinaru, D.; Lum, J.W.; Buckingham, B.A.; Kudva, Y.C.; Laffel, L.M.; Levy, C.J.; Pinsker, J.E.; Wadwa, R.P.; et al. Six-Month Randomized, Multicenter Trial of Closed-Loop Control in Type 1 Diabetes. N. Engl. J. Med. 2019, 381, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Ekhlaspour, L.; Schoelwer, M.J.; Forlenza, G.P.; DeBoer, M.D.; Norlander, L.; Hsu, L.; Kingman, R.; Boranian, E.; Berget, C.; Emory, E.; et al. Safety and Performance of the Tandem t:slim X2 with Control-IQ Automated Insulin Delivery System in Toddlers and Preschoolers. Diabetes Technol. Ther. 2021, 23, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Wadwa, R.P.; Reed, Z.W.; Buckingham, B.A.; DeBoer, M.D.; Ekhlaspour, L.; Forlenza, G.P.; Schoelwer, M.; Lum, J.; Kollman, C.; Beck, R.W.; et al. Trial of hybrid closed-loop control in young children with type 1 diabetes. N. Engl. J. Med. 2023, 388, 991–1001. [Google Scholar] [CrossRef]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations from the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef]
- Forlenza, G.P.; Carlson, A.L.; Galindo, R.J.; Kruger, D.F.; Levy, C.J.; McGill, J.B.; Umpierrez, G.; Aleppo, G. Real-World Evidence Supporting Tandem Control-IQ Hybrid Closed-Loop Success in the Medicare and Medicaid Type 1 and Type 2 Diabetes Populations. Diabetes Technol. Ther. 2022, 24, 814–823. [Google Scholar] [CrossRef]
- Kanapka, L.G.; Wadwa, R.P.; Breton, M.D.; Ruedy, K.J.; Ekhlaspour, L.; Forlenza, G.P.; Cengiz, E.; Schoelwer, M.J.; Jost, E.; Carria, L.; et al. Extended Use of the Control-IQ Closed-Loop Control System in Children with Type 1 Diabetes. Diabetes Care 2021, 44, 473–478. [Google Scholar] [CrossRef]
- Mingorance Delgado, A.; Lucas, F. The Tandem Control-IQ advanced hybrid system improves glycemic control in children under 18 years of age with type 1 diabetes and night rest in caregivers. Endocrinol. Diabetes Nutr. (Engl. Ed.) 2023, 70 (Suppl. 3), 27–35. [Google Scholar] [CrossRef]
- Ware, J.; Allen, J.M.; Boughton, C.K.; Wilinska, M.E.; Hartnell, S.; Thankamony, A.; de Beaufort, C.; Schierloh, U.; Fröhlich-Reiterer, E.; Mader, J.K.; et al. Randomized Trial of Closed-Loop Control in Very Young Children with Type 1 Diabetes. N. Engl. J. Med. 2022, 386, 209–219. [Google Scholar] [CrossRef]
- Schoelwer, M.J.; Kanapka, L.G.; Wadwa, R.P.; Breton, M.D.; Ruedy, K.J.; Ekhlaspour, L.; Forlenza, G.P.; Cobry, E.C.; Messer, L.H.; Cengiz, E.; et al. Predictors of Time-in-Range (70–180 mg/dL) Achieved Using a Closed-Loop Control System. Diabetes Technol. Ther. 2021, 23, 475–481. [Google Scholar] [CrossRef]
- Forlenza, G.P.; Ekhlaspour, L.; Breton, M.; Maahs, D.M.; Wadwa, R.P.; DeBoer, M.; Messer, L.H.; Town, M.; Pinnata, J.; Kruse, G.; et al. Successful At-Home Use of the Tandem Control-IQ Artificial Pancreas System in Young Children During a Randomized Controlled Trial. Diabetes Technol. Ther. 2019, 21, 159–169. [Google Scholar] [CrossRef] [PubMed]
- El Malahi, A.; Van Elsen, M.; Charleer, S.; Dirinck, E.; Ledeganck, K.; Keymeulen, B.; Crenier, L.; Radermecker, R.; Taes, Y.; Vercammen, C.; et al. Relationship Between Time in Range, Glycemic Variability, HbA1c, and Complications in Adults with Type 1 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2022, 107, e570–e581. [Google Scholar] [CrossRef] [PubMed]
- Yapanis, M.; James, S.; Craig, M.E.; O’Neal, D.; Ekinci, E.I. Complications of Diabetes and Metrics of Glycemic Management Derived from Continuous Glucose Monitoring. J. Clin. Endocrinol. Metab. 2022, 107, e2221–e2236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, X.X.; Tian, Q.S. Research progress on the association between glycemic variability index derived from CGM and cardiovascular disease complications. Acta Diabetol. 2024, 61, 679–692. [Google Scholar] [CrossRef]
- Leiva-Gea, I.; Fernández, C.A.; Cardona-Hernandez, R.; Lozano, M.F.; Bahíllo-Curieses, P.; Arroyo-Díez, J.; León, M.C.; Martín-Frías, M.; Barreiro, S.C.; Delgado, A.M.; et al. Increased Presentation of Diabetic Ketoacidosis and Changes in Age and Month of Type 1 Diabetes at Onset during the COVID-19 Pandemic in Spain. J. Clin. Med. 2022, 11, 4338. [Google Scholar] [CrossRef]
- Hao, W.; Gitelman, S.; DiMeglio, L.A.; Boulware, D.; Greenbaum, C.J.; Type 1 Diabetes TrialNet Study Group. Fall in C-Peptide During First 4 Years from Diagnosis of Type 1 Diabetes: Variable Relation to Age, HbA1c, and Insulin Dose. Diabetes Care 2016, 39, 1664–1670. [Google Scholar] [CrossRef]
- Carr, A.L.; Inshaw, J.R.; Flaxman, C.S.; Leete, P.; Wyatt, R.C.; Russell, L.A.; Palmer, M.; Prasolov, D.; Worthington, T.; Hull, B.; et al. Circulating C-Peptide Levels in Living Children and Young People and Pancreatic β-Cell Loss in Pancreas Donors Across Type 1 Diabetes Disease Duration. Diabetes 2022, 71, 1591–1596. [Google Scholar] [CrossRef]
Baseline | 1 Month | 3 Months | 6 Months | 12 Months | |
---|---|---|---|---|---|
TIR (%) (Mean ± SD) 1 | 62.04 ± 16.96 | 72.50 ± 10.36 (p < 0.000) | 71.28 ± 12.81 (p < 0.001) | 74.12 ± 11.62 (p < 0.000) | 75.04 ± 10.01 (p < 0.000) |
TAR1 (%) (Mean ± SD) 1 | 26.84 ± 10.50 | 17.40 ± 6.12 (p < 0.000) | 19.24 ± 7.41 (p < 0.000) | 15.20 ± 7.46 (p < 0.000) | 16.56 ± 6.78 (p < 0.000) |
TAR2 (%) (Mean ± SD) 1 | 8.60 ± 11.56 | 7.45 ± 5.65 (p < 0.174) | 7.48 ± 7.45 (p < 0.289) | 6.32 ± 7.30 (p < 0.198) | 5.52 ± 5.33 (p < 0.142) |
TBR1 (%) (Median (IQR)) 2 | 2.04 (1–3) | 2.12 (1–2.75) (p < 0.661) | 1.71 (1–2) (p < 0.942) | 2.48 (2–3) (p < 0.106) | 2.40 (1–3) (p < 0.340) |
TBR2 (%) (Median (IQR)) 2 | 0.48 (0–1) | 0.50 (0–1) (p < 0.886) | 0.43 (0–1) (p < 0.608) | 1.16 (0–1) (p < 0.095) | 0.48 (0–1) (p < 0.715) |
Glucose (mg/dL) (Median (IQR)) 2 | 163.88 (142–183) | 151.95 (142–163.75) (p < 0.001) | 154.19 (143–166) (p < 0.003) | 149.04 (140–155) (p < 0.001) | 147.64 (142–154) (p < 0.006) |
GMI (%) (Mean ± SD) 1 | 7.32 ± 0.76 | 6.94 ± 0.41 (p < 0.033) | 6.98 ± 0.53 (p < 0.021) | 6.90 ± 0.47 (p < 0.021) | 6.84 ± 0.39 (p < 0.096) |
HbA1c (%) (Mean ± SD) 1 | 6.82 ± 0.58 | - | 6.43 ± 0.77 (p < 0.447) | 6.24 ± 0.57 (p < 0.182) | 6.35 ± 0.54 (p < 0.118) |
CV glucose (%) (Mean ± SD) 1 | 35.24 ± 5.18 | 37.68 ± 7.29 (p < 0.470) | 34.85 ± 5.79 (p < 0.373) | 35.39 ± 5.88 (p < 0.710) | 34.80 ± 6.73 (p < 0.563) |
Total basal insulin (%) (Mean ± SD) 1 | 40.10 ± 12.39 | 44.26 ± 10.28 (p < 0.686) | 44.68 ± 9.84 (p < 0.600) | 46.31 ± 10.95 (p < 0.122) | 45.64 ± 8.15 (p < 0.344) |
Total bolus insulin (%) (Mean ± SD) 1 | 59.90 ± 12.39 | 55.74 ± 10.284 (p < 0.686) | 54.32 ± 9.84 (p < 0.600) | 53.69 ± 10.95 (p < 0.122) | 54.36 ± 8.15 (p < 0.344) |
Total autocorrection insulin (%) (Mean ± SD) | - | 6.16 ± 7.31 | 14.53 ± 18 | 13.61 ± 13.87 | 17.81 ± 22.52 |
Carbohydrates intake (g/day) (Mean ± SD) | - | 156.15 ± 51.59 | 149.97 ± 51.94 | 150.27 ± 44.47 | 170.72 ± 79.64 |
Sensor use (%) (Median (IQR)) | - | 97.75 (98–99) | 94.71 (97–99) | 97.80 (97.50–99) | 95.01 (95–99) |
Time in Auto Mode (%) (Median (IQR)) | - | 91.47 (96–98) | 93.84 (95–97) | 94.43 (96–98) | 88.29 (94.50–98) |
Baseline | 1 Month | 3 Months | 6 Months | 12 Months | |
---|---|---|---|---|---|
TIR (% patients) | 32 | 54.55 (p < 0.015) | 57.14 (p < 0.493) | 72 (p < 0.318) | 72 (p < 0.027) |
TAR1 (% patients) | 40 | 90.91 (p < 0.600) | 76.19 (p < 0.417) | 96 (p = 0.388) | 92 (p < 0.212) |
TAR2 (% patients) | 56 | 27.27 (p < 0.039) | 33.33 (p < 0.043) | 48 (p < 0.032) | 48 (p < 0.098) |
TBR1 (% patients) | 92 | 77.27 (p < 0.630) | 90.48 (p < 0.852) | 80 (p < 0.759) | 80 (p < 0.759) |
TBR2 (% patients) | 92 | 90.91 (p < 0.630) | 100 (p < 0.852) | 88 (p < 0.759) | 88 (p < 0.759) |
Baseline | 1 Month | 3 Months | 6 Months | 12 Months | |
---|---|---|---|---|---|
TIR (%) (Mean ± SD) 1 | 57.58 ± 6.96 | 66.18 ± 11.04 (p < 0.004) | 63.90 ± 13.81 (p < 0.003) | 70.25 ± 11.83 (p < 0.0017) | 72.00 ± 18.11 (p < 0.003) |
TAR1 (%) (Mean ± SD) 1 | 28.66 ± 12.41 | 20.09 ± 4.32 (p < 0.016) | 21.90 ± 4.55 (p < 0.029) | 17.66 ± 6.74 (p < 0.010) | 16.75 ± 7.13 (p < 0.004) |
TAR2 (%) (Mean ± SD) 1 | 11.16 ± 13.95 | 11.09 ± 5.20 (p < 0.594) | 11.90 ± 8.41 (p < 0.86) | 8.83 ± 9.18 (p < 0.54) | 8.00 ± 6.49 (p < 0.43) |
TBR1 (%) (Mean ± SD) 1 | 2.00 ± 1.41 | 2.10 ± 1.32 (p < 0.61) | 2.00 ± 1.15 (p < 0.34) | 2.58 ± 1.37 (p < 0.16) | 2.58 ± 1.31 (p < 0.22) |
TBR2 (%) (Mean ± SD) 1 | 0.58 ± 0.90 | 0.45 ± 0.68 (p < 0.44) | 0.60 ± 0.51 (p < 0.34) | 0.66 ± 0.65 (p < 0.34) | 0.66 ± 0.77 (p < 0.44) |
Glucose (mg/dL) (Mean ± SD) 1 | 172.33 ± 30.32 | 160.72 ± 13.71 (p < 0.015) | 164.60 ± 20.87 (p < 0.013) | 154.91 ± 24.88 (p < 0.011) | 151.75 ± 19.98 (p < 0.011) |
GMI (%) (Mean ± SD) 1 | 7.6 ± 0.68 | 7.14 ± 0.32 (p < 0.509) | 7.24 ± 0.53 (p < 0.397) | 7.08 ± 0.54 (p < 0.340) | 6.99 ± 0.43 (p < 0.528) |
HbA1c (%) (Mean ± SD) 1 | 6.68 ± 0.37 | - | - | 6.46 ± 0.24 (p < 0.43) | 6.68 ± 0.50 (p < 0.76) |
CV glucose (%) (Mean ± SD) 1 | 35.55 ± 5.15 | 40.52 ± 3.71 (p < 0.49) | 38.88 ± 3.60 (p < 0.745) | 37.23 ± 5.53 (p < 0.804) | 37.80 ± 6.66 (p < 0.556) |
Total basal insulin (%) (Mean ± SD) | 41.83 ± 12.81 | 43.55 ± 11.84 | 44.50 ± 11.59 | 46.67 ± 12.12 | 46.42 ± 8.84 |
Total bolus insulin (%) (Mean ± SD) | 58.17 ± 12.81 | 56.45 ± 11.84 | 55.50 ± 11.59 | 53.33 ± 12.12 | 53.58 ± 8.84 |
Total autocorrection insulin (%) (Mean ± SD) | - | 3 ± 2.68 | 5.3 ± 7.20 | 6.45 ± 7.34 | 7.92 ± 8.80 |
Carbohydrates intake (g/day) (Mean ± SD) | - | 141.99 ± 56.02 | 138.27 ± 57.21 | 129.13 ± 45.59 | 165.06 ± 93.88 |
Sensor use (%) (Median (IQR)) | - | 98.18 (98–98.5) | 91.20 (96.25–98) | 97.73 (97–99) | 92.19 (95–98.25) |
Time in Auto Mode (%) (Median (IQR)) | - | 93.09 (97–98) | 92.50 (95.25–97.75) | 97 (96.50–98) | 88.92 (95.75–98) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Perea, A.; Lendínez-Jurado, A.; Gallego-Gutiérrez, S.; Guerrero-Del-Cueto, F.; García-Ruiz, A.; López-De La Torre, C.; Cardona-Díaz, F.; Leiva-Gea, I. Improvement in Glucometric Outcomes After Control-IQ Initiation in Pediatric and Adolescent Type 1 Diabetes Patients: The Impact of Basal Time in Range. Int. J. Mol. Sci. 2025, 26, 9638. https://doi.org/10.3390/ijms26199638
Gómez-Perea A, Lendínez-Jurado A, Gallego-Gutiérrez S, Guerrero-Del-Cueto F, García-Ruiz A, López-De La Torre C, Cardona-Díaz F, Leiva-Gea I. Improvement in Glucometric Outcomes After Control-IQ Initiation in Pediatric and Adolescent Type 1 Diabetes Patients: The Impact of Basal Time in Range. International Journal of Molecular Sciences. 2025; 26(19):9638. https://doi.org/10.3390/ijms26199638
Chicago/Turabian StyleGómez-Perea, Ana, Alfonso Lendínez-Jurado, Silvia Gallego-Gutiérrez, Fuensanta Guerrero-Del-Cueto, Ana García-Ruiz, Cristina López-De La Torre, Fernando Cardona-Díaz, and Isabel Leiva-Gea. 2025. "Improvement in Glucometric Outcomes After Control-IQ Initiation in Pediatric and Adolescent Type 1 Diabetes Patients: The Impact of Basal Time in Range" International Journal of Molecular Sciences 26, no. 19: 9638. https://doi.org/10.3390/ijms26199638
APA StyleGómez-Perea, A., Lendínez-Jurado, A., Gallego-Gutiérrez, S., Guerrero-Del-Cueto, F., García-Ruiz, A., López-De La Torre, C., Cardona-Díaz, F., & Leiva-Gea, I. (2025). Improvement in Glucometric Outcomes After Control-IQ Initiation in Pediatric and Adolescent Type 1 Diabetes Patients: The Impact of Basal Time in Range. International Journal of Molecular Sciences, 26(19), 9638. https://doi.org/10.3390/ijms26199638