Localisation-Dependent Variations in Articular Cartilage ECM: Implications for Tissue Engineering and Cartilage Repair
Abstract
1. Introduction
2. Results
2.1. Cartilage Thickness and Structure
2.2. Proteoglycan and Collagen Type II Distribution
2.3. Regulation of Proteins in Proteome Analyses
2.4. Organisation of ECM Proteins
3. Discussion
4. Materials and Methods
4.1. Sampling of Osteochondral Cylinders
4.2. Sample Preparation
4.3. Histology and Immunohistochemistry
| Target | Dilution | Host | Source |
|---|---|---|---|
| h-Collagen type II | 1:500 | Mouse | Anti-Collagen Type II (Ab-1) Mouse mAb (II-4C11), CP18, Merck, Germany |
| h-Matrilin-3 | 1:1000 | Rabbit | Klatt et al. 2000 [73] |
| h-COMP | 1:1000 | Rabbit | DiCesare et al. 1994 [74] |
| h-Fibrillin-1 | 1:2000 | Rabbit | Morcos et al. 2022 [75] |
| h-Decorin | 1:1000 | Rabbit | Kupka et al. 2020 [76] |
4.4. Determination of Cartilage Thickness
4.5. Proteomic Analysis
4.6. Protein Isolation from Cartilage Tissue
4.7. Western Blotting
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AC | Articular cartilage |
| ACN | Acetonitrile |
| ADAMTS | A disintegrin and metalloprotease with thrombospondin-1-like domains |
| ECM | Extracellular matrix |
| FA | Formic acid |
| FBS | Foetal bovine serum |
| GO | Gene Ontology |
| H&E | Hematoxylin and Eosin |
| L | Lateral |
| M | Medial |
| MMP | Matrix metalloproteinase |
| OA | Osteoarthritis |
| PBS | Phosphate-buffered saline |
| PCM | Pericellular matrix |
| PG | Proteoglycan |
References
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Ulrich-Vinther, M.M.D.; Maloney, M.M.D.; Schwarz, E.M.P.; Rosier, R.M.P.; O’Keefe, R.J. Articular Cartilage Biology. J. Am. Acad. Orthop. Surg. 2003, 11, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Vincent, T.L.; Wann, A.K.T. Mechanoadaptation: Articular cartilage through thick and thin. J. Physiol. 2019, 597, 1271–1281. [Google Scholar] [CrossRef]
- Heinegård, D.; Saxne, T. The role of the cartilage matrix in osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 50–56. [Google Scholar] [CrossRef]
- Peng, Z.; Sun, H.; Bunpetch, V.; Koh, Y.; Wen, Y.; Wu, D.; Ouyang, H. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials 2021, 268, 120555. [Google Scholar] [CrossRef]
- Alcaide-Ruggiero, L.; Cugat, R.; Domínguez, J.M. Proteoglycans in Articular Cartilage and Their Contribution to Chondral Injury and Repair Mechanisms. Int. J. Mol. Sci. 2023, 24, 10824. [Google Scholar] [CrossRef]
- Eschweiler, J.; Horn, N.; Rath, B.; Betsch, M.; Baroncini, A.; Tingart, M.; Migliorini, F. The Biomechanics of Cartilage-An Overview. Life 2021, 11, 302. [Google Scholar] [CrossRef]
- Vincent, T.L.; McClurg, O.; Troeberg, L. The Extracellular Matrix of Articular Cartilage Controls the Bioavailability of Pericellular Matrix-Bound Growth Factors to Drive Tissue Homeostasis and Repair. Int. J. Mol. Sci. 2022, 23, 6003. [Google Scholar] [CrossRef]
- Alexopoulos, L.G.; Setton, L.A.; Guilak, F. The biomechanical role of the chondrocyte pericellular matrix in articular cartilage. Acta Biomater. 2005, 1, 317–325. [Google Scholar] [CrossRef]
- Vincent, T.L. Targeting mechanotransduction pathways in osteoarthritis: A focus on the pericellular matrix. Curr. Opin. Pharmacol. 2013, 13, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Sinkeviciute, D.; He, Y.; Karsdal, M.; Henrotin, Y.; Mobasheri, A.; Önnerfjord, P.; Bay-Jensen, A. The minor collagens in articular cartilage. Protein Cell 2017, 8, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, M.-F.; Khabut, A.; Kjellström, S.; Önnerfjord, P.; Kraus, V.B. Elucidating the Molecular Composition of Cartilage by Proteomics. J. Proteome Res. 2016, 15, 374–388. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, M.-F.; Önnerfjord, P.; Kraus, V.B. Biomarkers and proteomic analysis of osteoarthritis. Matrix Biol. 2014, 39, 56–66. [Google Scholar] [CrossRef]
- van Rossom, S.; Smith, C.R.; Zevenbergen, L.; Thelen, D.G.; Vanwanseele, B.; van Assche, D.; Jonkers, I. Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults. PLoS ONE 2017, 12, e0170002. [Google Scholar] [CrossRef]
- Vincent, K.R.; Conrad, B.P.; Fregly, B.J.; Vincent, H.K. The pathophysiology of osteoarthritis: A mechanical perspective on the knee joint. PM R 2012, 4, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Logerstedt, D.S.; Ebert, J.R.; MacLeod, T.D.; Heiderscheit, B.C.; Gabbett, T.J.; Eckenrode, B.J. Effects of and Response to Mechanical Loading on the Knee. Sports Med. 2022, 52, 201–235. [Google Scholar] [CrossRef]
- Roseti, L.; Desando, G.; Cavallo, C.; Petretta, M.; Grigolo, B. Articular Cartilage Regeneration in Osteoarthritis. Cells 2019, 8, 1305. [Google Scholar] [CrossRef]
- Jenei-Lanzl, Z.; Zaucke, F. Osteoarthritis year in review 2024: Biology. Osteoarthr. Cartil. 2025, 33, 58–66. [Google Scholar] [CrossRef]
- Molnar, V.; Matišić, V.; Kodvanj, I.; Bjelica, R.; Jeleč, Ž.; Hudetz, D.; Rod, E.; Čukelj, F.; Vrdoljak, T.; Vidović, D.; et al. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int. J. Mol. Sci. 2021, 22, 9208. [Google Scholar] [CrossRef]
- Xia, B.; Di Chen; Zhang, J.; Hu, S.; Jin, H.; Tong, P. Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcif. Tissue Int. 2014, 95, 495–505. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, J.; Athanasiou, K.A. The Role of Tissue Engineering in Articular Cartilage Repair and Regeneration. Crit. Rev. Biomed. Eng. 2009, 37, 1–57. [Google Scholar] [CrossRef]
- Demoor, M.; Ollitrault, D.; Gomez-Leduc, T.; Bouyoucef, M.; Hervieu, M.; Fabre, H.; Lafont, J.; Denoix, J.-M.; Audigié, F.; Mallein-Gerin, F.; et al. Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim. Biophys. Acta 2014, 1840, 2414–2440. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Saiding, Q.; Zhou, X.; Wang, J.; Cui, W.; Chen, X. Electrospun fiber-based immune engineering in regenerative medicine. Smart Med. 2024, 3, e20230034. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Qian, M.; Zheng, Y.; Bao, L.; Cui, W.; Wang, D. Up IGF-I via high-toughness adaptive hydrogels for remodeling growth plate of children. Regen. Biomater. 2025, 12, rbaf004. [Google Scholar] [CrossRef] [PubMed]
- Walters, E.M.; Wolf, E.; Whyte, J.J.; Mao, J.; Renner, S.; Nagashima, H.; Kobayashi, E.; Zhao, J.; Wells, K.D.; Critser, J.K.; et al. Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Med. Genom. 2012, 5, 55. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, T.; Guan, D.; Pan, Z.; Bai, Z.; Teng, J.; Zhang, Z.; Zheng, Z.; Zeng, J.; Zhou, H.; et al. Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits. Cell Genom. 2023, 3, 100390. [Google Scholar] [CrossRef]
- Ma, Y.; Lin, Q.; Wang, X.; Liu, Y.; Yu, X.; Ren, Z.; Zhang, Y.; Guo, L.; Wu, X.; Zhang, X.; et al. Biomechanical properties of articular cartilage in different regions and sites of the knee joint: Acquisition of osteochondral allografts. Cell Tissue Bank. 2024, 25, 633–648. [Google Scholar] [CrossRef]
- Johnstone, B.; Markopoulos, M.; Neame, P.; Caterson, B. Identification and characterization of glycanated and non-glycanated forms of biglycan and decorin in the human intervertebral disc. Biochem. J. 1993, 292, 661–666. [Google Scholar] [CrossRef]
- Neidhart, M.; Hauser, N.; Paulsson, M.; DiCesare, P.E.; Michel, B.A.; Häuselmann, H.J. Small Fragments of Cartilage Oligomeric Matrix Protein in Synovial Fluid and Serum as Markers for Cartilage Degradation. Br. J. Rheumatol. 1997, 36, 1151–1160. [Google Scholar] [CrossRef]
- Di Martino, A.; Barile, F.; D’Agostino, C.; Castafaro, V.; Cerasoli, T.; Mora, P.; Ruffilli, A.; Traina, F.; Faldini, C. Are there gender-specific differences in hip and knee cartilage composition and degeneration? A systematic literature review. Eur. J. Orthop. Surg. Traumatol. 2024, 34, 1901–1910. [Google Scholar] [CrossRef]
- Eckstein, F.; Wirth, W.; Putz, R. Sexual dimorphism in articular tissue anatomy—Key to understanding sex differences in osteoarthritis? Osteoarthr. Cartil. 2024, 32, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Pinette, M.P.; Molino, J.; Proffen, B.L.; Murray, M.M.; Fleming, B.C. Effects of Male and Female Sex on the Development of Posttraumatic Osteoarthritis in the Porcine Knee After Anterior Cruciate Ligament Surgery. Am. J. Sports Med. 2022, 50, 2417–2423. [Google Scholar] [CrossRef]
- Li, C.; Zheng, Z. Males and Females Have Distinct Molecular Events in the Articular Cartilage during Knee Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 7876. [Google Scholar] [CrossRef]
- Kreutzinger, V.; Ziegeler, K.; Joseph, G.B.; Lynch, J.A.; Lane, N.E.; McCulloch, C.E.; Nevitt, M.; Link, T.M. Gender-differences in imaging phenotypes of osteoarthritis in the osteoarthritis initiative. Sci. Rep. 2025, 15, 6219. [Google Scholar] [CrossRef]
- Bowland, P.; Ingham, E.; Fisher, J.; Jennings, L.M. Development of a preclinical natural porcine knee simulation model for the tribological assessment of osteochondral grafts in vitro. J. Biomech. 2018, 77, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Hudnut, A.W.; Trasolini, N.A.; Hatch, G.F.R.; Armani, A.M. Biomechanical Analysis of Porcine Cartilage Elasticity. Ann. Biomed. Eng. 2019, 47, 202–212. [Google Scholar] [CrossRef]
- Vernon, L.; Abadin, A.; Wilensky, D.; Huang, C.-Y.C.; Kaplan, L. Subphysiological compressive loading reduces apoptosis following acute impact injury in a porcine cartilage model. Sports Health 2014, 6, 81–88. [Google Scholar] [CrossRef]
- Chu, C.R.; Szczodry, M.; Bruno, S. Animal Models for Cartilage Regeneration and Repair. Tissue Eng. Part B 2010, 16, 105–115. [Google Scholar] [CrossRef]
- Moran, C.J.; Ramesh, A.; Brama, P.A.J.; O’Byrne, J.M.; O’Brien, F.J.; Levingstone, T.J. The benefits and limitations of animal models for translational research in cartilage repair. J. Exp. Orthop. 2016, 3, 1. [Google Scholar] [CrossRef]
- Chaudhari, A.M.W.; Briant, P.L.; Bevill, S.L.; Koo, S.; Andriacchi, T.P. Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med. Sci. Sports Exerc. 2008, 40, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Cone, S.G.; Warren, P.B.; Fisher, M.B. Rise of the Pigs: Utilization of the Porcine Model to Study Musculoskeletal Biomechanics and Tissue Engineering During Skeletal Growth. Tissue Eng. Part C Methods 2017, 23, 763–780. [Google Scholar] [CrossRef]
- Jenei-Lanzl, Z.; Maurer, S.; Brenner, R.E.; Zaucke, F.; Fuchs, M.; Riegger, J. Emerging concepts and challenges in the development of disease-modifying osteoarthritis drugs—A more refined perspective. Arch. Pharm. Res. 2025, 48, 467–494. [Google Scholar] [CrossRef]
- Reihs, E.; Fischer, A.; Gerner, I.; Windhager, R.; Toegel, S.; Zaucke, F.; Rothbauer, M.; Jenner, F. Beyond symptomatic alignment: Evaluating the integration of causal mechanisms in matching animal models with human pathotypes in osteoarthritis research. Arthritis Res. Ther. 2025, 27, 109. [Google Scholar] [CrossRef] [PubMed]
- Ronken, S.; Arnold, M.P.; Ardura García, H.; Jeger, A.; Daniels, A.U.; Wirz, D. A comparison of healthy human and swine articular cartilage dynamic indentation mechanics. Biomech. Model. Mechanobiol. 2012, 11, 631–639. [Google Scholar] [CrossRef]
- Trad, Z.; Barkaoui, A.; Chafra, M. A three dimensional finite element analysis of mechanical stresses in the human knee joint: Problem of cartilage destruction. J. Biomim. Biomater. Tissue Eng. 2014, 32, 29–39. [Google Scholar] [CrossRef]
- Peña, E.; Calvo, B.; Martínez, M.A.; Doblaré, M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 2006, 39, 1686–1701. [Google Scholar] [CrossRef]
- Koning, D.B.; van Grevenhof, E.M.; Laurenssen, B.F.A.; Ducro, B.J.; Heuven, H.C.M.; de Groot, P.N.; Hazeleger, W.; Kemp, B. Associations between osteochondrosis and conformation and locomotive characteristics in pigs. J. Anim. Sci. 2012, 90, 4752–4763. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.B. The mechanics of the knee joint in relation to normal walking. J. Biomech. 1970, 3, 51–61. [Google Scholar] [CrossRef]
- Eckstein, F.; Wirth, W.; Hudelmaier, M.; Stein, V.; Lengfelder, V.; Cahue, S.; Marshall, M.; Prasad, P.; Sharma, L. Patterns of femorotibial cartilage loss in knees with neutral, varus, and valgus alignment. Arthritis Rheum. 2008, 59, 1563–1570. [Google Scholar] [CrossRef]
- Shiomi, T.; Nishii, T.; Tanaka, H.; Yamazaki, Y.; Murase, K.; Myoui, A.; Yoshikawa, H.; Sugano, N. Loading and knee alignment have significant influence on cartilage MRI T2 in porcine knee joints. Osteoarthr. Cartil. 2010, 18, 902–908. [Google Scholar] [CrossRef]
- Müller, C.; Khabut, A.; Dudhia, J.; Reinholt, F.P.; Aspberg, A.; Heinegård, D.; Önnerfjord, P. Quantitative proteomics at different depths in human articular cartilage reveals unique patterns of protein distribution. Matrix Biol. 2014, 40, 34–45. [Google Scholar] [CrossRef]
- Bielajew, B.J.; Donahue, R.P.; Lamkin, E.K.; Hu, J.C.; Hascall, V.C.; Athanasiou, K.A. Proteomic, mechanical, and biochemical characterization of cartilage development. Acta Biomater. 2022, 143, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-H.; Guo, H.-L.; Li, T.; Shang, H.-B.; Zhao, Y.-F.; Shi, Y.-Y. The medial compartment and patellofemoral joint degenerate more severely in early stage knee osteoarthritis: A cross-sectional study. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9815–9823. [Google Scholar]
- Hada, S.; Kaneko, H.; Sadatsuki, R.; Liu, L.; Futami, I.; Kinoshita, M.; Yusup, A.; Saita, Y.; Takazawa, Y.; Ikeda, H.; et al. The degeneration and destruction of femoral articular cartilage shows a greater degree of deterioration than that of the tibial and patellar articular cartilage in early stage knee osteoarthritis: A cross-sectional study. Osteoarthr. Cartil. 2014, 22, 1583–1589. [Google Scholar] [CrossRef] [PubMed]
- Keene, D.R.; Jordan, D.C.; Reinhardt, D.P.; Ridgway, C.C.; Ono, R.N.; Corson, G.M.; Fairhurst, M.; Sussman, M.D.; Memoli, V.A.; Sakai, L.Y. Fibrillin-1 in Human Cartilage: Developmental Expression and Formation of Special Banded Fibers. J. Histochem. Cytochem. 1997, 45, 1069–1082. [Google Scholar] [CrossRef]
- Zimmermann, L.-M.A.; Correns, A.; Furlan, A.G.; Spanou, C.E.S.; Sengle, G. Controlling BMP growth factor bioavailability: The extracellular matrix as multi skilled platform. Cell. Signal. 2021, 85, 110071. [Google Scholar] [CrossRef]
- Muttigi, M.S.; Han, I.; Park, H.-K.; Park, H.; Lee, S.-H. Matrilin-3 Role in Cartilage Development and Osteoarthritis. Int. J. Mol. Sci. 2016, 17, 590. [Google Scholar] [CrossRef]
- Pullig, O.; Weseloh, G.; Klatt, A.R.; Wagener, R.; Swoboda, B. Matrilin-3 in human articular cartilage: Increased expression in osteoarthritis. Osteoarthr. Cartil. 2002, 10, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Melrose, J.; Fuller, E.S.; Roughley, P.J.; Smith, M.M.; Kerr, B.; Hughes, C.E.; Carterson, B.; Little, C.B. Fragmentation of decorin, biglycan, lumican and keratocan is elevated in degenerate human meniscus, knee and hip articular cartilages compared with age-matched macroscopically normal and control tissues. Arthritis Res. Ther. 2008, 10, R79. [Google Scholar] [CrossRef]
- Dickinson, S.C.; Vankemmelbeke, M.N.; Buttle, D.J.; Rosenberg, K.; Heinegård, D.; Hollander, A.P. Cleavage of cartilage oligomeric matrix protein (thrombospondin-5) by matrix metalloproteinases and a disintegrin and metalloproteinase with thrombospondin motifs. Matrix Biol. 2003, 22, 267–278. [Google Scholar] [CrossRef]
- Vincourt, J.-B.; Etienne, S.; Grossin, L.; Cottet, J.; Bantsimba-Malanda, C.; Netter, P.; Mainard, D.; Libante, V.; Gillet, P.; Magdalou, J. Matrilin-3 switches from anti- to pro-anabolic upon integration to the extracellular matrix. Matrix Biol. 2012, 31, 290–298. [Google Scholar] [CrossRef]
- Li, P. The Roles of Extracellular Matrix Molecules Matrilins and Aggrecan in Bone Development and Articular Cartilage Functions. Ph.D. Thesis, Ludwig-Maximilians-Universität, München, Germany, 2020. [Google Scholar]
- Han, B.; Li, Q.; Wang, C.; Patel, P.; Adams, S.M.; Doyran, B.; Nia, H.T.; Oftadeh, R.; Zhou, S.; Li, C.Y.; et al. Decorin Regulates the Aggrecan Network Integrity and Biomechanical Functions of Cartilage Extracellular Matrix. ACS Nano 2019, 13, 11320–11333. [Google Scholar] [CrossRef]
- Sofeu Feugaing, D.D.; Kresse, H.; Greb, R.R.; Götte, M. A novel 110-kDa receptor protein is involved in endocytic uptake of decorin by human skin fibroblasts. Sci. World J. 2006, 6, 35–52. [Google Scholar] [CrossRef]
- Erhart-Hledik, J.C.; Favre, J.; Asay, J.L.; Smith, R.L.; Giori, N.J.; Mündermann, A.; Andriacchi, T.P. A relationship between mechanically-induced changes in serum cartilage oligomeric matrix protein (COMP) and changes in cartilage thickness after 5 years. Osteoarthr. Cartil. 2012, 20, 1309–1315. [Google Scholar] [CrossRef]
- Haudenschild, D.R.; Hong, E.; Yik, J.H.N.; Chromy, B.; Mörgelin, M.; Snow, K.D.; Acharya, C.; Takada, Y.; Di Cesare, P.E. Enhanced activity of transforming growth factor β1 (TGF-β1) bound to cartilage oligomeric matrix protein. J. Biol. Chem. 2011, 286, 43250–43258. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K.; Acharya, C.; Christiansen, B.A.; Yik, J.H.N.; DiCesare, P.E.; Haudenschild, D.R. Cartilage oligomeric matrix protein enhances osteogenesis by directly binding and activating bone morphogenetic protein-2. Bone 2013, 55, 23–35. [Google Scholar] [CrossRef]
- Smaldone, S.; Ramirez, F. Fibrillin microfibrils in bone physiology. Matrix Biol. 2016, 52–54, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Huang, J.; Liu, Y. The extracellular matrix glycoprotein fibrillin-1 in health and disease. Front. Cell Dev. Biol. 2023, 11, 1302285. [Google Scholar] [CrossRef]
- Tsutsui, K.; Manabe, R.; Yamada, T.; Nakano, I.; Oguri, Y.; Keene, D.R.; Sengle, G.; Sakai, L.Y.; Sekiguchi, K. ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J. Biol. Chem. 2010, 285, 4870–4882. [Google Scholar] [CrossRef] [PubMed]
- Sengle, G.; Sakai, L.Y. The fibrillin microfibril scaffold: A niche for growth factors and mechanosensation? Matrix Biol. 2015, 47, 3–12. [Google Scholar] [CrossRef]
- Hamsayeh Abbasi Niasar, E.; Li, L. Implication of region-dependent material properties of articular cartilage in the contact mechanics of porcine knee joint. BMC Musculoskelet. Disord. 2025, 26, 149. [Google Scholar] [CrossRef]
- Klatt, A.R.; Nitsche, D.P.; Kobbe, B.; Mörgelin, M.; Paulsson, M.; Wagener, R. Molecular structure and tissue distribution of matrilin-3, a filament-forming extracellular matrix protein expressed during skeletal development. J. Biol. Chem. 2000, 275, 3999–4006. [Google Scholar] [CrossRef]
- DiCesare, P.E.; Mörgelin, M.; Mann, K.; Paulsson, M. Cartilage oligomeric matrix protein and thrombospondin 1. Purification from articular cartilage, electron microscopic structure, and chondrocyte binding. Eur. J. Biochem. 1994, 223, 927–937. [Google Scholar] [CrossRef]
- Morcos, Y.A.T.; Lütke, S.; Tenbieg, A.; Hanisch, F.-G.; Pryymachuk, G.; Piekarek, N.; Hoffmann, T.; Keller, T.; Janoschek, R.; Niehoff, A.; et al. Sensitive asprosin detection in clinical samples reveals serum/saliva correlation and indicates cartilage as source for serum asprosin. Sci. Rep. 2022, 12, 1340. [Google Scholar] [CrossRef]
- Kupka, J.; Kohler, A.; El Bagdadi, K.; Bostelmann, R.; Brenneis, M.; Fleege, C.; Chan, D.; Zaucke, F.; Meurer, A.; Rickert, M.; et al. Adrenoceptor Expression during Intervertebral Disc Degeneration. Int. J. Mol. Sci. 2020, 21, 2085. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.S.; Foehr, S.; Garfield, D.A.; Furlong, E.E.; Steinmetz, L.M.; Krijgsveld, J. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 2014, 10, 757. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Bandla, C.; Kundu, D.J.; Kamatchinathan, S.; Bai, J.; Hewapathirana, S.; John, N.S.; Prakash, A.; Walzer, M.; Wang, S.; et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 2025, 53, D543–D553. [Google Scholar] [CrossRef] [PubMed]
- Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 2020, 17, 41–44. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weimer, L.; Schmidt, L.M.; Sengle, G.; Krüger, M.; Smith, A.M.; Brändlin, I.; Zaucke, F. Localisation-Dependent Variations in Articular Cartilage ECM: Implications for Tissue Engineering and Cartilage Repair. Int. J. Mol. Sci. 2025, 26, 9331. https://doi.org/10.3390/ijms26199331
Weimer L, Schmidt LM, Sengle G, Krüger M, Smith AM, Brändlin I, Zaucke F. Localisation-Dependent Variations in Articular Cartilage ECM: Implications for Tissue Engineering and Cartilage Repair. International Journal of Molecular Sciences. 2025; 26(19):9331. https://doi.org/10.3390/ijms26199331
Chicago/Turabian StyleWeimer, Laura, Luisa M. Schmidt, Gerhard Sengle, Marcus Krüger, Alan M. Smith, Ilona Brändlin, and Frank Zaucke. 2025. "Localisation-Dependent Variations in Articular Cartilage ECM: Implications for Tissue Engineering and Cartilage Repair" International Journal of Molecular Sciences 26, no. 19: 9331. https://doi.org/10.3390/ijms26199331
APA StyleWeimer, L., Schmidt, L. M., Sengle, G., Krüger, M., Smith, A. M., Brändlin, I., & Zaucke, F. (2025). Localisation-Dependent Variations in Articular Cartilage ECM: Implications for Tissue Engineering and Cartilage Repair. International Journal of Molecular Sciences, 26(19), 9331. https://doi.org/10.3390/ijms26199331

