The Transcriptional and Translational Landscape of Plant Adaptation to Low Temperatures
Abstract
1. Introduction
2. Results
2.1. Assessment of the Level of Plant Stress Due to Low Temperatures
2.2. Sequencing of mRNA Libraries
2.3. Analysis of Primary Sequencing Results Using Principal Component Analysis (PCA)
2.4. Differential Expression Analysis
2.5. Differential Translation Analysis
2.6. Term Enrichment Analysis of Gene Ontologies
2.6.1. KEGG
2.6.2. GO:MF
2.6.3. GO:CC
2.6.4. GO:BP
2.6.5. WGCNA
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Cultivation of Experimental Plants
4.3. Creation of Low-Temperature Stress Conditions
4.4. Determination of Cold Stress Markers
4.5. Total RNA Isolation
4.6. Polysome Profiling
- Preparation of a sucrose gradient of four layers (50%, 35% and two layers of 20% each);
- Salt buffer: 400 mM Tris-HCl (pH 8.4), 200 mM KCl, 100 mM MgCl2;
- Polysome buffer: 4× saline buffer supplemented with 5.26 mM EGTA, 0.5% Triton X-100, 50 μg/mL cycloheximide and 50 μg/mL chloramphenicol;
- Ultracentrifugation at 175,000× g for 2 h 45 min at 4 °C;
- Precipitation of polysome fractions with isopropanol;
- Evaluation of the optical OD260 using Synergy H1 microplate reader (BioTek, USA).
4.7. Sequencing of mRNA Libraries
4.8. Primary Data Processing
- Adapter removal (TruSeq3);
- Exclusion of short reads (<30 nucleotides);
- Filtering for low linguistic complexity (<30%);
- Base correction and default quality filtering.
4.9. Classification of Reads
4.10. Differential Expression Analysis
4.11. GO Enrichment Analysis
- Experimental Level—Comparison between experimental conditions.
- Expression Dynamics—Categorisation of genes into groups with increased, decreased or unchanged expression.
- Representation Level—Identification of over- and under-represented terms.
- term_size ≤ 250—Maximum number of child terms;
- intersection_size ≥ 10—Minimum number of annotated genes for a term.
4.12. Data Processing and Visualisation
- Python:
- numpy—For working with arrays;
- scipy—For statistical analysis;
- pandas—For processing tabular data;
- seaborn, matplotlib—For plotting graphs and diagrams.
- R:
- tidyverse—a set of packages for processing and visual presentation of structured data.
4.13. Confirmation of Differential Expression Data by qPCR
4.14. WGCNA
5. Conclusions
- Development of a methodology for analysing gene co-expression networks at the translational level.
- The possibility of the existence of trans-level co-expression networks (i.e., co-expression networks whose modules extend to both transcription and translation) and means of studying co-expression networks at both the transcription stage and the translation stage simultaneously.
- Analysis and study of adaptation strategies specific to different types of plant cells. That is, a detailed, if possible, single-cell study of adaptation to low temperatures.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janská, A.; Maršík, P.; Zelenková, S.; Ovesná, J. Cold Stress and Acclimation—What Is Important for Metabolic Adjustment? Plant Biol. 2010, 3, 395–405. [Google Scholar] [CrossRef]
- Bhattacharya, A. Physiological Processes in Plants Under Low Temperature Stress; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Kazemi-Shahandashti, S.-S.; Maali-Amiri, R. Global Insights of Protein Responses to Cold Stress in Plants: Signaling, Defence, and Degradation. J. Plant Physiol. 2018, 226, 123–135. [Google Scholar] [CrossRef]
- Van Loon, L.C.; Rep, M.; Pieterse, C.M.J. Significance of Inducible Defense-Related Proteins in Infected Plants. Annu. Rev. Phytopathol. 2006, 44, 135–162. [Google Scholar] [CrossRef]
- Guo, X.; Dongfeng, L.; Kang, C. Cold Signaling in Plants: Insights into Mechanisms and Regulation. J. Integr. Plant Biol. 2018, 60, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ding, Y.; Yang, Y.; Song, C.; Wang, B.; Yang, S.; Guo, Y.; Gong, Z. Protein Kinases in Plant Responses to Drought, Salt, and Cold Stress. J. Integr. Plant Biol. 2021, 63, 53–78. [Google Scholar] [CrossRef] [PubMed]
- Golizadeh, F.; Kumleh, H.H. Physiological Responses and Expression Changes of Fatty Acid Metabolism–Related Genes in Wheat (Triticum Aestivum) Under Cold Stress. Plant Mol. Biol. Report. 2019, 37, 224–236. [Google Scholar] [CrossRef]
- Knight, M.R.; Knight, H. Low-temperature Perception Leading to Gene Expression and Cold Tolerance in Higher Plants. New Phytol. 2012, 195, 737–751. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, H.; Zhang, J.; Liu, P.; Chen, X.; Li, Z.; Xu, Y.; Lu, P.; Cao, P. Integrated Transcriptomics and Metabolomics Analysis to Characterize Cold Stress Responses in Nicotiana Tabacum. BMC Genom. 2017, 18, 496. [Google Scholar] [CrossRef]
- Mehrotra, S.; Verma, S.; Kumar, S.; Kumari, S.; Mishra, B.N. Transcriptional Regulation and Signalling of Cold Stress Response in Plants: An Overview of Current Understanding. Environ. Exp. Bot. 2020, 180, 104243. [Google Scholar] [CrossRef]
- Abdullah, S.N.A.; Azzeme, A.M.; Yousefi, K. Fine-Tuning Cold Stress Response Through Regulated Cellular Abundance and Mechanistic Actions of Transcription Factors. Front. Plant Sci. 2022, 13, 850216. [Google Scholar] [CrossRef]
- Munoz, A.; Castellano, M.M. Regulation of Translation Initiation under Abiotic Stress Conditions in Plants: Is It a Conserved or Not so Conserved Process among Eukaryotes? Comp. Funct. Genom. 2012, 2012, 406357. [Google Scholar] [CrossRef]
- Chothani, S.; Adami, E.; Ouyang, J.F.; Viswanathan, S.; Hubner, N.; Cook, A.S.; Schafer, S.; Rackham, O.J.L. deltaTE: Detection of Translationally Regulated Genes by Integrative Analysis of Ribo-seq and RNA-seq Data. Curr. Protoc. Mol. Biol. 2019, 129, e108. [Google Scholar] [CrossRef]
- Wang, T.; Cui, Y.; Jin, J.; Guo, J.; Wang, G.; Yin, X.; He, Q.Y.; Zhang, G. Translating mRNAs Strongly Correlate to Proteins in a Multivariate Manner and Their Translation Ratios Are Phenotype Specific. Nucleic Acids Res. 2013, 41, 4743–4754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xi, X.; Chen, X.; Wang, Y.; Zhou, M. Comparing Time-Series Transcriptomes between Chilling-Resistant and -Susceptible Rice Reveals Potential Transcription Factors Responding to Chilling Stress. Front. Plant Sci. 2024, 15, 1451403. [Google Scholar] [CrossRef]
- Ploidy Variation Induces Butterfly Effect on Chromatin Topology in Wheat—Jiao-2024-The Plant Journal-Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1111/tpj.16932 (accessed on 27 August 2025).
- Butterfly Effect: Natural Variation of a Chloroplast tRNA-Modifying Enzyme Leads to Pleiotropic Developmental Defects in Rice [OPEN] | The Plant Cell | Oxford Academic. Available online: https://academic.oup.com/plcell/article/32/7/2073/6115582 (accessed on 27 August 2025).
- Campos, P.S.; nia Quartin, V.; chicho Ramalho, J.; Nunes, M.A. Electrolyte Leakage and Lipid Degradation Account for Cold Sensitivity in Leaves of Coffea Sp. Plants. J. Plant Physiol. 2003, 160, 283–292. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts: I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M. Determination of Fructose in the Presence. Agric. Biol. Chem. 1968, 32, 701–706. [Google Scholar] [CrossRef]
- Lecampion, C.; Floris, M.; Fantino, J.R.; Robaglia, C.; Laloi, C. An Easy Method for Plant Polysome Profiling. J. Vis. Exp. (JoVE) 2016, 114, e54231. [Google Scholar] [CrossRef]
- FastQC. Available online: https://qubeshub.org/resources/fastqc (accessed on 22 August 2025).
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-Optimal Probabilistic RNA-Seq Quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef]
- Chen, Y.; Pal, B.; Visvader, J.E.; Smyth, G.K. Differential Methylation Analysis of Reduced Representation Bisulfite Sequencing Experiments Using edgeR. F1000Research 2018, 6, 2055. [Google Scholar] [CrossRef]
- Lex, A.; Gehlenborg, N.; Strobelt, H.; Vuillemot, R.; Pfister, H. UpSet: Visualization of Intersecting Sets. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1983–1992. [Google Scholar] [CrossRef] [PubMed]
- Reimand, J.; Arak, T.; Adler, P.; Kolberg, L.; Reisberg, S.; Peterson, H.; Vilo, J. G:Profiler—A Web Server for Functional Interpretation of Gene Lists (2016 Update). Nucleic Acids Res. 2016, 44, 83–89. [Google Scholar] [CrossRef]
- Anaconda Software Distribution. 2020. Available online: https://docs.anaconda.com (accessed on 22 August 2025).
- Project Jupyter. Available online: https://jupyter.org (accessed on 22 August 2025).
- Tange, O. GNU Parallel 20210822 (‘Kabul’). Zenodo 2021. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, N.; Reese, F.; Mortazavi, A. PyWGCNA: A Python Package for Weighted Gene Co-Expression Network Analysis. Bioinformatics 2023, 39, btad415. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suhorukova, A.V.; Pavlenko, O.S.; Sobolev, D.S.; Demyanchuk, I.S.; Popov, V.N.; Tyurin, A.A. The Transcriptional and Translational Landscape of Plant Adaptation to Low Temperatures. Int. J. Mol. Sci. 2025, 26, 8604. https://doi.org/10.3390/ijms26178604
Suhorukova AV, Pavlenko OS, Sobolev DS, Demyanchuk IS, Popov VN, Tyurin AA. The Transcriptional and Translational Landscape of Plant Adaptation to Low Temperatures. International Journal of Molecular Sciences. 2025; 26(17):8604. https://doi.org/10.3390/ijms26178604
Chicago/Turabian StyleSuhorukova, Aleksandra V., Olga S. Pavlenko, Denis S. Sobolev, Ilya S. Demyanchuk, Valery N. Popov, and Alexander A. Tyurin. 2025. "The Transcriptional and Translational Landscape of Plant Adaptation to Low Temperatures" International Journal of Molecular Sciences 26, no. 17: 8604. https://doi.org/10.3390/ijms26178604
APA StyleSuhorukova, A. V., Pavlenko, O. S., Sobolev, D. S., Demyanchuk, I. S., Popov, V. N., & Tyurin, A. A. (2025). The Transcriptional and Translational Landscape of Plant Adaptation to Low Temperatures. International Journal of Molecular Sciences, 26(17), 8604. https://doi.org/10.3390/ijms26178604