The Potential of Hair Matrix for Biomarker Analysis in Schizophrenia
Abstract
1. Introduction
Hair Matrix as a Source of Potential Biomarkers in the Context of SCZ
2. Potential SCZ Biomarkers Derived from Hair
2.1. Exogenous Biomarkers
2.1.1. Trace Elements
2.1.2. Substance Abuse and Illicit Drugs
First Author, Year | Sample | Method for Assessment | Main Results |
---|---|---|---|
Lamyai, W. (2019) [92] | Individuals with MAP (n = 113) and non-MAP (n = 120). | GC-MS | Significantly higher hair methamphetamine concentrations were present in users with psychosis, in addition to a reduced cognitive performance and an increased risk of MAP. |
Nestoros, J.N. (2017) [90] | Cannabis users (n = 48). | GC-MS | Higher hair cannabinoid levels were associated with SCZ-like symptoms and organic brain dysfunction, particularly in younger users with significant hallucinations and delusions. Memory impairment was observed in all participants. |
Bahorik, A.L. (2014) [85] | People living with SCZ (n = 1042). | RIA | Underreporting was significantly associated with older age and greater neurocognitive deficits, while accurate reporting was linked to more criminal justice involvement. |
Bahorik, A.L. (2014) [34] | People living with SCZ + RIA (n = 262) and − RIA (n = 712). | RIA | Drug-positive individuals tended to be younger and presented highly severe positive symptoms, illness severity, and poorer premorbid indicators, such as childhood behavioral issues. |
Van Dorn, R.A. (2012) [31] | People living with SCZ (n = 1460). | RIA | Hair testing resulted in the highest rates of over-detection compared to the SCID. Self-report data showed better concordance, accuracy, and agreement with SCID diagnoses within specific cultural or demographic situations. |
Morgan, C.J.A. (2008) [91] | Individuals with Δ9-THC (n = 20), Δ9-THC + CBD (n = 27), and no cannabinoids (n = 85). | GC-MS | Individuals with only Δ9-THC detected in their hair showed significantly higher scores on positive symptoms, in addition to higher delusion scores compared with CBD and Δ9-THC + CBD group. |
Garcia-Bournissen, F. (2007) [93] | Individuals positive for methamphetamine (babies; n = 19, children; n = 13, adults; and n = 247). | ELISA/GC-MS | Methamphetamine transplacental transfer was observed, as evidenced by accumulation in fetal hair at levels comparable to those observed in mothers. |
Swartz, M.S. (2003) [89] | People living with SCZ (n = 201). | RIA | Hair testing showed higher time detection window compared to urine testing. Combining hair, urine, and self-reports significantly improved detection rates of substance use. |
McPhillips, M.A. (1997) [88] | People living with SCZ (n = 36). | RIA/ELISA | Hair assays revealed significant underreporting of substance use among young individuals with SCZ, despite most denying use and their informants being unaware. |
2.1.3. Antipsychotics
2.2. Endogenous and Subject-Derived Biomarkers
2.2.1. Cortisol
Authors, Year | Sample | Method for Assessment | Main Results |
---|---|---|---|
Qi, D. (2024) [35] | People living with SCZ (n = 137) and healthy controls (n = 73). | LC-MS/MS | SCZ individuals showed markedly altered cortisol-to-cortisone ratio, reduced testosterone and progesterone (specially in females), and an elevated cortisol/testosterone ratio. |
Nyström-Hansen, M. (2024) [119] | Pregnant women in the 3rd trimester with SCZ, BP, or depression (n = 32) and healthy controls (n = 37). | LC-MS/MS | Both lifetime diagnosis of serious mental illness and poorer current symptomatic functioning were significantly associated with increased HCC in pregnancy. |
Brandt, J.M. (2023) [124] | Children with at least one parent with a register-based diagnosis of SCZ (n = 111), BP (n = 82), and healthy controls (n = 129). | CLIA | HCC did not differ significantly across the three groups. Higher levels of perceived stress were not associated with higher HCC. Children at familial high-risk of SCZ reported higher perceived stress compared to controls. |
Van Den Heuvel, L.L. (2022) [118] | People living with SCZ (n = 16) and healthy controls (n = 21). | LC-MS/MS | At baseline, HCC was significantly lower in people diagnosed with SCZ. HCC increased from baseline to month 12 in FEP individuals, demonstrating a trend towards significance and in relation to metabolic syndrome. |
Yang, F. (2021) [115] | People living with SCZ (n = 109), BP (n = 93), and healthy controls (n = 86). | ELISA | HCC was significantly lower in people diagnosed with SCZ, also associated with clinical symptoms. HCC related positively with social support and personality traits, suggesting complex HPA axis involvement. |
Yang, F. (2020) [116] | People living with SCZ (n = 109) and healthy controls (n = 86). | ELISA | People diagnosed with SCZ showed significantly lower HCC than controls despite higher psychosocial stress. HCC negatively correlated with delusions and trended with tension and uncooperativeness. |
Söder, E. (2019) [121] | Familial risk group for psychosis (n = 32), clinical risk group for psychosis (n = 43), and low-risk controls (n = 35). | CLIA | HCC did not differ between individuals at clinical or familial risk and low-risk controls. However, HCC was significantly associated with exposure to traumatic events and childhood abuse. |
Aas, M. (2019) [109] | People living with SCZ (n = 28), BP (n = 35), and healthy controls (n = 94). | ELISA | HCC was highest in people diagnosed with SCZ and showed greater variance than in controls. People diagnosed with SCZ with a history of childhood maltreatment also exhibited elevated HCC. |
Hirt, V. (2019) [117] | Individuals at risk for psychosis (n = 29), people living with early SCZ (n = 34), people living with chronic SCZ (n = 24), and healthy controls (n = 38). | CLIA | A negative association between HCC and the severity of SCZ’s psychotic symptoms was observed. SCZ individuals reported significantly more childhood adversities within predicting lower HCC levels. |
Rietschel, L. (2016) [122] | Individuals including 8 monozygotic, 21 dizygotic twin pairs, and 51 unpaired twins (n = 109). | CLIA | HCC was associated with psychological factors, along with substantial genetic contributions to the variance in HCC, emphasizing the heritability of stress-related endocrine profiles. |
Streit, F. (2016) [123] | People living with SCZ (n = 159), BP (n = 61), and healthy controls (n = 82). | LC-MS/MS | While perceived stress is elevated in SCZ, the HPA axis activity, as measured by HCC, did not significantly differ from controls. |
Andrade, E.H. (2016) [120] | Drug-naïve individuals with FEP (n = 24) and healthy controls (n = 27). | ELISA | HCC increased in drug-naïve FEP individuals. Moreover, differences in hair cortisol between segments representing different time points were correlated with the severity of psychopathology. |
2.2.2. Neurotransmitters
2.2.3. Genetics, Transcriptomics, iPSC, and Derived Neurons
3. Discussion
Biomarker | Hair | Brain | CSF | Blood | Urine | |
---|---|---|---|---|---|---|
Trace Elements | Copper | ↑ [78,79] | ↓ [143,144,145] | ↓ [146] | ↑ [33,145,147] | ↑ [148] |
Zinc | ↓ [77,78,79] | ↑/x [149,150,151] | x [152] | ↓ [33,149,150] | ↓ [148] | |
Iron | ↓ [79] | ↑↓ [74,75] | ↓ [153] | ↓ [33,147,154,155,156] | - | |
Calcium | ↓ [78,79] | ↓ [157,158] | ↑ [159] | x [160] | ↓ [161] | |
Cadmium | ↑ [78] | ↑ [162] | - | ↑ [163,164] | - | |
Manganese | ↓/x [78,79] | ↑ [165] | - | ↑↓ [56,147,151,166,167,168,169] | ↑ [170] | |
Substance Abuse Drugs | ↑ [34,85,90,91,92] | ↑ [171,172] | ↑ [173] | ↑ [174] | ↑ [88,175,176] | |
Antipsychotics | ↑ [99,100] | ↑ [177,178,179] | ↑ [178,179,180] | ↑ [59,101,179] | ↑ [57,180,181] | |
Cortisol | ↑↓ [115,116,120] | ↑ [181,182] | ↑ [183] | ↑ [54,113,184] | ↑ [185,186] | |
Neurotransmitters | Dopamine | - | ↑ [187,188,189,190] | ↑ [191] | ↑ [192,193] | ↑ [194,195] |
Serotonin | - | ↑ [196] | ↑/x [197,198,199] | ↑ [200,201] | ↑ [202] | |
Glutamate | - | ↑↓ [203,204] | ↓ [203,205] | ↑↓ [206,207] | ↑ [208] | |
Tyramine | ↑ [129] | - | - | ↓ [209] | ↓ [210] | |
Genetics and Transcriptomics | FABP | ↓ [14] | ↓ [211] | - | - | - |
RXR | ↓ [38,46] | ↓ [38,46] | - | ↓ [46] | - | |
PPAR | ↓ [38,46] | ↓ [38,46] | - | ↓ [212] | - | |
MPST | ↑ [131] | ↑ [131] | - | - | - | |
SFI1 | ↓ [132] | - | - | - | - |
Matrix | Hair | Brain Tissue | CSF | Blood | Urine |
---|---|---|---|---|---|
Advantages | Non-invasive, painless; retrospective long-term analysis; stable storage; detects chronic exposure (drugs, hormones, and trace elements); and potential for gene expression and iPSC reprogram-ming | Direct assessment of central pathophysiology; allows regional analysis; and gold standard for molecular/structural analyses | Reflects CNS biochemistry directly; useful for neurotransmitters and inflammatory markers | Widely used; standardized; minimally invasive; repeated sampling; and good for systemic biomarkers | Non-invasive; easy large-volume collection; and suitable for metabolic and drug screening |
Disadvantages | Affected by cosmetic treatments; potential external contamination; variability by hair type/color/melanin; no standardized protocols; and limited SCZ studies | Invasive; post-mortem or rare biopsy only; influenced by agonal state; limited sample size; and not longitudinal | Invasive lumbar puncture; low acceptability; small volume; and potential complications | May not fully reflect brain-specific processes; temporal fluctuations; and some analytes unstable | Rapid turnover; high intraindividual variability; influenced by hydration/diet; and less relevant to CNS |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | Antipsychotic |
BP | Bipolar Disorder |
CBD | Cannabidiol |
CLIA | Chemiluminescence Immunoassay |
CLZ | Clozapine |
CSF | Cerebrospinal Fluid |
ELISA | Enzyme-Linked Immunosorbent Assay |
FAAS | Flame Atomic Absorption Spectroscopy |
FABP | Fatty Acid Binding Protein |
FEP | First-Episode Psychosis |
GC-MS | Gas Chromatography/Mass Spectrometry |
HCC | Hair Cortisol Concentration |
HPA | Hypothalamus-Pituitary-Adrenal |
HPLC | High-Performance Liquid Chromatography |
ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
IHC | Immunohistochemistry |
ISH | In Situ Hybridization |
iPSCs | Induced Pluripotent Stem Cells |
LC-MS/MS | Liquid Chromatography Tandem Mass Spectrometry |
MAP | Methamphetamine-Associated Psychosis |
MPST | Mercaptopyruvate Sulfurtransferase |
mRNA | Messenger RNA |
PIXIE | Particle-Induced X-Ray Emission |
PPAR | Peroxisome Proliferator-Activated Receptor |
PUFA | Polyunsaturated Fatty Acid |
qRT-PCR | Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction |
RIA | Radioimmunoassay |
RSP | Risperidone |
RXR | Retinoid X Receptor |
SCID | Structured Clinical Interview for The Diagnostic and Statistical Manual of Mental Disorders |
SCZ | Schizophrenia |
SFI1 | Centrosome-Related Gene Stress Resistance Protein 1 |
Δ9-THC | Delta-9 tetrahydrocannabinol |
UHPLC-MS/MS | Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry System |
References
- Howes, O.D.; Bukala, B.R.; Beck, K. Schizophrenia: From neurochemistry to circuits, symptoms and treatments. Nat. Rev. Neurol. 2024, 20, 22–35. [Google Scholar] [CrossRef]
- Jauhar, S.; Johnstone, M.; McKenna, P.J. Schizophrenia. Lancet 2022, 399, 473–486. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Reis Marques, T.; Howes, O.D. Schizophrenia—An Overview. JAMA Psychiatry 2020, 77, 201. [Google Scholar] [CrossRef] [PubMed]
- Jaaro-Peled, H.; Sawa, A. Neurodevelopmental Factors in Schizophrenia. Psychiatr. Clin. N. Am. 2020, 43, 263–274. [Google Scholar] [CrossRef]
- Striebel, J.M. What is schizophrenia—Symptomatology. CNS Spectr. 2024, 30, e12. [Google Scholar] [CrossRef]
- Fond, G.; d’Albis, M.-A.; Jamain, S.; Tamouza, R.; Arango, C.; Fleischhacker, W.W.; Glenthoj, B.; Leweke, M.; Lewis, S.; McGuire, P.; et al. The Promise of Biological Markers for Treatment Response in First-Episode Psychosis: A Systematic Review. Schizophr. Bull. 2015, 41, 559–573. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.K.; Krebs, M.-O.; Cox, D.; Guest, P.C.; Yolken, R.H.; Rahmoune, H.; Rothermundt, M.; Steiner, J.; Leweke, F.M.; Van Beveren, N.J.M.; et al. Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset. Transl. Psychiatry 2015, 5, e601. [Google Scholar] [CrossRef]
- Shahzade, C.; Chun, J.; DeLisi, L.E.; Manschreck, T.C. Patterns in adolescent cannabis use predict the onset and symptom structure of schizophrenia-spectrum disorder. Schizophr. Res. 2018, 197, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, M.; Briner, D.; Kawohl, W.; Seifritz, E.; Baumgartner-Nietlisbach, G. Psychosocial functioning of individuals with schizophrenia in community housing facilities and the psychiatric hospital in Zurich. Psychiatry Res. 2015, 230, 413–418. [Google Scholar] [CrossRef]
- Larsen, T.K.; Melle, I.; Auestad, B.; Haahr, U.; Joa, I.; Johannessen, J.O.; Opjordsmoen, S.; Rund, B.R.; Rossberg, J.I.; Simonsen, E.; et al. Early detection of psychosis: Positive effects on 5-year outcome. Psychol. Med. 2011, 41, 1461–1469. [Google Scholar] [CrossRef]
- Häfner, H.; Maurer, K. Early detection of schizophrenia: Current evidence and future perspectives. World Psychiatry Off. J. World Psychiatr. Assoc. (WPA) 2006, 5, 130–138. [Google Scholar]
- Walker, E.F. The Role of Endogenous and Exogenous Risk Factors in the Genesis of Schizophrenia. In The Effects of Parental Dysfunction on Children; Springer US: Boston, MA, USA, 2002; pp. 3–15. ISBN 978-1-4613-6812-0. [Google Scholar]
- Ren, S.; Sun, Z.; Yang, J. The use of biochemical indexes in hair for clinical studies of psychiatric diseases: What can we learn about mental disease from hair? J. Psychiatr. Res. 2023, 158, 305–313. [Google Scholar] [CrossRef]
- Maekawa, M.; Yamada, K.; Toyoshima, M.; Ohnishi, T.; Iwayama, Y.; Shimamoto, C.; Toyota, T.; Nozaki, Y.; Balan, S.; Matsuzaki, H.; et al. Utility of Scalp Hair Follicles as a Novel Source of Biomarker Genes for Psychiatric Illnesses. Biol. Psychiatry 2015, 78, 116–125. [Google Scholar] [CrossRef]
- Herane Vives, A.; De Angel, V.; Papadopoulos, A.; Strawbridge, R.; Wise, T.; Young, A.H.; Arnone, D.; Cleare, A.J. The relationship between cortisol, stress and psychiatric illness: New insights using hair analysis. J. Psychiatr. Res. 2015, 70, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Fišar, Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2023, 120, 110626. [Google Scholar] [CrossRef] [PubMed]
- Berdeville, C.H.D.S.F.; Silva-Amaral, D.; Dalgalarrondo, P.; Banzato, C.E.M.; Martins-de-Souza, D. A scoping review of protein biomarkers for schizophrenia: State of progress, underlying biology, and methodological considerations. Neurosci. Biobehav. Rev. 2025, 168, 105949. [Google Scholar] [CrossRef]
- Abi-Dargham, A.; Moeller, S.J.; Ali, F.; DeLorenzo, C.; Domschke, K.; Horga, G.; Jutla, A.; Kotov, R.; Paulus, M.P.; Rubio, J.M.; et al. Candidate biomarkers in psychiatric disorders: State of the field. World Psychiatry 2023, 22, 236–262. [Google Scholar] [CrossRef] [PubMed]
- Hakami, M.A. Molecular signatures and emerging therapeutic targets in schizophrenia: A biomarker-centric perspective in psychiatric disorders. Schizophr. Res. 2025, 282, 1–18. [Google Scholar] [CrossRef]
- Cao, T.; Li, N.; Cai, H. Candidate metabolic biomarkers for schizophrenia in CNS and periphery: Do any possible associations exist? Schizophr. Res. 2020, 226, 95–110. [Google Scholar] [CrossRef]
- Rømer, T.B.; Jeppesen, R.; Christensen, R.H.B.; Benros, M.E. Biomarkers in the cerebrospinal fluid of patients with psychotic disorders compared to healthy controls: A systematic review and meta-analysis. Mol. Psychiatry 2023, 28, 2277–2290. [Google Scholar] [CrossRef]
- Shkreli, L.; Woud, M.L.; Bergunde, L.; Schindler-Gmelch, L.; Blackwell, S.E.; Kirschbaum, C.; Kessler, H.; Steudte-Schmiedgen, S. The role of long-term hair steroids as diagnostic and intervention-related biomarkers in a multimorbid inpatient sample with posttraumatic stress disorder. Eur. J. Psychotraumatol. 2025, 16, 2457295. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rashidi, E.; Amooeian, V.G. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res. 2018, 265, 25–38. [Google Scholar] [CrossRef]
- Tian, Y.E.; Di Biase, M.A.; Mosley, P.E.; Lupton, M.K.; Xia, Y.; Fripp, J.; Breakspear, M.; Cropley, V.; Zalesky, A. Evaluation of Brain-Body Health in Individuals with Common Neuropsychiatric Disorders. JAMA Psychiatry 2023, 80, 567. [Google Scholar] [CrossRef] [PubMed]
- Davison, J.; O’Gorman, A.; Brennan, L.; Cotter, D.R. A systematic review of metabolite biomarkers of schizophrenia. Schizophr. Res. 2018, 195, 32–50. [Google Scholar] [CrossRef]
- Perkovic, M.; Erjavec, G.; Strac, D.; Uzun, S.; Kozumplik, O.; Pivac, N. Theranostic Biomarkers for Schizophrenia. Int. J. Mol. Sci. 2017, 18, 733. [Google Scholar] [CrossRef]
- Molavi, N.; Ghaderi, A.; Banafshe, H. Determination of thallium in urine, blood, and hair in illicit opioid users in Iran. Hum. Exp. Toxicol. 2020, 39, 808–815. [Google Scholar] [CrossRef]
- Błach-Legawiec, I.; Emich-Widera, E.; Bibrzycka, A.; Marszał, E.; Woś, H. Concentrations of cadmium in blood and urine and their contents in the hair of children from Katowice Murcki. Wiadomosci Lekarskie 2002, 55 Pt 2 (Suppl. S1), 633–638. [Google Scholar] [PubMed]
- Wester, V.L.; Van Rossum, E.F.C. Clinical applications of cortisol measurements in hair. Eur. J. Endocrinol. 2015, 173, M1–M10. [Google Scholar] [CrossRef]
- Cooper, G.A.A.; Kronstrand, R.; Kintz, P. Society of Hair Testing guidelines for drug testing in hair. Forensic Sci. Int. 2012, 218, 20–24. [Google Scholar] [CrossRef]
- Van Dorn, R.A.; Desmarais, S.L.; Scott Young, M.; Sellers, B.G.; Swartz, M.S. Assessing illicit drug use among adults with schizophrenia. Psychiatry Res. 2012, 200, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Kogler, L.; Wang, R.; Luther, T.; Hofer, A.; Frajo-Apor, B.; Derntl, B. Cortisol in schizophrenia spectrum disorders: A comprehensive meta-analysis. Front. Neuroendocrinol. 2025, 77, 101186. [Google Scholar] [CrossRef]
- Saghazadeh, A.; Mahmoudi, M.; Shahrokhi, S.; Mojarrad, M.; Dastmardi, M.; Mirbeyk, M.; Rezaei, N. Trace elements in schizophrenia: A systematic review and meta-analysis of 39 studies (N = 5151 participants). Nutr. Rev. 2020, 78, 278–303. [Google Scholar] [CrossRef]
- Bahorik, A.L.; Newhill, C.E.; Eack, S.M. Neurocognitive Functioning of Individuals with Schizophrenia: Using and Not Using Drugs. Schizophr. Bull. 2014, 40, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Wang, W.; Chu, L.; Wu, Y.; Wang, W.; Zhu, M.; Yuan, L.; Gao, W.; Deng, H. Associations of schizophrenia with the activities of the HPA and HPG axes and their interactions characterized by hair-based biomarkers. Psychoneuroendocrinology 2024, 165, 107049. [Google Scholar] [CrossRef]
- Murtada, K.; De Andrés, F.; Galván, I.; Ríos, Á.; Zougagh, M. LC-MS determination of catecholamines and related metabolites in red deer urine and hair extracted using magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) composite. J. Chromatogr. B 2020, 1136, 121878. [Google Scholar] [CrossRef]
- Sun, X.; Wang, L.; Yang, F.; Ren, J.; Jiang, P.; Liu, H.; Li, H.; Li, C.; Zhang, C. Correlation of hair risperidone concentration and serum level among patients with schizophrenia. Gen. Psychiatry 2019, 32, e100042. [Google Scholar] [CrossRef]
- Maekawa, M.; Watanabe, A.; Iwayama, Y.; Kimura, T.; Hamazaki, K.; Balan, S.; Ohba, H.; Hisano, Y.; Nozaki, Y.; Ohnishi, T.; et al. Polyunsaturated fatty acid deficiency during neurodevelopment in mice models the prodromal state of schizophrenia through epigenetic changes in nuclear receptor genes. Transl. Psychiatry 2017, 7, e1229. [Google Scholar] [CrossRef] [PubMed]
- Robicsek, O.; Karry, R.; Petit, I.; Salman-Kesner, N.; Müller, F.-J.; Klein, E.; Aberdam, D.; Ben-Shachar, D. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol. Psychiatry 2013, 18, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Robin, J.; Lefeuvre, S.; Guihenneuc, J.; Cambien, G.; Dupuis, A.; Venisse, N. Analytical methods and biomonitoring results in hair for the assessment of exposure to endocrine-disrupting chemicals: A literature review. Chemosphere 2024, 353, 141523. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, X.; Tang, B.; Luo, W.; Chen, S.; Luo, X.; Zheng, J.; Mai, B.; Yu, Y. Human hair as a noninvasive matrix to assess exposure to micro-organic contaminants: State of the art review. Sci. Total Environ. 2023, 892, 164341. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, J.; Xing, S.; Yu, H.; Huan, T. Global-Scale Metabolomic Profiling of Human Hair for Simultaneous Monitoring of Endogenous Metabolome, Short- and Long-Term Exposome. Front. Chem. 2021, 9, 674265. [Google Scholar] [CrossRef]
- Musshoff, F.; Driever, F.; Lachenmeier, K.; Lachenmeier, D.W.; Banger, M.; Madea, B. Results of hair analyses for drugs of abuse and comparison with self-reports and urine tests. Forensic Sci. Int. 2006, 156, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Binz, T.M.; Baumgartner, M.R. Haaranalyse zum retrospektiven und prospektiven Konsum-Monitoring: Substanzmissbrauch, Abstinenz- und Compliancekontrolle. Praxis 2016, 105, 17–21. [Google Scholar] [CrossRef]
- Kempson, I.M.; Lombi, E. Hair analysis as a biomonitor for toxicology, disease and health status. Chem. Soc. Rev. 2011, 40, 3915. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Maekawa, M.; Ohnishi, T.; Balan, S.; Matsuoka, S.; Iwamoto, K.; Iwayama, Y.; Ohba, H.; Watanabe, A.; Hisano, Y.; et al. Peroxisome proliferator-activated receptor α as a novel therapeutic target for schizophrenia. eBioMedicine 2020, 62, 103130. [Google Scholar] [CrossRef]
- Mlili, N.E.; Ahabrach, H.; Cauli, O. Hair Cortisol Concentration as a Biomarker of Symptoms of Depressionin the Perinatal Period. CNS Neurol. Disord.—Drug Targets 2023, 22, 71–83. [Google Scholar] [CrossRef]
- Elnazer, H.Y.; Lau, L.C.K.; Amaro, H.; Baldwin, D.S. Hair cortisol concentration in anxiety disorders: Exploration of relationships with symptom severity and inflammatory markers. Acta Neuropsychiatr. 2021, 33, 104–110. [Google Scholar] [CrossRef]
- Ran, R.; Zhong, X.; Yang, Y.; Tang, X.; Shi, M.; Jiang, X.; Lin, A.; Gan, X.; Yu, T.; Hu, L.; et al. Metabolomic profiling identifies hair as a robust biological sample for identifying women with cervical cancer. Med. Oncol. 2023, 40, 75. [Google Scholar] [CrossRef]
- Faresjö, Å.; Theodorsson, E.; Stomby, A.; Quist, H.; Jones, M.P.; Östgren, C.J.; Dahlqvist, P.; Faresjö, T. Higher hair cortisol levels associated with previous cardiovascular events and cardiovascular risks in a large cross-sectional population study. BMC Cardiovasc. Disord. 2024, 24, 536. [Google Scholar] [CrossRef] [PubMed]
- Marrinan, S.; Roman-Urrestarazu, A.; Naughton, D.; Levari, E.; Collins, J.; Chilcott, R.; Bersani, G.; Corazza, O. Hair analysis for the detection of drug use—Is there potential for evasion? Hum. Psychopharmacol. Clin. Exp. 2017, 32, e2587. [Google Scholar] [CrossRef] [PubMed]
- Wennig, R. Potential problems with the interpretation of hair analysis results. Forensic Sci. Int. 2000, 107, 5–12. [Google Scholar] [CrossRef]
- Liao, Q.; Huang, L.; Yang, J.; Zhang, S.; Cai, F.; Tang, B.; Li, L.; Qin, R.; Yan, X.; Luo, W.; et al. Retrospective prediction of environmental emerging contaminants exposure using human hair: Insights into suitability, reliability, and availability. J. Hazard. Mater. 2025, 492, 138274. [Google Scholar] [CrossRef]
- Steen, N.E.; Methlie, P.; Lorentzen, S.; Hope, S.; Barrett, E.A.; Larsson, S.; Mork, E.; Almås, B.; Løvås, K.; Agartz, I.; et al. Increased Systemic Cortisol Metabolism in Patients with Schizophrenia and Bipolar Disorder: A Mechanism for Increased Stress Vulnerability? J. Clin. Psychiatry 2011, 72, 1515–1521. [Google Scholar] [CrossRef] [PubMed]
- Arinami, H.; Watanabe, Y.; Suzuki, Y.; Tajiri, M.; Tsuneyama, N.; Someya, T. Serum cortisol and insulin-like growth factor 1 levels in major depressive disorder and schizophrenia. Sci. Rep. 2023, 13, 1148. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Yan, L.; Ma, J.; Jin, M.; Park, C.; Nozari, Y.; Kazmierczak, O.P.; Zuckerman, H.; Lee, Y.; Pan, Z.; et al. Comparison of serum essential trace metals between patients with schizophrenia and healthy controls. J. Trace Elem. Med. Biol. 2019, 51, 79–85. [Google Scholar] [CrossRef]
- Cohen, A.N.; Collins, G.; Nucifora, F.C.; Strobel, R.; Wait, D.B.; Young, A.S. Clinical Consensus Recommendations for Urine Testing of Adherence to Antipsychotics Among People with Serious Mental Illness. Psychiatr. Serv. 2018, 69, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, K.J.; Mando, W.; Seyoum, B.; Yi, Z.; Burghardt, P.R. The effect of antipsychotic treatment on hormonal, inflammatory, and metabolic biomarkers in healthy volunteers: A systematic review and meta-analysis. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2022, 42, 504–513. [Google Scholar] [CrossRef]
- Hart, X.M.; Gründer, G.; Ansermot, N.; Conca, A.; Corruble, E.; Crettol, S.; Cumming, P.; Frajerman, A.; Hefner, G.; Howes, O.; et al. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J. Biol. Psychiatry 2024, 25, 451–536. [Google Scholar] [CrossRef]
- Gururajan, A.; Manning, E.E.; Klug, M.; Van Den Buuse, M. Drugs of abuse and increased risk of psychosis development. Aust. N. Z. J. Psychiatry 2012, 46, 1120–1135. [Google Scholar] [CrossRef]
- Casadio, P.; Fernandes, C.; Murray, R.M.; Di Forti, M. Cannabis use in young people: The risk for schizophrenia. Neurosci. Biobehav. Rev. 2011, 35, 1779–1787. [Google Scholar] [CrossRef]
- Tomášková, A.; Šlamberová, R.; Černá, M. Influence of Prenatal Methamphetamine Abuse on the Brain. Epigenomes 2020, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Chellan, P.; Sadler, P.J. The elements of life and medicines. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140182. [Google Scholar] [CrossRef]
- Wang, B.; Fang, T.; Chen, H. Zinc and Central Nervous System Disorders. Nutrients 2023, 15, 2140. [Google Scholar] [CrossRef]
- Shayganfard, M. Are Essential Trace Elements Effective in Modulation of Mental Disorders? Update and Perspectives. Biol. Trace Elem. Res. 2022, 200, 1032–1059. [Google Scholar] [CrossRef]
- Borella, P.; Bargellini, A.; Caselgrandi, E.; Piccinini, L. Observations on the Use of Plasma, Hair and Tissue to Evaluate Trace Element Status in Cancer. J. Trace Elem. Med. Biol. 1997, 11, 162–165. [Google Scholar] [CrossRef]
- Schmitt, A.; Uhrig, S.; Spanagel, R.; Von Wilmsdorff, M.; Kalman, J.L.; Schneider-Axmann, T.; Falkai, P.; Hansson, A.C. Post-mortem gene expression of calcium channels Cav1.2 and Cav1.3 in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 1135–1137. [Google Scholar] [CrossRef]
- Bojarski, L.; Debowska, K.; Wojda, U. In vitro findings of alterations in intracellular calcium homeostasis in schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lin, H.; Feng, Z.; Xie, H.; Liu, P.; Shu, Y.; Jia, Z.; Zhang, S. Impaired calcium channel function and pronounced hippocampal atrophy in a schizophrenia patient with cognitive impairment carrying Presenilin-2 Ser130Leu mutation: A case report and literature review. Schizophr. Res. 2023, 258, 78–80. [Google Scholar] [CrossRef]
- Vidal-Domènech, F.; Riquelme, G.; Pinacho, R.; Rodriguez-Mias, R.; Vera, A.; Monje, A.; Ferrer, I.; Callado, L.F.; Meana, J.J.; Villén, J.; et al. Calcium-binding proteins are altered in the cerebellum in schizophrenia. PLoS ONE 2020, 15, e0230400. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Sheng, L.; Li, J. HINT1 promotes neuronal apoptosis and triggers schizophrenia-like behavior in rats. Behav. Brain Res. 2025, 477, 115297. [Google Scholar] [CrossRef] [PubMed]
- Jarskog, L.F.; Selinger, E.S.; Lieberman, J.A.; Gilmore, J.H. Apoptotic Proteins in the Temporal Cortex in Schizophrenia: High Bax/Bcl-2 Ratio Without Caspase-3 Activation. Am. J. Psychiatry 2004, 161, 109–115. [Google Scholar] [CrossRef]
- Parellada, E.; Gassó, P. Glutamate and microglia activation as a driver of dendritic apoptosis: A core pathophysiological mechanism to understand schizophrenia. Transl. Psychiatry 2021, 11, 271. [Google Scholar] [CrossRef]
- Sonnenschein, S.F.; Parr, A.C.; Larsen, B.; Calabro, F.J.; Foran, W.; Eack, S.M.; Luna, B.; Sarpal, D.K. Subcortical brain iron deposition in individuals with schizophrenia. J. Psychiatr. Res. 2022, 151, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Lotan, A.; Luza, S.; Opazo, C.M.; Ayton, S.; Lane, D.J.R.; Mancuso, S.; Pereira, A.; Sundram, S.; Weickert, C.S.; Bousman, C.; et al. Perturbed iron biology in the prefrontal cortex of people with schizophrenia. Mol. Psychiatry 2023, 28, 2058–2070. [Google Scholar] [CrossRef]
- Maxwell, A.M.; Rao, R.B. Perinatal iron deficiency as an early risk factor for schizophrenia. Nutr. Neurosci. 2022, 25, 2218–2227. [Google Scholar] [CrossRef]
- Tabata, K.; Miyashita, M.; Yamasaki, S.; Toriumi, K.; Ando, S.; Suzuki, K.; Endo, K.; Morimoto, Y.; Tomita, Y.; Yamaguchi, S.; et al. Hair zinc levels and psychosis risk among adolescents. Schizophrenia 2022, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Azad, M.A.K.; Hossain, M.I.; Qusar, M.M.A.S.; Bari, W.; Begum, F.; Huq, S.M.I.; Hasnat, A. Zinc, Manganese, Calcium, Copper, and Cadmium Level in Scalp Hair Samples of Schizophrenic Patients. Biol. Trace Elem. Res. 2009, 127, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, A.S.; Abdul Sattar, S.; Seetharami Reddy, B.; Durga Prasada Rao, A. Levels of a select group of trace elements in scalp hair of schizophrenics by PIXE. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2023, 534, 81–89. [Google Scholar] [CrossRef]
- Starzer, M.S.K.; Nordentoft, M.; Hjorthøj, C. Rates and Predictors of Conversion to Schizophrenia or Bipolar Disorder Following Substance-Induced Psychosis. Am. J. Psychiatry 2018, 175, 343–350. [Google Scholar] [CrossRef]
- Werner, F.-M.; Covenas, R. Long-term Administration of Antipsychotic Drugs in Schizophrenia and Influence of Substance and Drug Abuse on the Disease Outcome. Curr. Drug Abus. Rev. 2018, 10, 19–24. [Google Scholar] [CrossRef]
- Olfson, M.; Gerhard, T.; Huang, C.; Crystal, S.; Stroup, T.S. Premature Mortality Among Adults with Schizophrenia in the United States. JAMA Psychiatry 2015, 72, 1172. [Google Scholar] [CrossRef]
- Schiffer, B.; Müller, B.W.; Scherbaum, N.; Forsting, M.; Wiltfang, J.; Leygraf, N.; Gizewski, E.R. Impulsivity-related brain volume deficits in schizophrenia-addiction comorbidity. Brain 2010, 133, 3093–3103. [Google Scholar] [CrossRef]
- Smith, J.; Hucker, S. Schizophrenia and Substance Abuse. Br. J. Psychiatry 1994, 165, 13–21. [Google Scholar] [CrossRef]
- Bahorik, A.L.; Newhill, C.E.; Queen, C.C.; Eack, S.M. Under-reporting of drug use among individuals with schizophrenia: Prevalence and predictors. Psychol. Med. 2014, 44, 61–69, Erratum in Psychol. Med. 2014, 44, 2685–2687. [Google Scholar] [CrossRef]
- Stone, A.M.; Greenstein, R.A.; Gamble, G.; McLellan, A.T. Cocaine Use by Schizophrenic Outpatients Who Receive Depot Neuroleptic Medication. Psychiatr. Serv. 1993, 44, 176–177. [Google Scholar] [CrossRef]
- Møller, T.; Linaker, O.M. Using brief self-reports and clinician scales to screen for substance use disorders in psychotic patients. Nord. J. Psychiatry 2010, 64, 130–135. [Google Scholar] [CrossRef]
- McPhillips, M.A.; Kelly, F.J.; Barnes, T.R.E.; Duke, P.J.; Gene-Cos, N.; Clark, K. Detecting comorbid substance misuse among people with schizophrenia in the community: A study comparing the results of questionnaires with analysis of hair and urine. Schizophr. Res. 1997, 25, 141–148. [Google Scholar] [CrossRef]
- Swartz, M.S.; Swanson, J.W.; Hannon, M.J. Detection of Illicit Substance Use Among Persons with Schizophrenia by Radioimmunoassay of Hair. Psychiatr. Serv. 2003, 54, 891–895. [Google Scholar] [CrossRef]
- Nestoros, J.N.; Vakonaki, E.; Tzatzarakis, M.N.; Alegakis, A.; Skondras, M.D.; Tsatsakis, A.M. Long lasting effects of chronic heavy cannabis abuse. Am. J. Addict. 2017, 26, 335–342. [Google Scholar] [CrossRef]
- Morgan, C.J.A.; Curran, H.V. Effects of cannabidiol on schizophrenia-like symptoms in people who use cannabis. Br. J. Psychiatry 2008, 192, 306–307. [Google Scholar] [CrossRef]
- Lamyai, W.; Pono, K.; Indrakamhaeng, D.; Saengsin, A.; Songhong, N.; Khuwuthyakorn, P.; Sribanditmongkol, P.; Junkuy, A.; Srisurapanont, M. Risks of psychosis in methamphetamine users: Cross-sectional study in Thailand. BMJ Open 2019, 9, e032711. [Google Scholar] [CrossRef]
- Garcia-Bournissen, F.; Rokach, B.; Karaskov, T.; Koren, G. Methamphetamine detection in maternal and neonatal hair: Implications for fetal safety. Arch. Dis. Child.—Fetal Neonatal Ed. 2007, 92, 351–355, Erratum in Arch. Dis. Child. —Fetal Neonatal Ed. 2015, 100, F564. [Google Scholar] [CrossRef]
- Meyer, J.M. How antipsychotics work in schizophrenia: A primer on mechanisms. CNS Spectr. 2025, 30, e6. [Google Scholar] [CrossRef]
- Howes, O.D.; Dawkins, E.; Lobo, M.C.; Kaar, S.J.; Beck, K. New Drug Treatments for Schizophrenia: A Review of Approaches to Target Circuit Dysfunction. Biol. Psychiatry 2024, 96, 638–650. [Google Scholar] [CrossRef]
- Curto, M.; Fazio, F.; Ulivieri, M.; Navari, S.; Lionetto, L.; Baldessarini, R.J. Improving adherence to pharmacological treatment for schizophrenia: A systematic assessment. Expert Opin. Pharmacother. 2021, 22, 1143–1155. [Google Scholar] [CrossRef]
- Tiihonen, J.; Tanskanen, A.; Taipale, H. 20-Year Nationwide Follow-Up Study on Discontinuation of Antipsychotic Treatment in First-Episode Schizophrenia. Am. J. Psychiatry 2018, 175, 765–773, Erratum in Am. J. Psychiatry 2018, 175, 574–574. [Google Scholar] [CrossRef]
- Leucht, S.; Priller, J.; Davis, J.M. Antipsychotic Drugs: A Concise Review of History, Classification, Indications, Mechanism, Efficacy, Side Effects, Dosing, and Clinical Application. Am. J. Psychiatry 2024, 181, 865–878. [Google Scholar] [CrossRef]
- Kronstrand, R.; Roman, M.; Hedman, M.; Ahlner, J.; Dizdar, N. Dose–hair concentration relationship and pigmentation effects in patients on low-dose clozapine. Forensic Sci. Med. Pathol. 2007, 3, 107–114. [Google Scholar] [CrossRef]
- Kintz, P.; Villain, M.; Cirimele, V. Hair Analysis for Drug Detection. Ther. Drug Monit. 2006, 28, 442–446. [Google Scholar] [CrossRef]
- Schoretsanitis, G.; Kane, J.M.; Correll, C.U.; Marder, S.R.; Citrome, L.; Newcomer, J.W.; Robinson, D.G.; Goff, D.C.; Kelly, D.L.; Freudenreich, O.; et al. Blood Levels to Optimize Antipsychotic Treatment in Clinical Practice: A Joint Consensus Statement of the American Society of Clinical Psychopharmacology and the Therapeutic Drug Monitoring Task Force of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie. J. Clin. Psychiatry 2020, 81, 3649. [Google Scholar] [CrossRef]
- Cirimele, V.; Kintz, P.; Gosselin, O.; Ludes, B. Clozapine dose–concentration relationships in plasma, hair and sweat specimens of schizophrenic patients. Forensic Sci. Int. 2000, 107, 289–300. [Google Scholar] [CrossRef]
- Wang, X.; Zhuo, Y.; Tang, X.; Qiang, H.; Liu, W.; Wu, H.; Xiang, P.; Duan, G.; Shen, M. Segmental analysis of antidepressant and antipsychotic drugs in the hair of schizophrenic patients. Drug Test. Anal. 2019, 12, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Cobo-Golpe, M.; de-Castro-Ríos, A.; Cruz, A.; Páramo, M.; López-Rivadulla, M.; Lendoiro, E. Determination of antipsychotic drugs in nails and hair by liquid chromatography tandem mass spectrometry and evaluation of their incorporation into keratinized matrices. J. Pharm. Biomed. Anal. 2020, 189, 113443. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, C.; Zhu, C.; Zheng, Y.; Li, J.; Zhu, Q.; Wang, H.; Fang, X.; Liu, Q.; Liang, M.; et al. Determination of ten antipsychotics in blood, hair and nails: Validation of a LC–MS/MS method and forensic application of keratinized matrix analysis. J. Pharm. Biomed. Anal. 2023, 234, 115557. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Sibille, E.; Yegles, M.; Neels, H.; Wennig, R.; Mühe, A. Time resolved analysis of risperidone and 9-hydroxy-risperidone in hair using LC/MS-MS. J. Chromatogr. B 2009, 877, 2589–2592. [Google Scholar] [CrossRef]
- Ramírez Fernández, M.D.M.; Baumgartner, W.A.; Wille, S.M.R.; Farabee, D.; Samyn, N.; Baumgartner, A.M. A different insight in hair analysis: Simultaneous measurement of antipsychotic drugs and metabolites in the protein and melanin fraction of hair from criminal justice patients. Forensic Sci. Int. 2020, 312, 110337. [Google Scholar] [CrossRef]
- Balasamy, S.; Atchudan, R.; Arya, S.; Gunasekaran, B.M.; Nesakumar, N.; Sundramoorthy, A.K. Cortisol: Biosensing and detection strategies. Clin. Chim. Acta 2024, 562, 119888. [Google Scholar] [CrossRef]
- Aas, M.; Pizzagalli, D.A.; Laskemoen, J.F.; Reponen, E.J.; Ueland, T.; Melle, I.; Agartz, I.; Steen, N.E.; Andreassen, O.A. Elevated hair cortisol is associated with childhood maltreatment and cognitive impairment in schizophrenia and in bipolar disorders. Schizophr. Res. 2019, 213, 65–71. [Google Scholar] [CrossRef]
- Altamura, A.C.; Boin, F.; Maes, M. HPA axis and cytokines dysregulation in schizophrenia: Potential implications for the antipsychotic treatment. Eur. Neuropsychopharmacol. 1999, 10, 1–4. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, Y.; Huang, J.; Zhou, Y.; Tong, J.; Zhang, P.; Luo, X.; Chen, S.; Tian, B.; Tan, S.; et al. Abnormal cortisol profile during psychosocial stress among patients with schizophrenia in a Chinese population. Sci. Rep. 2022, 12, 18591. [Google Scholar] [CrossRef]
- Stalder, T.; Steudte-Schmiedgen, S.; Alexander, N.; Klucken, T.; Vater, A.; Wichmann, S.; Kirschbaum, C.; Miller, R. Stress-related and basic determinants of hair cortisol in humans: A meta-analysis. Psychoneuroendocrinology 2017, 77, 261–274. [Google Scholar] [CrossRef]
- Girshkin, L.; Matheson, S.L.; Shepherd, A.M.; Green, M.J. Morning cortisol levels in schizophrenia and bipolar disorder: A meta-analysis. Psychoneuroendocrinology 2014, 49, 187–206. [Google Scholar] [CrossRef]
- Koumantarou Malisiova, E.; Mourikis, I.; Darviri, C.; Nicolaides, N.C.; Zervas, I.M.; Papageorgiou, C.; Chrousos, G.P. Hair cortisol concentrations in mental disorders: A systematic review. Physiol. Behav. 2021, 229, 113244. [Google Scholar] [CrossRef]
- Yang, F.; Hong, X.; Tao, J.; Chen, Y.; Zhang, Y.; Xiao, H. Hair cortisol, social support, personality traits, and clinical course: Differences in schizophrenia and bipolar disorder. Brain Behav. 2021, 11, e2412. [Google Scholar] [CrossRef]
- Yang, F.; Cao, X.; Sun, X.; Wen, H.; Qiu, J.; Xiao, H. Hair Cortisol Is Associated with Social Support and Symptoms in Schizophrenia. Front. Psychiatry 2020, 11, 572656. [Google Scholar] [CrossRef] [PubMed]
- Hirt, V.; Schalinski, I.; Rockstroh, B. Decoding the impact of adverse childhood experiences on the progression of schizophrenia. Ment. Health Prev. 2019, 13, 82–91. [Google Scholar] [CrossRef]
- Van Den Heuvel, L.L.; Smit, A.M.; Stalder, T.; Kirschbaum, C.; Seedat, S.; Emsley, R. Hair cortisol levels in schizophrenia and metabolic syndrome. Early Interv. Psychiatry 2022, 16, 902–911. [Google Scholar] [CrossRef]
- Nyström-Hansen, M.; Andersen, M.S.; Davidsen, K.A.; Roehder, K.; Trier, C.; Nayberg, E.; Lyons-Ruth, K.; Harder, S. Hair cortisol concentrations in pregnant women with bipolar, depressive, or schizophrenic spectrum disorders. Arch. Women’s Ment. Health 2024, 27, 577–584. [Google Scholar] [CrossRef]
- Andrade, E.H.; Rizzo, L.B.; Noto, C.; Ota, V.K.; Gadelha, A.; Daruy-Filho, L.; Tasso, B.D.C.; Mansur, R.B.; Cordeiro, Q.; Belangero, S.I.; et al. Hair cortisol in drug-naïve first-episode individuals with psychosis. Rev. Bras. Psiquiatr. 2016, 38, 11–16. [Google Scholar] [CrossRef]
- Söder, E.; Clamor, A.; Lincoln, T.M. Hair cortisol concentrations as an indicator of potential HPA axis hyperactivation in risk for psychosis. Schizophr. Res. 2019, 212, 54–61. [Google Scholar] [CrossRef]
- Rietschel, L.; Streit, F.; Zhu, G.; McAloney, K.; Kirschbaum, C.; Frank, J.; Hansell, N.K.; Wright, M.J.; McGrath, J.J.; Witt, S.H.; et al. Hair Cortisol and Its Association with Psychological Risk Factors for Psychiatric Disorders: A Pilot Study in Adolescent Twins. Twin Res. Hum. Genet. 2016, 19, 438–446. [Google Scholar] [CrossRef]
- Streit, F.; Memic, A.; Hasandedić, L.; Rietschel, L.; Frank, J.; Lang, M.; Witt, S.H.; Forstner, A.J.; Degenhardt, F.; Wüst, S.; et al. Perceived stress and hair cortisol: Differences in bipolar disorder and schizophrenia. Psychoneuroendocrinology 2016, 69, 26–34. [Google Scholar] [CrossRef]
- Brandt, J.M.; Hemager, N.; Ellersgaard, D.; Gregersen, M.; Søndergaard, A.; Ohland, J.; Søborg Spang, K.; Christiani, C.; Burton, B.K.; Greve, A.; et al. Hair cortisol concentrations and daily life stress in 7-year-old children at familial high-risk of schizophrenia or bipolar disorder. The Danish High Risk and Resilience Study—VIA 7. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2023, 125, 110750. [Google Scholar] [CrossRef]
- Mikulska, J.; Juszczyk, G.; Gawrońska-Grzywacz, M.; Herbet, M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci. 2021, 11, 1298. [Google Scholar] [CrossRef]
- Stahl, S.M. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: Dopamine, serotonin, and glutamate. CNS Spectr. 2018, 23, 187–191. [Google Scholar] [CrossRef]
- Wijtenburg, S.A.; Yang, S.; Fischer, B.A.; Rowland, L.M. In vivo assessment of neurotransmitters and modulators with magnetic resonance spectroscopy: Application to schizophrenia. Neurosci. Biobehav. Rev. 2015, 51, 276–295. [Google Scholar] [CrossRef]
- Kumar, D.; Sinha, S.N.; Gouda, B. Novel LC-MS/MS Method for Simultaneous Determination of Monoamine Neurotransmitters and Metabolites in Human Samples. J. Am. Soc. Mass Spectrom. 2024, 35, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Yuan, H.; Zhu, J.; Hara, K.; Liu, J. Determination of Tyramine in Hair Samples by GC–MS. Chromatographia 2016, 79, 103–108. [Google Scholar] [CrossRef]
- Cuevas-Diaz Duran, R.; Martinez-Ledesma, E.; Garcia-Garcia, M.; Bajo Gauzin, D.; Sarro-Ramírez, A.; Gonzalez-Carrillo, C.; Rodríguez-Sardin, D.; Fuentes, A.; Cardenas-Lopez, A. The Biology and Genomics of Human Hair Follicles: A Focus on Androgenetic Alopecia. Int. J. Mol. Sci. 2024, 25, 2542. [Google Scholar] [CrossRef] [PubMed]
- Ide, M.; Ohnishi, T.; Toyoshima, M.; Balan, S.; Maekawa, M.; Shimamoto-Mitsuyama, C.; Iwayama, Y.; Ohba, H.; Watanabe, A.; Ishii, T.; et al. Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology. EMBO Mol. Med. 2019, 11, e10695. [Google Scholar] [CrossRef]
- Matsuura, A.; Ishima, T.; Fujita, Y.; Iwayama, Y.; Hasegawa, S.; Kawahara-Miki, R.; Maekawa, M.; Toyoshima, M.; Ushida, Y.; Suganuma, H.; et al. Dietary glucoraphanin prevents the onset of psychosis in the adult offspring after maternal immune activation. Sci. Rep. 2018, 8, 2158. [Google Scholar] [CrossRef]
- Faludi, G.; Mirnics, K. Synaptic changes in the brain of subjects with schizophrenia. Int. J. Dev. Neurosci. 2011, 29, 305–309. [Google Scholar] [CrossRef]
- Weickert, C.S.; Weickert, T.W.; Pillai, A.; Buckley, P.F. Biomarkers in Schizophrenia: A Brief Conceptual Consideration. Dis. Markers 2013, 35, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Stalder, T.; Kirschbaum, C. Analysis of cortisol in hair—State of the art and future directions. Brain Behav. Immun. 2012, 26, 1019–1029. [Google Scholar] [CrossRef]
- Bade, A.; Yadav, P.; Zhang, L.; Naidu Bypaneni, R.; Xu, M.; Glass, T.E. Imaging Neurotransmitters with Small-Molecule Fluorescent Probes. Angew. Chem. Int. Ed. 2024, 63, e202406401. [Google Scholar] [CrossRef]
- Lovinger, D.M. Communication networks in the brain: Neurons, receptors, neurotransmitters, and alcohol. Alcohol Res. Health J. Natl. Inst. Alcohol Abus. Alcohol. 2008, 31, 196–214. [Google Scholar]
- Brennenstuhl, H.; Jung-Klawitter, S.; Assmann, B.; Opladen, T. Inherited Disorders of Neurotransmitters: Classification and Practical Approaches for Diagnosis and Treatment. Neuropediatrics 2019, 50, 002–014. [Google Scholar] [CrossRef]
- Shimamoto, C.; Ohnishi, T.; Maekawa, M.; Watanabe, A.; Ohba, H.; Arai, R.; Iwayama, Y.; Hisano, Y.; Toyota, T.; Toyoshima, M.; et al. Functional characterization of FABP3, 5 and 7 gene variants identified in schizophrenia and autism spectrum disorder and mouse behavioral studies. Hum. Mol. Genet. 2014, 23, 6495–6511. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, M.; Kintz, P. New Challenges and Perspectives in Hair Analysis. In Hair Analysis in Clinical and Forensic Toxicology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 337–368. ISBN 978-0-12-801700-5. [Google Scholar]
- Eisenbeiss, L.; Binz, T.M.; Baumgartner, M.R.; Kraemer, T.; Steuer, A.E. Cheating on forensic hair testing? Detection of potential biomarkers for cosmetically altered hair samples using untargeted hair metabolomics. Analyst 2020, 145, 6586–6599. [Google Scholar] [CrossRef] [PubMed]
- Rashaid, A.B.; Khasawneh, Z.; Alqhazo, M.; Nusair, S.; El-Khateeb, M.; Bashtawi, B. Underivatized Amino Acid Analyses Using Liquid Chromatography-Tandem Mass Spectrometry in Scalp Hair of Children with Autism Spectrum Disorder. Int. J. Chem. Mol. Eng. 2021, 15, 59–64. [Google Scholar]
- Schoonover, K.E.; Roberts, R.C. Markers of copper transport in the cingulum bundle in schizophrenia. Schizophr. Res. 2021, 228, 124–133. [Google Scholar] [CrossRef]
- Schoonover, K.E.; Queern, S.L.; Lapi, S.E.; Roberts, R.C. Impaired copper transport in schizophrenia results in a copper-deficient brain state: A new side to the dysbindin story. World J. Biol. Psychiatry 2020, 21, 13–28. [Google Scholar] [CrossRef]
- Konradi, C. Myelin copper and the cuprizone model of schizophrenia. Front. Biosci. 2011, 3, 23–40. [Google Scholar] [CrossRef]
- Tyrer, S.P.; Delves, H.T.; Weller, M.P. CSF copper in schizophrenia. Am. J. Psychiatry 1979, 136, 937–939. [Google Scholar] [CrossRef]
- Yanik, M.; Kocyigit, A.; Tutkun, H.; Vural, H.; Herken, H. Plasma Manganese, Selenium, Zinc, Copper, and Iron Concentrations in Patients with Schizophrenia. Biol. Trace Elem. Res. 2004, 98, 109–118. [Google Scholar] [CrossRef]
- Gillin, J.C.; Carpenter, W.T.; Hambidge, K.M.; Wyatt, R.J.; Henkin, R.I. Zinc and copper in patients with schizophrenia. L’Encephale 1982, 8, 435–444. [Google Scholar] [PubMed]
- Joe, P.; Petrilli, M.; Malaspina, D.; Weissman, J. Zinc in schizophrenia: A meta-analysis. Gen. Hosp. Psychiatry 2018, 53, 19–24. [Google Scholar] [CrossRef]
- Petrilli, M.A.; Kranz, T.M.; Kleinhaus, K.; Joe, P.; Getz, M.; Johnson, P.; Chao, M.V.; Malaspina, D. The Emerging Role for Zinc in Depression and Psychosis. Front. Pharmacol. 2017, 8, 414. [Google Scholar] [CrossRef]
- Baj, J.; Forma, A.; Sitarz, E.; Karakuła, K.; Flieger, W.; Sitarz, M.; Grochowski, C.; Maciejewski, R.; Karakula-Juchnowicz, H. Beyond the Mind—Serum Trace Element Levels in Schizophrenic Patients: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 9566. [Google Scholar] [CrossRef] [PubMed]
- Potkin, S.G.; Shore, D.; Torrey, E.F.; Weinberger, D.R.; Gillin, J.C.; Henkin, R.I.; Agarwal, R.P.; Wyatt, R.J. Cerebrospinal fluid zinc concentrations in ex-heroin addicts and patients with schizophrenia: Some preliminary observations. Biol. Psychiatry 1982, 17, 1315–1322. [Google Scholar] [PubMed]
- Lehmann, H.E. Studies on the iron content of cerebrospinal fluid in different psychotic conditions. Arch. Neurol. Psychiatry 1951, 65, 326. [Google Scholar] [CrossRef]
- Yassa, R.; Nair, N.P.V.; Schwartz, G. Plasma Magnesium in Chronic Schizophrenia. Int. Pharmacopsychiatry 1979, 14, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Wiser, M.; Levkowitch, Y.; Neuman, M.; Yehuda, S. Decrease of Serum Iron in Acutely Psychotic Schizophrenic Patients. Int. J. Neurosci. 1994, 78, 49–52. [Google Scholar] [CrossRef]
- Kim, S.-W.; Stewart, R.; Park, W.-Y.; Jhon, M.; Lee, J.-Y.; Kim, S.-Y.; Kim, J.-M.; Amminger, P.; Chung, Y.-C.; Yoon, J.-S. Latent Iron Deficiency as a Marker of Negative Symptoms in Patients with First-Episode Schizophrenia Spectrum Disorder. Nutrients 2018, 10, 1707. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.J. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 2013, 7, 2–13. [Google Scholar] [CrossRef]
- Berridge, M.J. Calcium signalling and psychiatric disease: Bipolar disorder and schizophrenia. Cell Tissue Res. 2014, 357, 477–492. [Google Scholar] [CrossRef]
- Jimerson, D.C.; Post, R.M.; Carman, J.S.; van Kammen, D.P.; Wood, J.H.; Goodwin, F.K.; Bunney, W.E. CSF calcium: Clinical correlates in affective illness and schizophrenia. Biol. Psychiatry 1979, 14, 37–51. [Google Scholar]
- Nechifor, M.; Vaideanu, C.; Palamaru, I.; Borza, C.; Mindreci, I. The Influence of Some Antipsychotics on Erythrocyte Magnesium and Plasma Magnesium, Calcium, Copper and Zinc in Patients with Paranoid Schizophrenia. J. Am. Coll. Nutr. 2004, 23, 549S–551S. [Google Scholar] [CrossRef]
- Wyszogrodzka-Kucharska, A.; Rabe-Jabłońska, J. Calcium balance and regulation in schizophrenic patients treated with second generation antipsychotics. Psychiatr. Pol. 2005, 39, 1157–1171. [Google Scholar] [PubMed]
- Orisakwe, O. The role of lead and cadmium in psychiatry. N. Am. J. Med. Sci. 2014, 6, 370. [Google Scholar] [CrossRef]
- Shen, B.; Lu, R.; Lv, M.; Chen, J.; Li, J.; Long, J.; Cai, H.; Su, L.; Gong, Z. Association between the levels of toxic heavy metals and schizophrenia in the population of Guangxi, China: A case-control study. Environ. Pollut. 2024, 363, 125179. [Google Scholar] [CrossRef]
- Arinola, G.; Idonije, B.; Akinlade, K.; Ihenyen, O. Essential trace metals and heavy metals in newly diagnosed schizophrenic patients and those on anti-psychotic medication. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2010, 15, 245–249. [Google Scholar]
- Michel, T.M.; Thome, J.; Martin, D.; Nara, K.; Zwerina, S.; Tatschner, T.; Weijers, H.G.; Koutsilieri, E. Cu, Zn- and Mn-superoxide dismutase levels in brains of patients with schizophrenic psychosis. J. Neural Transm. 2004, 111, 1191–1201. [Google Scholar] [CrossRef]
- Carl, C. Pfeiffer; Scott LaMola Zinc and manganese in the schizophrenias. J. Orthomol. Med. 1983, 14, 28–48. [Google Scholar]
- Liu, T.; Lu, Q.-B.; Yan, L.; Guo, J.; Feng, F.; Qiu, J.; Wang, J. Comparative Study on Serum Levels of 10 Trace Elements in Schizophrenia. PLoS ONE 2015, 10, e0133622. [Google Scholar] [CrossRef] [PubMed]
- Yanik, M.; Vural, H.; Kocyigit, A.; Tutkun, H.; Zoroglu, S.S.; Herken, H.; Savaş, H.A.; Köylü, A.; Akyol, Ö. Is the Arginine-Nitric Oxide Pathway Involved in the Pathogenesis of Schizophrenia? Neuropsychobiology 2003, 47, 61–65. [Google Scholar] [CrossRef]
- Kaya, B.; Akdağ, N.; Fadıllıoğlu, E.; Taycan, S.E.; Emre, M.H.; Unal, S.; Sayal, A.; Erdoğan, H.; Polat, R. Şizofreni hastalarında kanda glukoz-6-fosfat dehidrogenaz aktivitesi ve element düzeyleri/Elements levels and glucose-6-phosphate dehydrogenase activity in blood of patients with schizophrenia. Dusunen Adam J. Psychiatry Neurol. Sci. 2012. [Google Scholar] [CrossRef]
- Kanabrocki, E.L.; Case, L.F.; Fields, T.; Graham, L.; Miller, E.B.; Oester, Y.T.; Kaplan, E. Manganese and copper levels in human urine. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 1965, 6, 780–791. [Google Scholar]
- Muguruza, C.; Lehtonen, M.; Aaltonen, N.; Morentin, B.; Meana, J.J.; Callado, L.F. Quantification of endocannabinoids in postmortem brain of schizophrenic subjects. Schizophr. Res. 2013, 148, 145–150. [Google Scholar] [CrossRef]
- Thoma, P.; Daum, I. Comorbid substance use disorder in schizophrenia: A selective overview of neurobiological and cognitive underpinnings. Psychiatry Clin. Neurosci. 2013, 67, 367–383. [Google Scholar] [CrossRef]
- Thornton, S.L.; Lo, J.; Clark, R.F.; Wu, A.H.B.; Gerona, R.R. Simultaneous detection of multiple designer drugs in serum, urine, and CSF in a patient with prolonged psychosis. Clin. Toxicol. 2012, 50, 1165–1168. [Google Scholar] [CrossRef]
- Brunette, M.F.; Roth, R.M.; Trask, C.; Khokhar, J.Y.; Ford, J.C.; Park, S.H.; Hickey, S.M.; Zeffiro, T.; Xie, H. Randomized Laboratory Study of Single-Dose Cannabis, Dronabinol, and Placebo in Patients with Schizophrenia and Cannabis Use Disorder. Schizophr. Bull. 2025, 51, 479–492. [Google Scholar] [CrossRef]
- Large, M.M.; Smith, G.; Sara, G.; Paton, M.B.; Kedzior, K.K.; Nielssen, O.B. Meta-analysis of self-reported substance use compared with laboratory substance assay in general adult mental health settings. Int. J. Methods Psychiatr. Res. 2012, 21, 134–148. [Google Scholar] [CrossRef]
- Fowler, I.L.; Carr, V.J.; Carter, N.T.; Lewin, T.J. Patterns of Current and Lifetime Substance Use in Schizophrenia. Schizophr. Bull. 1998, 24, 443–455. [Google Scholar] [CrossRef]
- Sampedro, M.C.; Unceta, N.; Gómez-Caballero, A.; Callado, L.F.; Morentin, B.; Goicolea, M.A.; Meana, J.J.; Barrio, R.J. Screening and quantification of antipsychotic drugs in human brain tissue by liquid chromatography–tandem mass spectrometry: Application to postmortem diagnostics of forensic interest. Forensic Sci. Int. 2012, 219, 172–178. [Google Scholar] [CrossRef]
- Saar, E.; Beyer, J.; Gerostamoulos, D.; Drummer, O.H. The analysis of antipsychotic drugs in human matrices using LC-MS(/MS). Drug Test. Anal. 2012, 4, 376–394. [Google Scholar] [CrossRef]
- Patteet, L.; Cappelle, D.; Maudens, K.E.; Crunelle, C.L.; Sabbe, B.; Neels, H. Advances in detection of antipsychotics in biological matrices. Clin. Chim. Acta 2015, 441, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Skogh, E.; Sjödin, I.; Josefsson, M.; Dahl, M.-L. High Correlation Between Serum and Cerebrospinal Fluid Olanzapine Concentrations in Patients with Schizophrenia or Schizoaffective Disorder Medicating With Oral Olanzapine as the Only Antipsychotic Drug. J. Clin. Psychopharmacol. 2011, 31, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Dziurkowska, E.; Wesolowski, M. Cortisol as a Biomarker of Mental Disorder Severity. J. Clin. Med. 2021, 10, 5204. [Google Scholar] [CrossRef]
- Issa, G.; Wilson, C.; Terry, A.V.; Pillai, A. An inverse relationship between cortisol and BDNF levels in schizophrenia: Data from human postmortem and animal studies. Neurobiol. Dis. 2010, 39, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Pearson, A.; De Vries, A.; Middleton, S.D.; Gillies, F.; White, T.O.; Armstrong, I.R.; Andrew, R.; Seckl, J.R.; MacLullich, A.M. Cerebrospinal fluid cortisol levels are higher in patients with delirium versus controls. BMC Res. Notes 2010, 3, 33. [Google Scholar] [CrossRef]
- Hubbard, D.B.; Miller, B.J. Meta-analysis of blood cortisol levels in individuals with first-episode psychosis. Psychoneuroendocrinology 2019, 104, 269–275. [Google Scholar] [CrossRef]
- Steen, N.E.; Methlie, P.; Lorentzen, S.; Dieset, I.; Aas, M.; Nerhus, M.; Haram, M.; Agartz, I.; Melle, I.; Berg, J.P.; et al. Altered systemic cortisol metabolism in bipolar disorder and schizophrenia spectrum disorders. J. Psychiatr. Res. 2014, 52, 57–62. [Google Scholar] [CrossRef]
- Steen, N.E.; Tesli, M.; Kähler, A.K.; Methlie, P.; Hope, S.; Barrett, E.A.; Larsson, S.; Mork, E.; Løvås, K.; Røssberg, J.I.; et al. SRD5A2 is associated with increased cortisol metabolism in schizophrenia spectrum disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 1500–1506. [Google Scholar] [CrossRef] [PubMed]
- Mackay, A.V.P. Increased Brain Dopamine and Dopamine Receptors in Schizophrenia. Arch. Gen. Psychiatry 1982, 39, 991. [Google Scholar] [CrossRef] [PubMed]
- Bird, E.D.; Spokes, E.G.S.; Iversen, L.L. Increased dopamine concentration in limbic areas of brain from patients dying with schizophrenia. Brain 1979, 102, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.L.; Kahn, R.S.; Ko, G.; Davidson, M. Dopamine in schizophrenia: A review and reconceptualization. Am. J. Psychiatry 1991, 148, 1474–1486. [Google Scholar] [CrossRef]
- Moncrieff, J. A Critique of the Dopamine Hypothesis of Schizophrenia and Psychosis. Harv. Rev. Psychiatry 2009, 17, 214–225. [Google Scholar] [CrossRef]
- Orhan, F.; Goiny, M.; Becklén, M.; Mathé, L.; Piehl, F.; Schwieler, L.; Fatouros-Bergman, H.; Farde, L.; Cervenka, S.; Sellgren, C.M.; et al. CSF dopamine is elevated in first-episode psychosis and associates to symptom severity and cognitive performance. Schizophr. Res. 2023, 257, 34–40. [Google Scholar] [CrossRef]
- Shiga, T.; Horikoshi, S.; Kanno, K.; Kanno-Nozaki, K.; Hikita, M.; Itagaki, S.; Miura, I.; Yabe, H. Plasma levels of dopamine metabolite correlate with mismatch negativity in patients with schizophrenia. Psychiatry Clin. Neurosci. 2020, 74, 289–293. [Google Scholar] [CrossRef]
- Van Kammen, D.P.; Kelley, M. Dopamine and norepinephrine activity in schizophrenia. Schizophr. Res. 1991, 4, 173–191. [Google Scholar] [CrossRef]
- Crowley, T.J. Dopamine Excretion and Vulnerability to Drug-Induced Parkinsonism: Schizophrenic Patients. Arch. Gen. Psychiatry 1978, 35, 97. [Google Scholar] [CrossRef]
- Vingerhoets, C.; Bloemen, O.J.N.; Boot, E.; Bakker, G.; De Koning, M.B.; Da Silva Alves, F.; Booij, J.; Van Amelsvoort, T.A.M.J. Dopamine in high-risk populations: A comparison of subjects with 22q11.2 deletion syndrome and subjects at ultra high-risk for psychosis. Psychiatry Res. Neuroimaging 2018, 272, 65–70. [Google Scholar] [CrossRef]
- Bleich, A.; Brown, S.-L.; Kahn, R.; Van Praag, H.M. The Role of Serotonin in Schizophrenia. Schizophr. Bull. 1988, 14, 297–315. [Google Scholar] [CrossRef] [PubMed]
- Quednow, B.B.; Geyer, M.A.; Halberstadt, A.L. Serotonin and schizophrenia. In Handbook of Behavioral Neuroscience; Elsevier: Amsterdam, The Netherlands, 2020; pp. 711–743. ISBN 978-0-444-64125-0. [Google Scholar]
- Kunz, M.; Sikora, J.; Krakowski, M.; Convit, A.; Cooper, T.B.; Volavka, J. Serotonin in violent patients with schizophrenia. Psychiatry Res. 1995, 59, 161–163. [Google Scholar] [CrossRef]
- Shang, P.; Ho, A.M.-C.; Tufvesson-Alm, M.; Lindberg, D.R.; Grant, C.W.; Orhan, F.; Eren, F.; Bhat, M.; Engberg, G.; Schwieler, L.; et al. Identification of cerebrospinal fluid and serum metabolomic biomarkers in first episode psychosis patients. Transl. Psychiatry 2022, 12, 229. [Google Scholar] [CrossRef] [PubMed]
- DeLisi, L.E. Increased Whole Blood Serotonin Concentrations in Chronic Schizophrenic Patients. Arch. Gen. Psychiatry 1981, 38, 647. [Google Scholar] [CrossRef]
- Garelis, E.; Gillin, J.C.; Wyatt, R.J.; Neff, N. Elevated blood serotonin concentrations in unmediated chronic schizophrenic patients: A preliminary study. Am. J. Psychiatry 1975, 132, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Emanuele, E.; Colombo, R.; Martinelli, V.; Brondino, N.; Marini, M.; Boso, M.; Barale, F.; Politi, P. Elevated urine levels of bufotenine in patients with autistic spectrum disorders and schizophrenia. Neuro Endocrinol. Lett. 2010, 31, 117–121. [Google Scholar]
- Hu, W.; MacDonald, M.L.; Elswick, D.E.; Sweet, R.A. The glutamate hypothesis of schizophrenia: Evidence from human brain tissue studies. Ann. N. Y. Acad. Sci. 2015, 1338, 38–57. [Google Scholar] [CrossRef]
- Uno, Y.; Coyle, J.T. Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 2019, 73, 204–215. [Google Scholar] [CrossRef]
- Howes, O.; McCutcheon, R.; Stone, J. Glutamate and dopamine in schizophrenia: An update for the 21st century. J. Psychopharmacol. 2015, 29, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Madeira, C.; Alheira, F.V.; Calcia, M.A.; Silva, T.C.S.; Tannos, F.M.; Vargas-Lopes, C.; Fisher, M.; Goldenstein, N.; Brasil, M.A.; Vinogradov, S.; et al. Blood Levels of Glutamate and Glutamine in Recent Onset and Chronic Schizophrenia. Front. Psychiatry 2018, 9, 713. [Google Scholar] [CrossRef]
- Nagai, T.; Kirihara, K.; Tada, M.; Koshiyama, D.; Koike, S.; Suga, M.; Araki, T.; Hashimoto, K.; Kasai, K. Reduced Mismatch Negativity is Associated with Increased Plasma Level of Glutamate in First-episode Psychosis. Sci. Rep. 2017, 7, 2258. [Google Scholar] [CrossRef]
- Song, J.; Viggiano, A.; Monda, M.; De Luca, V. Peripheral Glutamate Levels in Schizophrenia: Evidence from a Meta-Analysis. Neuropsychobiology 2014, 70, 133–141. [Google Scholar] [CrossRef]
- Wiesel, F.-A.; Andersson, J.L.R.; Westerberg, G.; Wieselgren, I.-M.; Bjerkenstedt, L.; Hagenfeldt, L.; Långström, B. Tyrosine transport is regulated differently in patients with schizophrenia. Schizophr. Res. 1999, 40, 37–42. [Google Scholar] [CrossRef]
- Zaki, J.K.; Tomasik, J.; McCune, J.; Scherman, O.A.; Bahn, S. Discovery of Urinary Metabolite Biomarkers of Psychiatric Disorders Using Two-Sample Mendelian Randomization. medRxiv 2023. [Google Scholar] [CrossRef]
- Pinacho, R.; Villalmanzo, N.; Meana, J.J.; Ferrer, I.; Berengueras, A.; Haro, J.M.; Villén, J.; Ramos, B. Altered CSNK1E, FABP4 and NEFH protein levels in the dorsolateral prefrontal cortex in schizophrenia. Schizophr. Res. 2016, 177, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gras, I.; Pérez-Nievas, B.G.; García-Bueno, B.; Madrigal, J.L.M.; Andrés-Esteban, E.; Rodríguez-Jiménez, R.; Hoenicka, J.; Palomo, T.; Rubio, G.; Leza, J.C. The anti-inflammatory prostaglandin 15d-PGJ2 and its nuclear receptor PPARgamma are decreased in schizophrenia. Schizophr. Res. 2011, 128, 15–22. [Google Scholar] [CrossRef] [PubMed]
First Author, Year | Sample | Method for Assessment | Main Results |
---|---|---|---|
Pradeep, A.S. (2023) [79] | People living with SCZ (n = 60) and healthy controls (n = 30). | PIXIE | Decreased hair concentrations of iron, selenium, arsenic, potassium, manganese, and zinc were observed, while copper, titanium, and calcium levels were significantly higher compared to controls. Differences appeared to vary by sex. |
Tabata, K. (2022) [77] | Drug-naïve adolescents with psychosis risk (n = 252). | ICP-MS | Adolescents with psychosis-like symptoms had significantly lower hair zinc levels compared to those without symptoms, suggesting its involvement in the pathophysiology of psychosis. |
Rahman, A. (2009) [78] | People living with SCZ (n = 30) and healthy controls (n = 30). | FAAS | Hair concentrations of zinc and calcium were significantly decreased, while copper and cadmium levels were significantly elevated compared to controls, with no change in manganese levels. |
First Author, Year | Sample | Method for Assessment | Main Results |
---|---|---|---|
Yang, H. (2023) [105] | Individuals with psychiatric disorders (n = 54) and forensic suspects samples (n = 2). | LC-MS/MS | Significant correlations were found between blood and hair concentrations. Segmental hair analysis revealed false negatives for olanzapine, highlighting potential forensic limitations. |
Cobo-Golpe, M. (2020) [104] | People under chronic AP treatment (n = 13). | LC-MS/MS | Higher hair APs concentrations correlated with nail concentrations, with distribution patterns varying across drugs. Inconsistent patterns were observed for olanzapine, influenced by extraction variability and limited case numbers. |
Ramírez-Fernández, M. (2020) [107] | Individuals under AP treatment (n = 59). | UHPLC-MS/MS | No clear correlation between prescribed dose and hair concentration was observed. Results showed that melanin fraction of hair bonded AP more strongly than hair proteins. |
Wang, X. (2019) [103] | People living with SCZ (n = 46). | LC-MS/MS | For CLZ, norclozapine, and chlorpromazine, a significant relationship was found between dose and hair segments, suggesting hair analysis as a semi-quantitative biomarker of adherence. |
Sun, X. (2019) [37] | People living with SCZ treated with RSP for more than 3 months (n = 34). | LC-MS/MS | Significant correlation between hair concentration of RSP with its serum concentration was observed. The dosage had no statistically significant correlation with the hair concentration of RSP. |
Schneider, S. (2009) [106] | People living with SCZ (n = 1), psychosis (n = 1), and autism (n = 1). | LC-MS/MS | Significant correlations between RSP concentrations in hair and serum were observed, supporting the notion that hair concentrations can mirror systemic exposure over time. |
Cirimele, V. (2000) [102] | People living with SCZ treated with CLZ (n = 26). | GC-MS | A better dose–concentration relationship of CLZ was observed between daily dose and hair concentration but with wide variations in the SCZ cohort. |
Authors, Year | Sample | Method for Assessment | Main Results |
---|---|---|---|
Gao, L. (2016) [129] | People living with SCZ (n = 95), individuals who abuse drugs (n = 56), and healthy controls (n = 90). | GC-MS | Significant difference in hair tyramine levels between people with SCZ and healthy controls were observed. Sex difference was not statistically significant. These findings suggest that tyramine may serve as a potential biomarker for SCZ and merits further investigation. |
Authors, Year | Sample | Method for Assessment | Main Results |
---|---|---|---|
Wada W. (2020) [46] | People living with SCZ (n = 1) and healthy controls (n = 3). | RT-PCR | Hair follicle cells from people diagnosed with SCZ showed reduced expression of nuclear receptor genes RXRA and PPARA, also observed in postmortem SCZ brains. |
Ide, M. (2019) [131] | People living with SCZ (n = 149) and healthy controls (n = 166). | IHC/ISH | MPST mRNA expression was significantly increased in hair follicle cells from a subgroup of persons diagnosed with SCZ, mirroring upregulation observed in brain tissue. |
Matsuura, A. (2018) [132] | People living with SCZ (n = 94) and healthy controls (n = 117). | RT-qPCR | SFI1 mRNA expression was significantly reduced in hair follicle cells from people diagnosed with SCZ, consistent with protein-level changes in postmortem SCZ brains. |
Maekawa, M. (2017) [38] | 2 sample sets of people living with SCZ (1: n = 52; 2: n = 42) and healthy controls (1: n = 62; 2: n = 55). | RT-qPCR | People diagnosed with SCZ exhibited significantly reduced expression of RXRA, PPARA, and PPARB/D in hair follicle cells. Nuclear receptor dysregulation due to PUFA deficiency could be a key upstream event in SCZ pathophysiology. |
Maekawa, M. (2015) [14] | 2 sample sets of people living with SCZ (1: n = 52; 2: n = 42) and healthy controls (1: n = 62; 2: n = 55). | RT-qPCR | FABP4 mRNA was demonstrated as a potential genetic biomarker for SCZ, showing consistent and significant downregulation. |
Robicsek, O. (2013) [39] | People living with SCZ (n = 3) and healthy controls (n = 2). | HPLC | Glutamatergic and dopaminergic neurons showed immature phenotypes. Moreover, mitochondrial function was compromised, with impaired respiration, altered membrane potential, and reduced network connectivity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio-Contreras, E.; Guasch-Capella, N.; Martínez-Pinteño, A.; Olivares-Berjaga, D.; Morén, C. The Potential of Hair Matrix for Biomarker Analysis in Schizophrenia. Int. J. Mol. Sci. 2025, 26, 8718. https://doi.org/10.3390/ijms26178718
Rubio-Contreras E, Guasch-Capella N, Martínez-Pinteño A, Olivares-Berjaga D, Morén C. The Potential of Hair Matrix for Biomarker Analysis in Schizophrenia. International Journal of Molecular Sciences. 2025; 26(17):8718. https://doi.org/10.3390/ijms26178718
Chicago/Turabian StyleRubio-Contreras, Enric, Nora Guasch-Capella, Albert Martínez-Pinteño, David Olivares-Berjaga, and Constanza Morén. 2025. "The Potential of Hair Matrix for Biomarker Analysis in Schizophrenia" International Journal of Molecular Sciences 26, no. 17: 8718. https://doi.org/10.3390/ijms26178718
APA StyleRubio-Contreras, E., Guasch-Capella, N., Martínez-Pinteño, A., Olivares-Berjaga, D., & Morén, C. (2025). The Potential of Hair Matrix for Biomarker Analysis in Schizophrenia. International Journal of Molecular Sciences, 26(17), 8718. https://doi.org/10.3390/ijms26178718