From Molecular Insights to Clinical Management of Gestational Diabetes Mellitus—A Narrative Review
Abstract
1. Introduction
2. Pathophysiology and Molecular Mechanisms
2.1. β-Cell Dysfunction, Inflammation and Immune Regulation, Oxidative Stress and Mitochondrial Dysfunction
2.2. Insulin Resistance During Pregnancy, Adipokines and Metabolic Regulation
2.3. Epigenetic and Genetic Factors: MicroRNAs
3. Biomarkers of GDM
3.1. Classical Glycemic Markers
- HbA1c: First-trimester cut-offs (5.33–5.45%) deliver an AUC of 0.809–0.84; in second-trimester, levels (5.45–5.7%) maintain good predictive performance, with an AUC of 0.826–0.848 [76];
- Insulin-derived indices: Calculated biomarkers such as secretory capacity of pancreatic β-cells (SPINA-GBeta) (a computational estimate of maximal β-cell insulin output) outperform homeostatic model assessment of β-cells function (HOMA-Beta) in estimating beta-cell function and may provide additional insight into early GDM pathophysiology [77].
3.2. Emerging Molecular Biomarkers
3.2.1. Placental-Derived Exosomes and Proteomic and Metabolomic Markers
- Exosome proteomics and transcriptomics analyses reveal distinct signatures in pregnant women who develop GDM compared to controls. Proteins isolated from plasma- and placenta-derived exosomes show differential abundance in pathways related to insulin signaling, inflammation, and mitochondrial function [62,63,78];
- Advances in exosome isolation and platform sensitivity are making these vesicular biomarkers more practical for early detection [79].
- Metabolomic profiling, particularly using targeted acylcarnitines (e.g., C5 isovalerylcarnitine and C5:1 tiglylcarnitine), enabled a predictive model with an AUC of 0.934 for GDM detection before 18 weeks of gestation [78];
3.2.2. Immune and Cytokine Biomarkers
- A recent first-trimester panel including total immunoglobulin G (IgG), total IgM, IL-7, anti-phosphatidylserine IgG immune complexes, and IL-15 achieved AUC of 0.906 (sensitivity 75%, specificity ~95%) in In Vitro Fertilization (IVF) pregnancies. These immune markers reflect early immunometabolic dysregulation and may add predictive power beyond classical glycemic indices [81].
3.2.3. Potential Risks and Roles of Chemerin in GDM
3.3. Clinical Applicability and Limitations
- Multivariable models combining conventional risk factors with panels of cardiometabolic biomarkers show improved discrimination for GDM. For example, full prediction models yielded an AUC of 0.842 and a proportion of cases followed (PCF) of 0.695, in early pregnancy, 10 to 14 gestational weeks, compared to an AUC of 0.720 and PCF of 0.491 for the model using only conventional risk factors [72];
- Key barriers include: deciding on a selective or universal screening, assay standardization (especially for miRNA and exosome quantification), cost, and the need for prospective validation in diverse populations. Clinical uptake will depend on reproducible thresholds, ease of sampling, and cost-effectiveness compared to current universal OGTT screening [86,87,88].
4. Clinical Management
4.1. Diagnostic Approaches and Lifestyle Interventions
4.2. Pharmacological Therapies
4.3. Emerging and Molecularly Targeted Therapies
5. Maternal and Fetal Outcomes
5.1. Short-Term Outcomes
5.2. Long-Term Outcomes
5.3. Epigenetic and Transgenerational Effects: Integration of Molecular Insights into Outcomes
6. Future Perspective
6.1. Advances in Omics Technologies
6.2. Precision Medicine, Risk Stratification, and Novel Therapeutic Targets
- Anti-inflammatory and antioxidant therapies: Given the role of cytokine-driven inflammation and oxidative stress in GDM pathophysiology, agents targeting NF-κB signaling, ROS scavenging, or mitochondrial protection are under investigation;
- Gut microbiome modulation: Dysbiosis in GDM pregnancies suggests potential benefit of probiotics, prebiotics, and dietary interventions to restore microbial diversity and improve metabolic outcomes;
- Epigenetic therapeutics: While still experimental, strategies that target DNA methylation or histone modification pathways could theoretically modulate fetal programming effects of maternal hyperglycemia.
6.3. Digital Health, Predictive Analytics, and Ongoing Challenges
6.4. Toward Integrated Care
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iman, A.E.H.; Huniadi, A.; Sandor, M.; Zaha, I.A.; Rotar, I.; Iuhas, C. Prevalence and Risk Factors of Gestational Diabetes Mellitus in Romania: Maternal and Fetal Outcomes. Medicina 2025, 61, 194. [Google Scholar] [CrossRef]
- Torres-Torres, J.; Monroy-Muñoz, I.E.; Perez-Duran, J.; Solis-Paredes, J.M.; Camacho-Martinez, Z.A.; Baca, D.; Espino-y-Sosa, S.; Martinez-Portilla, R.; Rojas-Zepeda, L.; Borboa-Olivares, H.; et al. Cellular and Molecular Pathophysiology of Gestational Diabetes. Int. J. Mol. Sci. 2024, 25, 11641. [Google Scholar] [CrossRef]
- McIntyre, H.D.; Kapur, A.; Divakar, H.; Hod, M. Gestational Diabetes Mellitus—Innovative Approach to Prediction, Diagnosis, Management, and Prevention of Future NCD—Mother and Offspring. Front. Endocrinol. 2020, 11, 614533. [Google Scholar] [CrossRef] [PubMed]
- Metzger, B.E.; Gabbe, S.G.; Persson, B.; Lowe, L.P.; Dyer, A.R.; Oats, J.J.N.; Buchanan, T.A. International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in Pregnancy: Response to Weinert. Diabetes Care 2010, 33, e98. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Luo, J.; Tong, L.; Xu, A.; He, Y.; Huang, H.; Qiu, D.; Guo, X.; Chen, H.; Xu, L.; Li, Y.; et al. Gestational Diabetes Mellitus: New Thinking on Diagnostic Criteria. Life 2024, 14, 1665. [Google Scholar] [CrossRef]
- Sweeting, A.; Wong, J.; Murphy, H.R.; Ross, G.P. A Clinical Update on Gestational Diabetes Mellitus. Endocr. Rev. 2022, 43, 763–793. [Google Scholar] [CrossRef]
- Al Bekai, E.; Beaini, C.E.; Kalout, K.; Safieddine, O.; Semaan, S.; Sahyoun, F.; Ghadieh, H.E.; Azar, S.; Kanaan, A.; Harb, F. The Hidden Impact of Gestational Diabetes: Unveiling Offspring Complications and Long-Term Effects. Life 2025, 15, 440. [Google Scholar] [CrossRef]
- Karami, M.; Mousavi, S.H.; Rafiee, M.; Heidari, R.; Shahrokhi, S.Z. Biochemical and molecular biomarkers: Unraveling their role in gestational diabetes mellitus. Diabetol. Metab. Syndr. 2023, 15, 5. [Google Scholar] [CrossRef]
- Mittal, R.; Prasad, K.; Lemos, J.R.N.; Arevalo, G.; Hirani, K. Unveiling Gestational Diabetes: An Overview of Pathophysiology and Management. Int. J. Mol. Sci. 2025, 26, 2320. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, N.; Chivese, T.; Werfalli, M.; Sun, H.; Yuen, L.; Hoegfeldt, C.A.; Elise Powe, C.; Immanuel, J.; Karuranga, S.; et al. IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res. Clin. Pract. 2022, 183, 109050. [Google Scholar] [CrossRef] [PubMed]
- Shamsad, A.; Kushwah, A.S.; Singh, R.; Banerjee, M. Pharmaco-epi-genetic and patho-physiology of gestational diabetes mellitus (GDM): An overview. Health Sci. Rev. 2023, 7, 100086. [Google Scholar] [CrossRef]
- Ding, M.; Chavarro, J.; Olsen, S.; Lin, Y.; Ley, S.H.; Bao, W.; Rawal, S.; Grunnet, L.G.; Thuesen, A.C.B.; Mills, J.L.; et al. Genetic variants of gestational diabetes mellitus: A study of 112 SNPs among 8722 women in two independent populations. Diabetologia 2018, 61, 1758–1768. [Google Scholar] [CrossRef]
- Madhu, S.V.; Raizada, N. Genetics of Gestational Diabetes Mellitus—The Indian Perspective. Indian J. Endocrinol. Metab. 2022, 26, 95–97. [Google Scholar] [CrossRef]
- Wu, L.; Cui, L.; Tam, W.H.; Ma, R.C.W.; Wang, C.C. Genetic variants associated with gestational diabetes mellitus: A meta-analysis and subgroup analysis. Sci. Rep. 2016, 6, 30539. [Google Scholar] [CrossRef]
- Massalha, M.; Iskander, R.; Hassan, H.; Spiegel, E.; Erez, O.; Nachum, Z. Gestational diabetes mellitus—More than the eye can see—A warning sign for future maternal health with transgenerational impact. Front. Clin. Diabetes Healthc. 2025, 6, 1527076. [Google Scholar] [CrossRef] [PubMed]
- Dłuski, D.F.; Wolińska, E.; Skrzypczak, M. Epigenetic Changes in Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2021, 22, 7649. [Google Scholar] [CrossRef] [PubMed]
- Usman, T.O.; Chhetri, G.; Yeh, H.; Dong, H.H. Beta-cell compensation and gestational diabetes. J. Biol. Chem. 2023, 299, 105405. [Google Scholar] [CrossRef]
- Moyce, B.L.; Dolinsky, V.W. Maternal β-Cell Adaptations in Pregnancy and Placental Signalling: Implications for Gestational Diabetes. Int. J. Mol. Sci. 2018, 19, 3467. [Google Scholar] [CrossRef]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef]
- Al-Badri, M.R.; Zantout, M.S.; Azar, S.T. The role of adipokines in gestational diabetes mellitus. Ther. Adv. Endocrinol. Metab. 2015, 6, 103–108. [Google Scholar] [CrossRef]
- Saucedo, R.; Ortega-Camarillo, C.; Ferreira-Hermosillo, A.; Díaz-Velázquez, M.F.; Meixueiro-Calderón, C.; Valencia-Ortega, J. Role of Oxidative Stress and Inflammation in Gestational Diabetes Mellitus. Antioxidants 2023, 12, 1812. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Perez, J.C.; Ernst, S.; Demirci, C.; Casinelli, G.P.; Mellado-Gil, J.M.; Rausell-Palamos, F.; Vasavada, R.C.; Garcia-Ocaña, A. Hepatocyte growth factor/c-Met signaling is required for β-cell regeneration. Diabetes 2014, 63, 216–223. [Google Scholar] [CrossRef]
- Demirci, C.; Ernst, S.; Alvarez-Perez, J.C.; Rosa, T.; Valle, S.; Shridhar, V.; Casinelli, G.P.; Alonso, L.C.; Vasavada, R.C.; García-Ocana, A. Loss of HGF/c-Met Signaling in Pancreatic β-Cells Leads to Incomplete Maternal β-Cell Adaptation and Gestational Diabetes Mellitus. Diabetes 2012, 61, 1143–1152. [Google Scholar] [CrossRef]
- Sobrevia, L.; Valero, P.; Grismaldo, A.; Villalobos-Labra, R.; Pardo, F.; Subiabre, M.; Armstrong, G.; Toledo, F.; Vega, S.; Cornejo, M.; et al. Mitochondrial dysfunction in the fetoplacental unit in gestational diabetes mellitus. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2020, 1866, 165948. [Google Scholar] [CrossRef]
- Vedika, R.; Sharma, P.; Reddy, A. Signature precursor and mature microRNAs in cervical ripening during gestational diabetes mellitus lead to pre-term labor and other impediments in future. J. Diabetes Metab. Disord. 2023, 22, 945–965. [Google Scholar] [CrossRef]
- Wicklow, B.; Retnakaran, R. Gestational Diabetes Mellitus and Its Implications across the Life Span. Diabetes Metab. J. 2023, 47, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Adam, A.-M.; Popa, R.-F.; Vaduva, C.; Georgescu, C.V.; Adam, G.; Melinte-Popescu, A.-S.; Popa, C.; Socolov, D.; Nechita, A.; Vasilache, I.-A.; et al. Pregnancy Outcomes, Immunophenotyping and Immunohistochemical Findings in a Cohort of Pregnant Patients with COVID-19—A Prospective Study. Diagnostics 2023, 13, 1345. [Google Scholar] [CrossRef] [PubMed]
- Dennison, R.A.; Chen, E.S.; Green, M.E.; Legard, C.; Kotecha, D.; Farmer, G.; Sharp, S.J.; Ward, R.J.; Usher-Smith, J.A.; Griffin, S.J. The absolute and relative risk of type 2 diabetes after gestational diabetes: A systematic review and meta-analysis of 129 studies. Diabetes Res. Clin. Pract. 2021, 171, 108625. [Google Scholar] [CrossRef]
- Mathieu, I.P.; Song, Y.; Jagasia, S.M. Disparities in postpartum follow-up in women with gestational diabetes mellitus. Clin. Diabetes 2014, 32, 178–182. [Google Scholar] [CrossRef]
- Moon, J.H.; Jang, H.C. Gestational Diabetes Mellitus: Diagnostic Approaches and Maternal-Offspring Complications. Diabetes Metab. J. 2022, 46, 3–14. [Google Scholar] [CrossRef]
- Xie, Y.-P.; Lin, S.; Xie, B.-Y.; Zhao, H.-F. Recent progress in metabolic reprogramming in gestational diabetes mellitus: A review. Front. Endocrinol. 2024, 14, 1284160. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hou, W.; Meng, X.; Zhao, W.; Pan, J.; Tang, J.; Huang, Y.; Tao, M.; Liu, F. Heterogeneity of insulin resistance and beta cell dysfunction in gestational diabetes mellitus: A prospective cohort study of perinatal outcomes. J. Transl. Med. 2018, 16, 289. [Google Scholar] [CrossRef] [PubMed]
- McElwain, C.J.; McCarthy, F.P.; McCarthy, C.M. Gestational Diabetes Mellitus and Maternal Immune Dysregulation: What We Know So Far. Int. J. Mol. Sci. 2021, 22, 4261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sugiyama, T.; Murabayashi, N.; Umekawa, T.; Ma, N.; Kamimoto, Y.; Ogawa, Y.; Sagawa, N. The inflammatory changes of adipose tissue in late pregnant mice. J. Mol. Endocrinol. 2011, 47, 157–165. [Google Scholar] [CrossRef]
- Du, R.; Bai, Y.; Li, L.; Shao, Y.; Wu, N. Insulin resistance-induced mitochondrial dysfunction and pyroptosis in trophoblasts: Protective role of metformin. BMC Pregnancy Childbirth 2025, 25, 293. [Google Scholar] [CrossRef]
- Wei, L.; Fang, C.; Jiang, Y.; Zhang, H.; Gao, P.; Zhou, X.; Zhu, S.; Du, Y.; Su, R.; Guo, L.; et al. The Role of Placental MFF-Mediated Mitochondrial Fission in Gestational Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2025, 18, 541–554. [Google Scholar] [CrossRef]
- Abdul-Ghani, M.A.; DeFronzo, R.A. Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus. Curr. Diabetes Rep. 2008, 8, 173–178. [Google Scholar] [CrossRef]
- Sergi, D.; Naumovski, N.; Heilbronn, L.K.; Abeywardena, M.; O’Callaghan, N.; Lionetti, L.; Luscombe-Marsh, N. Mitochondrial (Dys)function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet. Front. Physiol. 2019, 10, 532. [Google Scholar] [CrossRef]
- Ray, G.W.; Zeng, Q.; Kusi, P.; Zhang, H.; Shao, T.; Yang, T.; Wei, Y.; Li, M.; Che, X.; Guo, R. Genetic and inflammatory factors underlying gestational diabetes mellitus: A review. Front. Endocrinol. 2024, 15, 1399694. [Google Scholar] [CrossRef]
- Nguyen-Ngo, C.; Jayabalan, N.; Salomon, C.; Lappas, M. Molecular pathways disrupted by gestational diabetes mellitus. J. Mol. Endocrinol. 2019, 63, R51–R72. [Google Scholar] [CrossRef]
- Pérez-Pérez, A.; Vilariño-García, T.; Guadix, P.; Dueñas, J.L.; Sánchez-Margalet, V. Leptin and Nutrition in Gestational Diabetes. Nutrients 2020, 12, 1970. [Google Scholar] [CrossRef] [PubMed]
- Begum, M.; Choubey, M.; Tirumalasetty, M.B.; Arbee, S.; Mohib, M.M.; Wahiduzzaman, M.; Mamun, M.A.; Uddin, M.B.; Mohiuddin, M.S. Adiponectin: A Promising Target for the Treatment of Diabetes and Its Complications. Life 2023, 13, 2213. [Google Scholar] [CrossRef]
- Xiao, W.Q.; He, J.R.; Shen, S.Y.; Lu, J.H.; Kuang, Y.S.; Wei, X.L.; Qiu, X. Maternal circulating leptin profile during pregnancy and gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2020, 161, 108041. [Google Scholar] [CrossRef]
- Gao, S.; Su, S.; Zhang, E.; Zhang, Y.; Liu, J.; Xie, S.; Yue, W.; Liu, R.; Yin, C. The effect of circulating adiponectin levels on incident gestational diabetes mellitus: Systematic review and meta-analysis. Ann. Med. 2023, 55, 2224046. [Google Scholar] [CrossRef]
- Horosz, E.; Bomba-Opon, D.A.; Szymanska, M.; Wielgos, M. Third trimester plasma adiponectin and leptin in gestational diabetes and normal pregnancies. Diabetes Res. Clin. Pract. 2011, 93, 350–356. [Google Scholar] [CrossRef]
- Lindberger, E.; Larsson, A.; Kunovac Kallak, T.; Sundström Poromaa, I.; Wikström, A.-K.; Österroos, A.; Ahlsson, F. Maternal early mid-pregnancy adiponectin in relation to infant birth weight and the likelihood of being born large-for-gestational-age. Sci. Rep. 2023, 13, 20919. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.M.; Chen, M.S.; Tan, H.Z. Maternal serum level of resistin is associated with risk for gestational diabetes mellitus: A meta-analysis. World J. Clin. Cases 2019, 7, 585–599. [Google Scholar] [CrossRef]
- Jiang, S.; Teague, A.M.; Tryggestad, J.B.; Lyons, T.J.; Chernausek, S.D. Fetal circulating human resistin increases in diabetes during pregnancy and impairs placental mitochondrial biogenesis. Mol. Med. 2020, 26, 76. [Google Scholar] [CrossRef]
- Bawah, A.T.; Seini, M.M.; Abaka-Yawason, A.; Alidu, H.; Nanga, S. Leptin, resistin and visfatin as useful predictors of gestational diabetes mellitus. Lipids Health Dis. 2019, 18, 221. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.K.; Deng, H.Y.; Qiao, Z.Y.; Gong, F.X. Visfatin level and gestational diabetes mellitus: A systematic review and meta-analysis. Arch. Physiol. Biochem. 2021, 127, 468–478. [Google Scholar] [CrossRef]
- Telejko, B.; Kuzmicki, M.; Zonenberg, A.; Szamatowicz, J.; Wawrusiewicz-Kurylonek, N.; Nikolajuk, A.; Kretowski, A.; Gorska, M. Visfatin in gestational diabetes: Serum level and mRNA expression in fat and placental tissue. Diabetes Res. Clin. Pract. 2009, 84, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Akturk, M.; Altinova, A.E.; Mert, I.; Buyukkagnici, U.; Sargin, A.; Arslan, M.; Danisman, N. Visfatin concentration is decreased in women with gestational diabetes mellitus in the third trimester. J. Endocrinol. Investig. 2008, 31, 610–613. [Google Scholar] [CrossRef]
- Zhang, C.; Bao, W.; Rong, Y.; Yang, H.; Bowers, K.; Yeung, E.; Kiely, M. Genetic variants and the risk of gestational diabetes mellitus: A systematic review. Hum. Reprod. Update 2013, 19, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Sami, A.; Javed, A.; Ozsahin, D.U.; Ozsahin, I.; Muhammad, K.; Waheed, Y. Genetics of diabetes and its complications: A comprehensive review. Diabetol. Metab. Syndr. 2025, 17, 185. [Google Scholar] [CrossRef] [PubMed]
- Swathi, N.L.; Shakhatreh, Z.; Tahir, A.; Singh, J.; Sulaiman, S.; Athul, H.; Sadhankar, A.; Patel, P.; Patel, R.; Nashwan, A.J. Epigenetic Mechanisms in the Transfer of Metabolic Disorders: A Comprehensive Review. Cureus 2025, 17, e80418. [Google Scholar] [CrossRef]
- Dinesen, S.; El-Faitarouni, A.; Frisk, N.L.S.; Sørensen, A.E.; Dalgaard, L.T. Circulating microRNA as Biomarkers for Gestational Diabetes Mellitus-A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 6186. [Google Scholar] [CrossRef]
- Martinez-Sanchez, A.; Rutter, G.A.; Latreille, M. MiRNAs in β-Cell Development, Identity, and Disease. Front. Genet. 2017, 7, 226. [Google Scholar] [CrossRef]
- Eliasson, L. The small RNA miR-375—A pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function. Mol. Cell. Endocrinol. 2017, 456, 95–101. [Google Scholar] [CrossRef]
- LaPierre, M.P.; Stoffel, M. MicroRNAs as stress regulators in pancreatic beta cells and diabetes. Mol. Metab. 2017, 6, 1010–1023. [Google Scholar] [CrossRef]
- Moon, H.; Moon, J. Circulating MicroRNAs for Early Diagnosis of Gestational Diabetes Mellitus. Metab.—Clin. Exp. 2021, 116, 46. [Google Scholar] [CrossRef]
- Mitra, T.; Gulati, R.; Uppal, A.; Kumari, S.R.; Tripathy, S.; Ranjan, P.; Janardhanan, R. Prospecting of exosomal-miRNA signatures as prognostic marker for gestational diabetes mellitus and other adverse pregnancy outcomes. Front. Endocrinol. 2023, 14, 1097337. [Google Scholar] [CrossRef]
- Razo-Azamar, M.; Nambo-Venegas, R.; Quevedo, I.R.; Juárez-Luna, G.; Salomon, C.; Guevara-Cruz, M.; Palacios-González, B. Early-Pregnancy Serum Maternal and Placenta-Derived Exosomes miRNAs Vary Based on Pancreatic β-Cell Function in GDM. J. Clin. Endocrinol. Metab. 2023, 109, 1526–1539. [Google Scholar] [CrossRef]
- Jamalpour, S.; Zain, S.M.; Vazifehmand, R.; Mohamed, Z.; Pung, Y.F.; Kamyab, H.; Omar, S.Z. Analysis of serum circulating MicroRNAs level in Malaysian patients with gestational diabetes mellitus. Sci. Rep. 2022, 12, 20295. [Google Scholar] [CrossRef]
- Ustianowski, Ł.; Udzik, J.; Szostak, J.; Gorący, A.; Ustianowska, K.; Pawlik, A. Genetic and Epigenetic Factors in Gestational Diabetes Mellitus Pathology. Int. J. Mol. Sci. 2023, 24, 16619. [Google Scholar] [CrossRef]
- Garvey, W.T.; Maianu, L.; Zhu, J.H.; Hancock, J.A.; Golichowski, A.M. Multiple defects in the adipocyte glucose transport system cause cellular insulin resistance in gestational diabetes. Heterogeneity in the number and a novel abnormality in subcellular localization of GLUT4 glucose transporters. Diabetes 1993, 42, 1773–1785. [Google Scholar] [CrossRef] [PubMed]
- Iheagwam, F.N.; Joseph, A.J.; Adedoyin, E.D.; Iheagwam, O.T.; Ejoh, S.A. Mitochondrial Dysfunction in Diabetes: Shedding Light on a Widespread Oversight. Pathophysiology 2025, 32, 9. [Google Scholar] [CrossRef] [PubMed]
- Shamsad, A.; Gautam, T.; Singh, R.; Banerjee, M. Genetic and epigenetic alterations associated with gestational diabetes mellitus and adverse neonatal outcomes. World J. Clin. Pediatr. 2025, 14, 99231. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Hu, C. Molecular biomarkers for gestational diabetes mellitus and postpartum diabetes. Chin. Med. J. 2022, 135, 1940–1951. [Google Scholar] [CrossRef]
- Chatterjee, B.; Thakur, S.S. Proteins and metabolites fingerprints of gestational diabetes mellitus forming protein–metabolite interactomes are its potential biomarkers. Proteomics 2023, 23, 2200257. [Google Scholar] [CrossRef]
- Herrera-Van Oostdam, A.S.; Toro-Ortíz, J.C.; López, J.A.; Noyola, D.E.; García-López, D.A.; Durán-Figueroa, N.V.; Martínez-Martínez, E.; Portales-Pérez, D.P.; Salgado-Bustamante, M.; López-Hernández, Y. Placental exosomes isolated from urine of patients with gestational diabetes exhibit a differential profile expression of microRNAs across gestation. Int. J. Mol. Med. 2020, 46, 546–560. [Google Scholar] [CrossRef]
- Yang, J.; Cao, Y.; Qian, F.; Grewal, J.; Sacks, D.B.; Chen, Z.; Tsai, M.Y.; Chen, J.; Zhang, C. Early prediction of gestational diabetes mellitus based on systematically selected multi-panel biomarkers and clinical accessibility-a longitudinal study of a multi-racial pregnant cohort. BMC Med. 2025, 23, 430. [Google Scholar] [CrossRef]
- Kansu-Celik, H.; Ozgu-Erdinc, A.S.; Kisa, B.; Findik, R.B.; Yilmaz, C.; Tasci, Y. Prediction of gestational diabetes mellitus in the first trimester: Comparison of maternal fetuin-A, N-terminal proatrial natriuretic peptide, high-sensitivity C-reactive protein, and fasting glucose levels. Arch. Endocrinol. Metab. 2019, 63, 121–127, Erratum in Arch. Endocrinol. Metab. 2020, 64, 97. https://doi.org/10.20945/2359-3997000000203. [Google Scholar] [CrossRef]
- Kansu-Celik, H.; Ozgu-Erdinc, A.S.; Kisa, B.; Eldem, S.; Hancerliogullari, N.; Engin-Ustun, Y. Maternal serum glycosylated hemoglobin and fasting plasma glucose predicts gestational diabetes at the first trimester in Turkish women with a low-risk pregnancy and its relationship with fetal birth weight; a retrospective cohort study. J. Matern.-Fetal Neonatal Med. 2021, 34, 1970–1977. [Google Scholar] [CrossRef]
- Li, P.; Lin, S.; Li, L.; Cui, J.; Zhou, S.; Fan, J. First-trimester fasting plasma glucose as a predictor of gestational diabetes mellitus and the association with adverse pregnancy outcomes. Pak. J. Med. Sci. 2019, 35, 95–100. [Google Scholar] [CrossRef]
- Inthavong, S.; Jatavan, P.; Tongsong, T. Predictive Utility of Biochemical Markers for the Diagnosis and Prognosis of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2024, 25, 11666. [Google Scholar] [CrossRef]
- Dietrich, J.W.; Dasgupta, R.; Anoop, S.; Jebasingh, F.; Kurian, M.E.; Inbakumari, M.; Boehm, B.O.; Thomas, N. SPINA Carb: A simple mathematical model supporting fast in-vivo estimation of insulin sensitivity and beta cell function. Sci. Rep. 2022, 12, 17659. [Google Scholar] [CrossRef] [PubMed]
- Razo-Azamar, M.; Nambo-Venegas, R.; Meraz-Cruz, N.; Guevara-Cruz, M.; Ibarra-González, I.; Vela-Amieva, M.; Delgadillo-Velázquez, J.; Santiago, X.C.; Escobar, R.F.; Vadillo-Ortega, F.; et al. An early prediction model for gestational diabetes mellitus based on metabolomic biomarkers. Diabetol. Metab. Syndr. 2023, 15, 116. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, S.; Hanumanthappa, R.; Bhokare, K.; Datta, N.; Vastrad, N.; David, M.; Maharaj, N.; Anand, K. Exploring the Vertical Transmission of Exosomes in Diagnostic and Therapeutic Targets for Pregnancy Complications. ACS Biomater. Sci. Eng. 2025. [Google Scholar] [CrossRef]
- Yu, J.; Ren, J.; Ren, Y.; Wu, Y.; Zeng, Y.; Zhang, Q.; Xiao, X. Using metabolomics and proteomics to identify the potential urine biomarkers for prediction and diagnosis of gestational diabetes. EBioMedicine 2024, 101, 105008. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Liu, M.; Han, S.; Wu, H.; Qin, R.; Ma, K.; Liu, L.; Zhao, H.; Li, Y. Novel first-trimester serum biomarkers for early prediction of gestational diabetes mellitus. Nutr. Diabetes 2025, 15, 15. [Google Scholar] [CrossRef]
- Aldharee, H.; Makki, Y.R.; Hamdan, H.Z. The Association Between Chemerin Levels and Gestational Diabetes Mellitus: An Updated Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2025, 26, 6622. [Google Scholar] [CrossRef]
- Cai, J.X.; Le, A.W.; Han, X.Y.; Chen, J.; Lei, X.H.; Huang, C.; Zhang, J.V. Chemerin sustains the growth of spongiotrophoblast and sinusoidal trophoblast giant cells through fatty acid oxidation. BMC Biol. 2025, 23, 199. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.T.; Liu, J.H.; Huang, W.T.; Hong, B.; Wang, D.; Liu, C.Y.; Zhang, J.; Li, S.S.; Wu, S.W.; Wang, Q.; et al. Single-nucleotide polymorphisms in genes involved in folate metabolism or selected other metabolites and risk for gestational diabetes mellitus. World J. Diabetes 2025, 16, 103602. [Google Scholar] [CrossRef]
- Lu, Y.-T.; Chen, C.-P.; Sun, F.-J.; Chen, Y.-Y.; Wang, L.-K.; Chen, C.-Y. Associations between first-trimester screening biomarkers and maternal characteristics with gestational diabetes mellitus in Chinese women. Front. Endocrinol. 2024, 15, 1383706. [Google Scholar] [CrossRef] [PubMed]
- Mestry, C.; Ashavaid, T.F.; Shah, S.A. Key methodological challenges in detecting circulating miRNAs in different biofluids. Ann. Clin. Biochem. 2023, 60, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-N.; Jiang, Y.; Liu, X.-Q.; Yang, M.-M.; Chen, C.; Zhao, B.-H.; Huang, H.-F.; Luo, Q. MiRNAs in Gestational Diabetes Mellitus: Potential Mechanisms and Clinical Applications. J. Diabetes Res. 2021, 2021, 4632745. [Google Scholar] [CrossRef]
- Ragea, C.; Gica, N.; Botezatu, R.; Peltecu, G.; Panaitescu, A.M. Gestational diabetes: Universal or selective screening in pregnancy? Rom. J. Med. Pract. 2022, 17, 9–13. [Google Scholar] [CrossRef]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark. Insights 2016, 11, 95–104. [Google Scholar] [CrossRef]
- Yang, X.; Wu, N. MicroRNAs and Exosomal microRNAs May Be Possible Targets to Investigate in Gestational Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2022, 15, 321–330. [Google Scholar] [CrossRef]
- Batchuluun, B.; Al Rijjal, D.; Prentice, K.J.; Eversley, J.A.; Burdett, E.; Mohan, H.; Bhattacharjee, A.; Gunderson, E.P.; Liu, Y.; Wheeler, M.B. Elevated Medium-Chain Acylcarnitines Are Associated with Gestational Diabetes Mellitus and Early Progression to Type 2 Diabetes and Induce Pancreatic β-Cell Dysfunction. Diabetes 2018, 67, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhao, D.; Liang, Y.; Liang, Z.; Wang, M.; Tang, X.; Zhuang, H.; Wang, H.; Yin, X.; Huang, Y.; et al. Proteomic analysis of plasma total exosomes and placenta-derived exosomes in patients with gestational diabetes mellitus in the first and second trimesters. BMC Pregnancy Childbirth 2024, 24, 713. [Google Scholar] [CrossRef]
- Available online: https://www.ncbi.nlm.nih.gov/books/NBK545196/ (accessed on 15 July 2025).
- Vasile, F.C.; Preda, A.; Ștefan, A.G.; Vladu, M.I.; Forțofoiu, M.-C.; Clenciu, D.; Gheorghe, I.O.; Forțofoiu, M.; Moța, M. An Update of Medical Nutrition Therapy in Gestational Diabetes Mellitus. J. Diabetes Res. 2021, 2021, 5266919. [Google Scholar] [CrossRef]
- Behboudi-Gandevani, S.; Amiri, M.; Bidhendi Yarandi, R.; Ramezani Tehrani, F. The impact of diagnostic criteria for gestational diabetes on its prevalence: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2019, 11, 11. [Google Scholar] [CrossRef]
- Ojo, O.; Ojo, O.O.; Wang, X.H.; Adegboye, A.R.A. The Effects of a Low GI Diet on Cardiometabolic and Inflammatory Parameters in Patients with Type 2 and Gestational Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2019, 11, 1584. [Google Scholar] [CrossRef]
- Dipla, K.; Zafeiridis, A.; Mintziori, G.; Boutou, A.K.; Goulis, D.G.; Hackney, A.C. Exercise as a Therapeutic Intervention in Gestational Diabetes Mellitus. Endocrines 2021, 2, 65–78. [Google Scholar] [CrossRef]
- Chen, S.; Cao, M.; Liu, K.; Gu, Y. The Impact of Exercise during Pregnancy on Maternal and Offspring Outcomes in Gestational Diabetes Mellitus. Biocell 2025, 49, 181–198. [Google Scholar] [CrossRef]
- Amaral-Moreira, C.F.A.; Paulino, D.S.M.; Pereira, B.G.; Rehder, P.M.; Surita, F.G. Metformin versus insulin in glycemic control in pregnancy (MevIP): A randomized clinical trial protocol. Trials 2025, 26, 45. [Google Scholar] [CrossRef] [PubMed]
- Toledano, Y.; Hadar, E.; Hod, M. Pharmacotherapy for hyperglycemia in pregnancy—The new insulins. Diabetes Res. Clin. Pract. 2018, 145, 59–66. [Google Scholar] [CrossRef]
- Jethwani, P.; Saboo, B.; Jethwani, L.; Chawla, R.; Maheshwari, A.; Agarwal, S.; Jaggi, S. Use of insulin glargine during pregnancy: A review. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 379–384, Erratum regarding missing Declaration of Competing Interest statements in previously published articles. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102506. https://doi.org/10.1016/j.dsx.2022.102506. [Google Scholar] [CrossRef]
- Agius, L.; Ford, B.E.; Chachra, S.S. The Metformin Mechanism on Gluconeogenesis and AMPK Activation: The Metabolite Perspective. Int. J. Mol. Sci. 2020, 21, 3240. [Google Scholar] [CrossRef]
- McIntyre, H.D.; Kampmann, U.; Dalsgaard Clausen, T.; Laurie, J.; Ma, R.C.W. Gestational Diabetes: An Update 60 Years After O’Sullivan and Mahan. J. Clin. Endocrinol. Metab. 2024, 110, e19–e31. [Google Scholar] [CrossRef]
- Carroll, D.T.; Sassin, A.M.; Aagaard, K.M.; Gannon, M. Developmental effects of in utero metformin exposure. Trends Dev. Biol. 2021, 14, 1–17. [Google Scholar]
- Bodier, L.; Le Lous, M.; Isly, H.; Derrien, C.; Vaduva, P. Efficacy and safety of pharmacological treatments for gestational diabetes: A systematic review comparing metformin with glibenclamide and insulin. Diabetes Metab. 2025, 51, 101622. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Ma, J.; Tang, J.; Hu, D.; Zhang, W.; Zhao, X. Comparative Efficacy and Safety of Metformin, Glyburide, and Insulin in Treating Gestational Diabetes Mellitus: A Meta-Analysis. J. Diabetes Res. 2019, 2019, 9804708. [Google Scholar] [CrossRef]
- Jamilian, M.; Mirhosseini, N.; Eslahi, M.; Bahmani, F.; Shokrpour, M.; Chamani, M.; Asemi, Z. The effects of magnesium-zinc-calcium-vitamin D co-supplementation on biomarkers of inflammation, oxidative stress and pregnancy outcomes in gestational diabetes. BMC Pregnancy Childbirth 2019, 19, 107. [Google Scholar] [CrossRef] [PubMed]
- Motamed, S.; Nikooyeh, B.; Anari, R.; Motamed, S.; Mokhtari, Z.; Neyestani, T. The effect of vitamin D supplementation on oxidative stress and inflammatory biomarkers in pregnant women: A systematic review and meta-analysis of clinical trials. BMC Pregnancy Childbirth 2022, 22, 816. [Google Scholar] [CrossRef]
- Nguyen-Ngo, C.; Willcox, J.C.; Lappas, M. Anti-inflammatory effects of phenolic acids punicalagin and curcumin in human placenta and adipose tissue. Placenta 2020, 100, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nacka-Aleksić, M.; Pirković, A.; Vilotić, A.; Bojić-Trbojević, Ž.; Jovanović Krivokuća, M.; Giampieri, F.; Battino, M.; Dekanski, D. The Role of Dietary Polyphenols in Pregnancy and Pregnancy-Related Disorders. Nutrients 2022, 14, 5246. [Google Scholar] [CrossRef]
- de Mendonça, E.L.S.S.; Fragoso, M.B.T.; de Oliveira, J.M.; Xavier, J.A.; Goulart, M.O.F.; de Oliveira, A.C.M. Gestational Diabetes Mellitus: The Crosslink among Inflammation, Nitroxidative Stress, Intestinal Microbiota and Alternative Therapies. Antioxidants 2022, 11, 129. [Google Scholar] [CrossRef]
- Wang, S.; Cui, Z.; Yang, H. Interactions between host and gut microbiota in gestational diabetes mellitus and their impacts on offspring. BMC Microbiol. 2024, 24, 161. [Google Scholar] [CrossRef]
- Hasain, Z.; Che Roos, N.A.; Rahmat, F.; Mustapa, M.; Raja Ali, R.A.; Mokhtar, N.M. Diet and Pre-Intervention Washout Modifies the Effects of Probiotics on Gestational Diabetes Mellitus: A Comprehensive Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 3045. [Google Scholar] [CrossRef]
- Sun, G.; Hou, H.; Yang, S. The effect of probiotics on gestational diabetes mellitus: An umbrella meta-analysis. BMC Endocr. Disord. 2024, 24, 253. [Google Scholar] [CrossRef]
- Mu, J.; Guo, X.; Zhou, Y.; Cao, G. The Effects of Probiotics/Synbiotics on Glucose and Lipid Metabolism in Women with Gestational Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2023, 15, 1375. [Google Scholar] [CrossRef]
- Çetinkaya Özdemir, S.; Küçüktürkmen Paşa, B.; Metin, T.; Dinçer, B.; Sert, H. The effect of probiotic and synbiotic use on glycemic control in women with gestational diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2022, 194, 110162. [Google Scholar] [CrossRef] [PubMed]
- Chiazza, F.; Couturier-Maillard, A.; Benetti, E.; Mastrocola, R.; Nigro, D.; Cutrin, J.C.; Serpe, L.; Aragno, M.; Fantozzi, R.; Ryffel, B.; et al. Targeting the NLRP3 inflammasome to Reduce Diet-induced Metabolic Abnormalities in Mice. Mol. Med. 2015, 21, 1025–1037. [Google Scholar] [CrossRef]
- Gastaldi, S.; Rocca, C.; Gianquinto, E.; Granieri, M.C.; Boscaro, V.; Blua, F.; Rolando, B.; Marini, E.; Gallicchio, M.; De Bartolo, A.; et al. Discovery of a novel 1,3,4-oxadiazol-2-one-based NLRP3 inhibitor as a pharmacological agent to mitigate cardiac and metabolic complications in an experimental model of diet-induced metaflammation. Eur. J. Med. Chem. 2023, 257, 115542. [Google Scholar] [CrossRef] [PubMed]
- Meier, D.T.; de Paula Souza, J.; Donath, M.Y. Targeting the NLRP3 inflammasome-IL-1β pathway in type 2 diabetes and obesity. Diabetologia 2025, 68, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Beunen, K.; Van Wilder, N.; Ballaux, D.; Vanhaverbeke, G.; Taes, Y.; Aers, X.P.; Nobels, F.; Marlier, J.; Lee, D.; Cuypers, J.; et al. Closed-loop insulin delivery in pregnant women with type 1 diabetes (CRISTAL): A multicentre randomized controlled trial—Study protocol. BMC Pregnancy Childbirth 2023, 23, 180. [Google Scholar] [CrossRef]
- Wang, X.; Si, J.; Li, Y.; Tse, P.; Zhang, G.; Wang, X.; Ren, J.; Xu, J.; Sun, J.; Yao, X. Effectiveness and safety of AI-driven closed-loop systems in diabetes management: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2025, 17, 238. [Google Scholar] [CrossRef]
- Benhalima, K.; Beunen, K.; Van Wilder, N.; Ballaux, D.; Vanhaverbeke, G.; Taes, Y.; Aers, X.-P.; Nobels, F.; Marlier, J.; Lee, D.; et al. Comparing advanced hybrid closed loop therapy and standard insulin therapy in pregnant women with type 1 diabetes (CRISTAL): A parallel-group, open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2024, 12, 390–403. [Google Scholar] [CrossRef]
- Wang, G.; Liu, X.; Ying, Z.; Yang, G.; Chen, Z.; Liu, Z.; Zhang, M.; Yan, H.; Lu, Y.; Gao, Y.; et al. Optimized glycemic control of type 2 diabetes with reinforcement learning: A proof-of-concept trial. Nat. Med. 2023, 29, 2633–2642. [Google Scholar] [CrossRef]
- Choudhury, A.A.; Devi Rajeswari, V. Gestational diabetes mellitus—A metabolic and reproductive disorder. Biomed. Pharmacother. 2021, 143, 112183. [Google Scholar] [CrossRef]
- Yan, Y.-S.; Feng, C.; Yu, D.-Q.; Tian, S.; Zhou, Y.; Huang, Y.-T.; Cai, Y.-T.; Chen, J.; Zhu, M.-M.; Jin, M. Long-term outcomes and potential mechanisms of offspring exposed to intrauterine hyperglycemia. Front. Nutr. 2023, 10, 1067282. [Google Scholar] [CrossRef]
- Esakoff, T.F.; Cheng, Y.W.; Sparks, T.N.; Caughey, A.B. The association between birthweight 4000 g or greater and perinatal outcomes in patients with and without gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2009, 200, 672.e671–672.e674. [Google Scholar] [CrossRef]
- KC, K.; Shakya, S.; Zhang, H. Gestational Diabetes Mellitus and Macrosomia: A Literature Review. Ann. Nutr. Metab. 2015, 66, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, W.; Hussain, S.; Jan, M.; Najar, B. Clinical and metabolic profile of neonates of diabetic mothers. Int. J. Contemp. Pediatr. 2015, 2, 114. [Google Scholar] [CrossRef]
- Suda-Całus, M.; Dąbrowska, K.; Gulczyńska, E. Infant of a diabetic mother: Clinical presentation, diagnosis and treatment. Pediatr. Endocrinol. Diabetes Metab. 2024, 30, 36–41. [Google Scholar] [CrossRef]
- Petkova-Parlapanska, K.; Kostadinova-Slavova, D.; Angelova, M.; Sadi, J.A.-D.R.; Georgieva, E.; Goycheva, P.; Karamalakova, Y.; Nikolova, G. Oxidative Stress and Antioxidant Status in Pregnant Women with Gestational Diabetes Mellitus and Late-Onset Complication of Pre-Eclampsia. Int. J. Mol. Sci. 2025, 26, 3605. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 15. Management of Diabetes in Pregnancy: Standards of Care in Diabetes—2025. Diabetes Care 2024, 48, S306–S320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Y.; Huang, S.; Li, M.; Li, L.; Qi, L.; He, Y.; Xu, Z.; Tang, J. Influence of gestational diabetes mellitus on the cardiovascular system and its underlying mechanisms. Front. Endocrinol. 2025, 16, 1474643. [Google Scholar] [CrossRef]
- Bellamy, L.; Casas, J.-P.; Hingorani, A.D.; Williams, D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet 2009, 373, 1773–1779. [Google Scholar] [CrossRef]
- Shou, C.; Wei, Y.-M.; Wang, C.; Yang, H.-X. Updates in Long-term Maternal and Fetal Adverse Effects of Gestational Diabetes Mellitus. Matern.-Fetal Med. 2019, 1, 91–94. [Google Scholar] [CrossRef]
- Kramer, C.K.; Campbell, S.; Retnakaran, R. Gestational diabetes and the risk of cardiovascular disease in women: A systematic review and meta-analysis. Diabetologia 2019, 62, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Mosca, L.; Benjamin, E.J.; Berra, K.; Bezanson, J.L.; Dolor, R.J.; Lloyd-Jones, D.M.; Newby, L.K.; Piña, I.L.; Roger, V.L.; Shaw, L.J.; et al. Effectiveness-Based Guidelines for the Prevention of Cardiovascular Disease in Women—2011 Update. J. Am. Coll. Cardiol. 2011, 57, 1404–1423, Erratum in J. Am. Coll. Cardiol. 2012, 59, 1663. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gunderson, E.P.; Chiang, V.; Pletcher, M.J.; Jacobs, D.R.; Quesenberry, C.P.; Sidney, S.; Lewis, C.E. History of Gestational Diabetes Mellitus and Future Risk of Atherosclerosis in Mid-life: The Coronary Artery Risk Development in Young Adults Study. J. Am. Heart Assoc. 2014, 3, e000490. [Google Scholar] [CrossRef] [PubMed]
- Bomback, A.S.; Rekhtman, Y.; Whaley-Connell, A.T.; Kshirsagar, A.V.; Sowers, J.R.; Chen, S.C.; Li, S.; Chinnaiyan, K.M.; Bakris, G.L.; McCullough, P.A. Gestational diabetes mellitus alone in the absence of subsequent diabetes is associated with microalbuminuria: Results from the Kidney Early Evaluation Program (KEEP). Diabetes Care 2010, 33, 2586–2591. [Google Scholar] [CrossRef]
- Dehmer, E.W.; Phadnis, M.A.; Gunderson, E.P.; Lewis, C.E.; Bibbins-Domingo, K.; Engel, S.M.; Jonsson Funk, M.; Kramer, H.; Kshirsagar, A.V.; Heiss, G. Association Between Gestational Diabetes and Incident Maternal CKD: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am. J. Kidney Dis. 2018, 71, 112–122. [Google Scholar] [CrossRef]
- Beharier, O.; Shoham-Vardi, I.; Pariente, G.; Sergienko, R.; Kessous, R.; Baumfeld, Y.; Szaingurten-Solodkin, I.; Sheiner, E. Gestational Diabetes Mellitus Is a Significant Risk Factor for Long-Term Maternal Renal Disease. J. Clin. Endocrinol. Metab. 2015, 100, 1412–1416. [Google Scholar] [CrossRef]
- Seneviratne, S.N.; Rajindrajith, S. Fetal programming of obesity and type 2 diabetes. World J. Diabetes 2022, 13, 482–497. [Google Scholar] [CrossRef]
- Kubo, A.; Ferrara, A.; Windham, G.C.; Greenspan, L.C.; Deardorff, J.; Hiatt, R.A.; Quesenberry, C.P., Jr.; Laurent, C.; Mirabedi, A.S.; Kushi, L.H. Maternal hyperglycemia during pregnancy predicts adiposity of the offspring. Diabetes Care 2014, 37, 2996–3002. [Google Scholar] [CrossRef]
- Chu, A.H.Y.; Godfrey, K.M. Gestational Diabetes Mellitus and Developmental Programming. Ann. Nutr. Metab. 2020, 76 (Suppl. S3), 4–15. [Google Scholar] [CrossRef]
- Ye, W.; Luo, C.; Zhou, J.; Liang, X.; Wen, J.; Huang, J.; Zeng, Y.; Wu, Y.; Gao, Y.; Liu, Z.; et al. Association between maternal diabetes and neurodevelopmental outcomes in children: A systematic review and meta-analysis of 202 observational studies comprising 56·1 million pregnancies. Lancet Diabetes Endocrinol. 2025, 13, 494–504. [Google Scholar] [CrossRef]
- Petropoulos, S.; Guillemin, C.; Ergaz, Z.; Dimov, S.; Suderman, M.; Weinstein-Fudim, L.; Ornoy, A.; Szyf, M. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling. Endocrinology 2015, 156, 2222–2238. [Google Scholar] [CrossRef] [PubMed]
- Popova, P.V.; Klyushina, A.A.; Vasilyeva, L.B.; Tkachuk, A.S.; Vasukova, E.A.; Anopova, A.D.; Pustozerov, E.A.; Gorelova, I.V.; Kravchuk, E.N.; Li, O.; et al. Association of Common Genetic Risk Variants With Gestational Diabetes Mellitus and Their Role in GDM Prediction. Front. Endocrinol. 2021, 12, 628582. [Google Scholar] [CrossRef] [PubMed]
- Atallah, R.; Gindlhuber, J.; Platzer, W.; Bärnthaler, T.; Tatzl, E.; Toller, W.; Strutz, J.; Rittchen, S.; Luschnig, P.; Birner-Gruenberger, R.; et al. SUCNR1 Is Expressed in Human Placenta and Mediates Angiogenesis: Significance in Gestational Diabetes. Int. J. Mol. Sci. 2021, 22, 12048. [Google Scholar] [CrossRef]
- Suthon, S.; Tangjittipokin, W. Mechanisms and Physiological Roles of Polymorphisms in Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2024, 25, 2039. [Google Scholar] [CrossRef] [PubMed]
- Guarino, E.; Delli Poggi, C.; Grieco, G.E.; Cenci, V.; Ceccarelli, E.; Crisci, I.; Sebastiani, G.; Dotta, F. Circulating MicroRNAs as Biomarkers of Gestational Diabetes Mellitus: Updates and Perspectives. Int. J. Endocrinol. 2018, 2018, 6380463. [Google Scholar] [CrossRef]
- Benham, J.L.; Gingras, V.; McLennan, N.-M.; Most, J.; Yamamoto, J.M.; Aiken, C.E.; Ozanne, S.E.; Reynolds, R.M.; Tobias, D.K.; Merino, J.; et al. Precision gestational diabetes treatment: A systematic review and meta-analyses. Commun. Med. 2023, 3, 135. [Google Scholar] [CrossRef]
- Biete, M.; Vasudevan, S. Gestational diabetes mellitus: Impacts on fetal neurodevelopment, gut dysbiosis, and the promise of precision medicine. Front. Mol. Biosci. 2024, 11, 1420664. [Google Scholar] [CrossRef]
- Kwak, S.H.; Kim, S.-H.; Cho, Y.M.; Go, M.J.; Cho, Y.S.; Choi, S.H.; Moon, M.K.; Jung, H.S.; Shin, H.D.; Kang, H.M.; et al. A Genome-Wide Association Study of Gestational Diabetes Mellitus in Korean Women. Diabetes 2012, 61, 531–541. [Google Scholar] [CrossRef]
- Yahaya, T.O.; Salisu, T.; Abdulrahman, Y.B.; Umar, A.K. Update on the genetic and epigenetic etiology of gestational diabetes mellitus: A review. Egypt. J. Med. Hum. Genet. 2020, 21, 13. [Google Scholar] [CrossRef]
- Jung, Y.; Lee, S.M.; Lee, J.; Kim, Y.; Lee, W.; Koo, J.N.; Oh, I.H.; Kang, K.H.; Kim, B.J.; Kim, S.M.; et al. Metabolomic profiling reveals early biomarkers of gestational diabetes mellitus and associated hepatic steatosis. Cardiovasc. Diabetol. 2025, 24, 125. [Google Scholar] [CrossRef]
- Gu, Y.; Zheng, H.; Wang, P.; Liu, Y.; Guo, X.; Wei, Y.; Yang, Z.; Cheng, S.; Chen, Y.; Hu, L.; et al. Genetic architecture and risk prediction of gestational diabetes mellitus in Chinese pregnancies. Nat. Commun. 2025, 16, 4178. [Google Scholar] [CrossRef]
- Linares-Pineda, T.; Peña-Montero, N.; Fragoso-Bargas, N.; Gutiérrez-Repiso, C.; Lima-Rubio, F.; Suarez-Arana, M.; Sánchez-Pozo, A.; Tinahones, F.J.; Molina-Vega, M.; Picón-César, M.J.; et al. Epigenetic marks associated with gestational diabetes mellitus across two time points during pregnancy. Clin. Epigenet. 2023, 15, 110. [Google Scholar] [CrossRef]
- Available online: https://clinicaltrials.gov/study/NCT04198857 (accessed on 15 July 2025).
- Gong, Y.; Wang, Q.; Chen, S.; Liu, Y.; Li, C.; Kang, R.; Wang, J.; Wei, T.; Wang, Q.; Li, X.; et al. Heterogeneity of Gestational Diabetes and Risk for Adverse Pregnancy Outcome: A Cohort Study. J. Clin. Endocrinol. Metab. 2024, 110, e2264–e2272. [Google Scholar] [CrossRef]
- Rathnayake, H.; Han, L.; da Silva Costa, F.; Paganoti, C.; Dyer, B.; Kundur, A.; Singh, I.; Holland, O.J. Advancement in predictive biomarkers for gestational diabetes mellitus diagnosis and related outcomes: A scoping review. BMJ Open 2024, 14, e089937. [Google Scholar] [CrossRef]
- Taschereau, A.; Doyon, M.; Arguin, M.; Allard, C.; Desgagné, V.; Cote, A.-M.; Massé, É.; Jacques, P.-É.; Perron, P.; Hivert, M.-F.; et al. Cohort profile: The Genetics of Glucose regulation in Gestation and Growth (Gen3G)—A prospective prebirth cohort of mother–child pairs in Sherbrooke, Canada, 3-year and 5-year follow-up visits. BMJ Open 2025, 15, e093434. [Google Scholar] [CrossRef]
Mechanism | Key Drivers | Consequences |
---|---|---|
Insulin Resistance | Placental hormones (e.g., hPL); cytokines (e.g., TNF-α, IL-6) | Reduced PI3K/Akt signaling; impaired GLUT4-mediated glucose uptake; systemic insulin resistance |
β-cell Dysfunction | Oxidative stress, glucolipotoxicity, ER stress, impaired autophagy, ROS accumulation | Loss of insulin secretion; β-cell apoptosis; inadequate compensation for pregnancy-induced resistance |
Inflammation | Adipose tissue macrophages; TNF-α; IL-6; JNK/IKK signaling | Amplified insulin resistance; placental inflammation; metabolic dysregulation |
Adipokines | ↓ Adiponectin; ↑ Leptin; ↑ Resistin; impaired AMPK/GLUT4 signaling | Worsened insulin resistance; chronic inflammation; reduced glucose uptake |
Oxidative Stress | Mitochondrial dysfunction; excessive ROS; impaired ATP production | Vicious cycle of metabolic impairment, inflammation, and persistent insulin resistance |
Epigenetic/ Genetic | TCF7L2, IRS1, MTNR1B polymorphisms; DNA methylation; histone modifications; microRNAs | Altered gene expression; impaired insulin signaling |
Molecular Biology | Biomarkers | Associated Conditions |
---|---|---|
Genomics, Metabolomics, Proteomics | Circulating microRNAs | Impaired insulin action, beta-cell stress, Inflammation, Oxidative imbalance |
Placental-derived exosomes | ||
Metabolic signatures |
Biomarker Type | Examples | Advantages | Limitations |
---|---|---|---|
Classical glycemic markers | HbA1c, FPG | Widely available, standardized | Modest sensitivity/specificity |
MicroRNAs | Exosome miRNA panels | Mechanistic insight, early marker | Laboratory complexity, standardization |
Proteomics/Metabolomics | Acylcarnitines, exosomal proteins | Predictive power | Costly, specialized platforms |
Immune biomarkers | Immunoglobulins (IgG, IgM), Interleukins (IL-7, IL-15) | Reflect immunometabolism | Validation needed, narrow cohorts |
Adipokines | Leptin, Adiponectin, Visfatin, Resistin | Mechanistic relevance | Predictive ability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assani, M.-Z.; Boldeanu, L.; Manolea, M.-M.; Boldeanu, M.V.; Siloși, I.; Assani, A.-D.; Văduva, C.-C.; Dijmărescu, A.L. From Molecular Insights to Clinical Management of Gestational Diabetes Mellitus—A Narrative Review. Int. J. Mol. Sci. 2025, 26, 8719. https://doi.org/10.3390/ijms26178719
Assani M-Z, Boldeanu L, Manolea M-M, Boldeanu MV, Siloși I, Assani A-D, Văduva C-C, Dijmărescu AL. From Molecular Insights to Clinical Management of Gestational Diabetes Mellitus—A Narrative Review. International Journal of Molecular Sciences. 2025; 26(17):8719. https://doi.org/10.3390/ijms26178719
Chicago/Turabian StyleAssani, Mohamed-Zakaria, Lidia Boldeanu, Maria-Magdalena Manolea, Mihail Virgil Boldeanu, Isabela Siloși, Alexandru-Dan Assani, Constantin-Cristian Văduva, and Anda Lorena Dijmărescu. 2025. "From Molecular Insights to Clinical Management of Gestational Diabetes Mellitus—A Narrative Review" International Journal of Molecular Sciences 26, no. 17: 8719. https://doi.org/10.3390/ijms26178719
APA StyleAssani, M.-Z., Boldeanu, L., Manolea, M.-M., Boldeanu, M. V., Siloși, I., Assani, A.-D., Văduva, C.-C., & Dijmărescu, A. L. (2025). From Molecular Insights to Clinical Management of Gestational Diabetes Mellitus—A Narrative Review. International Journal of Molecular Sciences, 26(17), 8719. https://doi.org/10.3390/ijms26178719