Comparative Study of Dexamethasone-Loaded Thermoresponsive In Situ Gels and Polymeric Micelles for Ocular Drug Delivery
Abstract
1. Introduction
2. Results
2.1. Physicochemical Characterization
2.2. Rheological Study
2.3. Mucoadhesion Study
2.4. In Vitro Drug Release Study
2.5. In Vitro Corneal-PAMPA
2.6. Ex Vivo Porcine Eye Study
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Sample Preparation
4.3. Measurement of Particle Size, Size Distribution, and Zeta Potential
4.4. Encapsulation Efficiency
4.5. Rheological Study
4.6. Mucoadhesion Study
4.7. In Vitro Drug Release Study
4.8. In Vitro Corneal-PAMPA
4.9. Ex Vivo Porcine Eye Permeability Study
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACN | Acetonitrile |
CD | Cyclodextrin |
DLS | Dynamic Light Scattering |
DS | Degree of Substitution |
DXM | Dexamethasone |
EE% | Encapsulation Efficiency |
HET-CAM | Hen’s Egg Test on Chorioallantoic Membrane |
HPBCD | (2-Hydroxypropyl)-β-Cyclodextrin |
HPLC | High Performance Liquid Chromatography |
MeOH | Methanol |
PAMPA | Parallel Artificial Membrane Permeability Assay |
PBS | Phosphate-Buffered Saline |
PDI | Polydispersity Index |
PEO | poly(ethylene oxide) |
PPO | poly(propylene oxide) |
SD | Standard Deviation |
STF | Simulated Tear Fluid |
t-ButOH | tert-Butanol |
TRE | D-Trehalose Dihydrate |
References
- Madamsetty, V.S.; Mohammadinejad, R.; Uzieliene, I.; Nabavi, N.; Dehshahri, A.; García-Couce, J.; Tavakol, S.; Moghassemi, S.; Dadashzadeh, A.; Makvandi, P.; et al. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater. Sci. Eng. 2022, 8, 1763–1790. [Google Scholar] [CrossRef]
- Gaballa, S.A.; Kompella, U.B.; Elgarhy, O.; Alqahtani, A.M.; Pierscionek, B.; Alany, R.G.; Abdelkader, H. Corticosteroids in ophthalmology: Drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv. Transl. Res. 2021, 11, 866–893. [Google Scholar] [CrossRef]
- Szalai, B.; Budai-Szűcs, M.; Kovács, A.; Berkó, S.; Gróf, I.; Deli, M.A.; Katona, G.; Balogh, G.T.; Jójárt-Laczkovich, O. The effect of mucoadhesive polymers on ocular permeation of thermoresponsive in situ gel containing dexamethasone–cyclodextrin complex. Int. J. Pharm. 2024, 667, 124848. [Google Scholar] [CrossRef]
- Xiang, Y.; Qiu, Z.; Ding, Y.; Du, M.; Gao, N.; Cao, H.; Zuo, H.; Cheng, H.; Gao, X.; Zheng, S.; et al. Dexamethasone-loaded ROS stimuli-responsive nanogels for topical ocular therapy of corneal neovascularization. J. Control. Release 2024, 372, 874–884. [Google Scholar] [CrossRef]
- Dang, M.; Shoichet, M.S. Long-Acting Ocular Injectables: Are We Looking in the Right Direction? Adv. Sci. 2023, 11, 2306463. [Google Scholar] [CrossRef]
- Meduri, A.; De Luca, L.; Oliverio, G.W.; Mancini, M.; Minutoli, L.; Silvagno, F.; Bergandi, L.; Aragona, P. Dexamethasone Intravitreal Injection in Diabetic Patients Undergoing Cataract Surgery: An Updated Literature Review. Retina 2025, 45, 1030–1042. [Google Scholar] [CrossRef]
- Cadth. Dexamethasone Intravitreal Implant (Ozurdex). Can. J. Health Technol. 2023, 3, 1–154. [Google Scholar] [CrossRef]
- Trivedi, R.H.; Wilson, M.E. A sustained-release intracanalicular dexamethasone insert (Dextenza) for pediatric cataract surgery. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2021, 25, 43–45. [Google Scholar] [CrossRef]
- Garg, A.; Agrawal, R.; Chauhan, C.S.; Deshmukh, R. In-situ gel: A smart carrier for drug delivery. Int. J. Pharm. 2024, 652, 123819. [Google Scholar] [CrossRef]
- Deshmukh, R.; Singh, R.; Mishra, S. Pharmaceutical In Situ Gel for Glaucoma: Recent Trends and Development with an Update on Research and Patents. Crit. Rev. Ther. Drug Carr. Syst. 2024, 41, 1–44. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, J.-H.; Meng, M.; Cui, N.; Dai, C.-Y.; Jia, Q.; Lee, E.-S.; Jiang, H.-B. An Overview on Thermosensitive Oral Gel Based on Poloxamer 407. Materials 2021, 14, 4522. [Google Scholar] [CrossRef]
- Abbas, M.N.; Khan, S.A.; Sadozai, S.K.; Khalil, I.A.; Anter, A.; El Fouly, M.; Osman, A.H.; Kazi, M. Nanoparticles Loaded Thermoresponsive In Situ Gel for Ocular Antibiotic Delivery against Bacterial Keratitis. Polymers 2022, 14, 1135. [Google Scholar] [CrossRef]
- Soliman, K.A.; Ullah, K.; Shah, A.; Jones, D.S.; Singh, T.R. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov. Today 2019, 24, 1575–1586. [Google Scholar] [CrossRef]
- Hirun, N.; Kraisit, P.; Tantishaiyakul, V. Thermosensitive Polymer Blend Composed of Poloxamer 407, Poloxamer 188 and Polycarbophil for the Use as Mucoadhesive In Situ Gel. Polymers 2022, 14, 1836. [Google Scholar] [CrossRef]
- Ponnusamy, C.; Sugumaran, A.; Krishnaswami, V.; Palanichamy, R.; Velayutham, R.; Natesan, S. Development and Evaluation of Polyvinylpyrrolidone K90 and Poloxamer 407 Self-Assembled Nanomicelles: Enhanced Topical Ocular Delivery of Artemisinin. Polymers 2021, 13, 3038. [Google Scholar] [CrossRef]
- Hirun, N.; Kraisit, P.; Santhan, S. Mixed Micellar Gel of Poloxamer Mixture for Improved Solubilization of Poorly Water-Soluble Ibuprofen and Use as Thermosensitive In Situ Gel. Pharmaceutics 2024, 16, 1055. [Google Scholar] [CrossRef]
- Szalai, B.; Jójárt-Laczkovich, O.; Kovács, A.; Berkó, S.; Balogh, G.T.; Katona, G.; Budai-Szűcs, M. Design and Optimization of In Situ Gelling Mucoadhesive Eye Drops Containing Dexamethasone. Gels 2022, 8, 561. [Google Scholar] [CrossRef]
- Shepelytskyi, Y.; Newman, C.J.; Grynko, V.; Seveney, L.E.; DeBoef, B.; Hane, F.T.; Albert, M.S. Cyclodextrin-Based Contrast Agents for Medical Imaging. Molecules 2020, 25, 5576. [Google Scholar] [CrossRef]
- Kovacs, T.; Nagy, P.; Panyi, G.; Szente, L.; Varga, Z.; Zakany, F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022, 14, 2559. [Google Scholar] [CrossRef]
- Chaudhari, P.; Ghate, V.M.; Lewis, S.A. Supramolecular cyclodextrin complex: Diversity, safety, and applications in ocular therapeutics. Exp. Eye Res. 2019, 189, 107829. [Google Scholar] [CrossRef]
- Giuliano, E.; Paolino, D.; Fresta, M.; Cosco, D. Drug-Loaded Biocompatible Nanocarriers Embedded in Poloxamer 407 Hydrogels as Therapeutic Formulations. Medicines 2019, 6, 7. [Google Scholar] [CrossRef]
- Samimi, M.S.; Mahboobian, M.; Mohammadi, M. Ocular toxicity assessment of nanoemulsion in-situ gel formulation of fluconazole. Hum. Exp. Toxicol. 2021, 40, 2039–2047. [Google Scholar] [CrossRef]
- Sofroniou, C.; Baglioni, M.; Mamusa, M.; Resta, C.; Doutch, J.; Smets, J.; Baglioni, P. Self-Assembly of Soluplus in Aqueous Solutions: Characterization and Prospectives on Perfume Encapsulation. ACS Appl. Mater. Interfaces 2022, 14, 14791–14804. [Google Scholar] [CrossRef]
- Pignatello, R.; Corsaro, R.; Bonaccorso, A.; Zingale, E.; Carbone, C.; Musumeci, T. Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Deliv. Transl. Res. 2022, 12, 1991–2006. [Google Scholar] [CrossRef]
- Mehra, N.; Aqil, M.; Sultana, Y. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: Formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study. Eur. J. Pharm. Sci. 2021, 159, 105735. [Google Scholar] [CrossRef]
- Adwan, S.; Al-Akayleh, F.; Qasmieh, M.; Obeidi, T. Enhanced Ocular Drug Delivery of Dexamethasone Using a Chitosan-Coated Soluplus®-Based Mixed Micellar System. Pharmaceutics 2024, 16, 1390. [Google Scholar] [CrossRef]
- Gohar, S.; Iqbal, Z.; Nasir, F.; Khattak, M.A.; e Maryam, G.; Pervez, S.; Alasmari, F.; Neau, S.H.; Zainab, S.R.; Ali, A.T.; et al. Self-assembled latanoprost loaded soluplus nanomicelles as an ophthalmic drug delivery system for the management of glaucoma. Sci. Rep. 2024, 14, 27051. [Google Scholar] [CrossRef]
- Wen, Y.; Ban, J.; Mo, Z.; Zhang, Y.; An, P.; Liu, L.; Xie, Q.; Du, Y.; Xie, B.; Zhan, X.; et al. A potential nanoparticle-loaded in situ gel for enhanced and sustained ophthalmic delivery of dexamethasone. Nanotechnology 2018, 29, 425101. [Google Scholar] [CrossRef]
- Wei, Y.; Li, C.; Zhu, Q.; Zhang, X.; Guan, J.; Mao, S. Comparison of thermosensitive in situ gels and drug-resin complex for ocular drug delivery: In vitro drug release and in vivo tissue distribution. Int. J. Pharm. 2020, 578, 119184. [Google Scholar] [CrossRef]
- Kurniawansyah, I.S.; Rusdiana, T.; Sopyan, I.; Ramoko, H.; Wahab, H.A.; Subarnas, A. In situ ophthalmic gel forming systems of poloxamer 407 and hydroxypropyl methyl cellulose mixtures for sustained ocular delivery of chloramphenicole: Optimization study by factorial design. Heliyon 2020, 6, e05365. [Google Scholar] [CrossRef]
- Permana, A.D.; Utami, R.N.; Layadi, P.; Himawan, A.; Juniarti, N.; Anjani, Q.K.; Utomo, E.; Mardikasari, S.A.; Arjuna, A.; Donnelly, R.F. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. Int. J. Pharm. 2021, 602, 120623. [Google Scholar] [CrossRef]
- Alami-Milani, M.; Zakeri-Milani, P.; Valizadeh, H.; Salehi, R.; Jelvehgari, M. Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone. Iran. J. Basic Med. Sci. 2018, 21, 153–164. [Google Scholar] [CrossRef]
- Alami-Milani, M.; Zakeri-Milani, P.; Valizadeh, H.; Fathi, M.; Salatin, S.; Salehi, R.; Jelvehgari, M. PLA–PCL–PEG–PCL–PLA based micelles for improving the ocular permeability of dexamethasone: Development, characterization, and in vitro evaluation. Pharm. Dev. Technol. 2020, 25, 704–719. [Google Scholar] [CrossRef]
- Luhar, M.; Viradiya, R.; Panjabi, S.; Patel, G. Nanotechnology in Ocular Drug Delivery: The Potential of Polymeric Micelles as a Drug Delivery Vehicle. J. Ocul. Pharmacol. Ther. 2025, 41, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, L.; Zhou, L.; Cheng, Y.; Cao, F. Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr. Polym. 2020, 227, 115356. [Google Scholar] [CrossRef]
- Sipos, B.; Földes, F.; Budai-Szűcs, M.; Katona, G.; Csóka, I. Comparative Study of TPGS and Soluplus Polymeric Micelles Embedded in Poloxamer 407 In Situ Gels for Intranasal Administration. Gels 2024, 10, 521. [Google Scholar] [CrossRef]
- Kaushal, N.; Kumar, M.; Tiwari, A.; Tiwari, V.; Sharma, K.; Sharma, A.; Marisetti, A.L.; Gupta, M.M.; Kazmi, I.; Alzarea, S.I.; et al. Polymeric Micelles Loaded In Situ Gel with Prednisolone Acetate for Ocular Inflammation: Development and Evaluation. Nanomedicine 2023, 18, 1383–1398. [Google Scholar] [CrossRef]
- Binkhathlan, Z.; Ali, R.; Alomrani, A.H.; Kalam, M.A.; Alshamsan, A.; Lavasanifar, A. Role of Polymeric Micelles in Ocular Drug Delivery: An Overview of Decades of Research. Mol. Pharm. 2023, 20, 5359–5382. [Google Scholar] [CrossRef]
- Safwat, M.A.; Mansour, H.F.; Hussein, A.K.; Abdelwahab, S.; Soliman, G.M. Polymeric micelles for the ocular delivery of triamcinolone acetonide: Preparation and in vivo evaluation in a rabbit ocular inflammatory model. Drug Deliv. 2020, 27, 1115–1124. [Google Scholar] [CrossRef]
- Syed, H.; Sailaja, A.K. Preparation and Characterization of Nanoparticulate Drug Delivery System for Naproxen Sodium Using Various Desolvating Agents. Nano Biomed. Eng. 2019, 11, 254–263. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Mohammadi-Jam, S.; Greenwood, R.W.; Waters, K.E. An overview of the temperature dependence of the zeta potential of aqueous suspensions. Results Eng. 2025, 27, 105698. [Google Scholar] [CrossRef]
- Moreddu, R.; Elsherif, M.; Butt, H.; Vigolo, D.; Yetisen, A.K. Contact lenses for continuous corneal temperature monitoring. RSC Adv. 2019, 9, 11433–11442. [Google Scholar] [CrossRef]
- Fathalla, Z.; Mustafa, W.W.; Abdelkader, H.; Moharram, H.; Sabry, A.M.; Alany, R.G. Hybrid thermosensitive-mucoadhesive in situ forming gels for enhanced corneal wound healing effect of L-carnosine. Drug Deliv. 2022, 29, 374–385. [Google Scholar] [CrossRef]
- Andreadis, I.I.; Karavasili, C.; Thomas, A.; Komnenou, A.; Tzimtzimis, M.; Tzetzis, D.; Andreadis, D.; Bouropoulos, N.; Fatouros, D.G. In Situ Gelling Electrospun Ocular Films Sustain the Intraocular Pressure-Lowering Effect of Timolol Maleate: In Vitro, Ex Vivo, and Pharmacodynamic Assessment. Mol. Pharm. 2022, 19, 274–286. [Google Scholar] [CrossRef]
- Bruschi, M.L. (Ed.) 5–Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing: Cambridge, UK, 2015; pp. 63–86. [Google Scholar] [CrossRef]
- Dargó, G.; Vincze, A.; Müller, J.; Kiss, H.J.; Nagy, Z.Z.; Balogh, G.T. Corneal-PAMPA: A novel, non-cell-based assay for prediction of corneal drug permeability. Eur. J. Pharm. Sci. 2019, 128, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, E.; Paolino, D.; Fresta, M.; Cosco, D. Mucosal Applications of Poloxamer 407-Based Hydrogels: An Overview. Pharmaceutics 2018, 10, 159. [Google Scholar] [CrossRef]
- Sedlarikova, J.; Janalikova, M.; Egner, P.; Pleva, P. Poloxamer-Based Mixed Micelles Loaded with Thymol or Eugenol for Topical Applications. ACS Omega 2024, 9, 23209–23219. [Google Scholar] [CrossRef] [PubMed]
- Jarzynska, K.; Ciura, K.; Gao, X.J.; Mikolajczyk, A.; Gao, X.; Puzyn, T. Understanding the zeta potential of nanomaterials through predictive nanoinformatics. Nano Today 2025, 64, 102783. [Google Scholar] [CrossRef]
- Abdulkarim, M.; Agulló, N.; Cattoz, B.; Griffiths, P.; Bernkop-Schnürch, A.; Borros, S.G.; Gumbleton, M. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles. Eur. J. Pharm. Biopharm. 2015, 97, 230–238. [Google Scholar] [CrossRef]
- Klahan, B.; O’rEilly, N.J.; Sigurdsson, H.H.; Chauhan, A.; Mering, S.; Fitzhenry, L. Delivery of Fenofibrate to Ocular Tissues using 2-Hydroxypropyl-β-cyclodextrin-Based Micelles. Int. J. Pharm. 2025, 673, 125417. [Google Scholar] [CrossRef]
- Bakhrushina, E.O.; Novozhilova, E.V.; Shumkova, M.M.; Pyzhov, V.S.; Nikonenko, M.S.; Bardakov, A.I.; Demina, N.B.; Krasnyuk, I.I. New Biopharmaceutical Characteristics of In Situ Systems Based on Poloxamer. Gels 2023, 9, 508. [Google Scholar] [CrossRef]
- Haghighatseir, N.; Mozafari, N.; Shadvand, E.; Ashrafi, H.; Daneshamouz, S.; Azadi, A. Mixed-Micelle in Situ Gel as a Candidate for Oral Inflammatory Ulcerative Diseases. AAPS Pharmscitech 2024, 25, 144. [Google Scholar] [CrossRef] [PubMed]
- Chary, P.S.; Bansode, A.; Rajana, N.; Bhavana, V.; Singothu, S.; Sharma, A.; Guru, S.K.; Bhandari, V.; Mehra, N.K. Enhancing breast cancer treatment: Comprehensive study of gefitinib-loaded poloxamer 407/TPGS mixed micelles through design, development, in-silico modelling, In-Vitro testing, and Ex-Vivo characterization. Int. J. Pharm. 2024, 657, 124109. [Google Scholar] [CrossRef] [PubMed]
- Cirri, M.; Maestrelli, F.; Nerli, G.; Mennini, N.; D’ambrosio, M.; Luceri, C.; Mura, P.A. Development of a Cyclodextrin-Based Mucoadhesive-Thermosensitive In Situ Gel for Clonazepam Intranasal Delivery. Pharmaceutics 2021, 13, 969. [Google Scholar] [CrossRef]
- Chen, L.-C.; Lin, S.-Y.; Cheng, W.-J.; Sheu, M.-T.; Chung, C.-Y.; Hsu, C.-H.; Lin, H.-L. Poloxamer sols endowed with in-situ gelability and mucoadhesion by adding hypromellose and hyaluronan for prolonging corneal retention and drug delivery. Drug Deliv. 2023, 30, 2158964. [Google Scholar] [CrossRef] [PubMed]
- Gurav, N.H.; Husukale, P.S. Development and Evaluation of In Situ Gel Formation for Treatment of Mouth Ulcer. Turk. J. Pharm. Sci. 2023, 20, 185–197. [Google Scholar] [CrossRef]
- Xu, X.; Weng, Y.; Xu, L.; Chen, H. Sustained release of avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery. Int. J. Biol. Macromol. 2013, 60, 272–276. [Google Scholar] [CrossRef]
- Abdeltawab, H.; Svirskis, D.; Sharma, M. Formulation strategies to modulate drug release from poloxamer based in situ gelling systems. Expert Opin. Drug Deliv. 2020, 17, 495–509. [Google Scholar] [CrossRef]
- Varela-Garcia, A.; Concheiro, A.; Alvarez-Lorenzo, C. Soluplus micelles for acyclovir ocular delivery: Formulation and cornea and sclera permeability. Int. J. Pharm. 2018, 552, 39–47. [Google Scholar] [CrossRef]
- Lorenzo-Veiga, B.; Sigurdsson, H.H.; Loftsson, T.; Alvarez-Lorenzo, C. Cyclodextrin–Amphiphilic Copolymer Supramolecular Assemblies for the Ocular Delivery of Natamycin. Nanomaterials 2019, 9, 745. [Google Scholar] [CrossRef]
- Ahmed, F.; Pakunlu, R.I.; Srinivas, G.; Brannan, A.; Bates, F.; Klein, M.L.; Minko, T.; Discher, D.E. Shrinkage of a Rapidly Growing Tumor by Drug-Loaded Polymersomes: pH-Triggered Release through Copolymer Degradation. Mol. Pharm. 2006, 3, 340–350. [Google Scholar] [CrossRef]
- Hägerström, H.; Paulsson, M.; Edsman, K. Evaluation of mucoadhesion for two polyelectrolyte gels in simulated physiological conditions using a rheological method. Eur. J. Pharm. Sci. 2000, 9, 301–309. [Google Scholar] [CrossRef]
- Schmolka, I.R. Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns. J. Biomed. Mater. Res. 1972, 6, 571–582. [Google Scholar] [CrossRef]
- Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Mori, M.; Del Fante, C.; Perotti, C.; Scudeller, L.; Caramella, C. Platelet lysate formulations based on mucoadhesive polymers for the treatment of corneal lesions. J. Pharm. Pharmacol. 2011, 63, 189–198. [Google Scholar] [CrossRef]
- Kiss, E.L.; Berkó, S.; Gácsi, A.; Kovács, A.; Katona, G.; Soós, J.; Csányi, E.; Gróf, I.; Harazin, A.; Deli, M.A.; et al. Development and Characterization of Potential Ocular Mucoadhesive Nano Lipid Carriers Using Full Factorial Design. Pharmaceutics 2020, 12, 682. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef]
- Muselík, J.; Komersová, A.; Kubová, K.; Matzick, K.; Skalická, B. A Critical Overview of FDA and EMA Statistical Methods to Compare In Vitro Drug Dissolution Profiles of Pharmaceutical Products. Pharmaceutics 2021, 13, 1703. [Google Scholar] [CrossRef] [PubMed]
- Vincze, A.; Dargó, G.; Rácz, A.; Balogh, G.T. A corneal-PAMPA-based in silico model for predicting corneal permeability. J. Pharm. Biomed. Anal. 2021, 203, 114218. [Google Scholar] [CrossRef] [PubMed]
- Vincze, A.; Dargó, G.; Balogh, G.T. Cornea-PAMPA as an Orthogonal in Vitro Physicochemical Model of Corneal Permeability. Period. Polytech. Chem. Eng. 2020, 64, 384–390. [Google Scholar] [CrossRef]
- Avdeef, A. Absorption and Drug Development: Solubility, Permeability, and Charge State; Wiley-Interscience: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Avdeef, A. Absorption and Drug Development: Solubility, Permeability, and Charge State, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
Sample | DH (nm) | PDI | ζ (mV) | EE% |
---|---|---|---|---|
SP | 69.46 ± 5.05 | 0.13 ± 0.05 | −7.72 ± 0.48 | 88.34% |
P407 | 33.05 ± 3.91 | 0.44 ± 0.13 | −11.02 ± 1.27 | 87.74% |
SP + P407 | 584.10 ±43.19 | 0.56 ± 0.04 | −0.0251 ± 0.0308 | 83.32% |
SP + P407 (r) | >10,000 | n.a. | n.a. | 87.84% |
Zero Order | First Order | Higuchi | Korsmeyer–Peppas | ||||||
---|---|---|---|---|---|---|---|---|---|
K ± SD | r2 | K ± SD | r2 | K ± SD | r2 | K ± SD | n | r2 | |
SP | 0.24 ± 0.01 | 0.6704 | 0.0042 ± 0.0005 | 0.8855 | 3.85 ±0.248 | 0.9861 | 4.92 ± 1.756 | 0.46 | 0.9948 |
P407 | 0.22 ± 0.01 | 0.8175 | 0.0036 ± 0.0001 | 0.9415 | 3.49 ± 0.083 | 0.9704 | 2.61 ± 1.309 | 0.58 | 0.9860 |
SP + P407 | 0.17 ± 0.03 | 0.5418 | 0.0026 ± 0.0007 | 0.7207 | 2.82 ± 0.542 | 0.9282 | 5.08 ± 5.293 | 0.45 | 0.9877 |
SP + P407 (r) | 0.10 ± 0.01 | 0.7762 | 0.0012 ± 0.0002 | 0.8269 | 1.56 ± 0.199 | 0.9623 | 1.48 ± 1.368 | 0.56 | 0.9904 |
Suspension | 10.5 ± 1.2 | 0.3426 | 0.15 ± 0.03 | 0.5657 | 21.3 ± 3.1 | 0.9236 | 25.0 ± 5.5 | 0.36 | 0.9945 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szalai, B.; Jójárt-Laczkovich, O.; Kovács, A.; Berkó, S.; Sipos, B.; Katona, G.; Budai-Szűcs, M. Comparative Study of Dexamethasone-Loaded Thermoresponsive In Situ Gels and Polymeric Micelles for Ocular Drug Delivery. Int. J. Mol. Sci. 2025, 26, 8414. https://doi.org/10.3390/ijms26178414
Szalai B, Jójárt-Laczkovich O, Kovács A, Berkó S, Sipos B, Katona G, Budai-Szűcs M. Comparative Study of Dexamethasone-Loaded Thermoresponsive In Situ Gels and Polymeric Micelles for Ocular Drug Delivery. International Journal of Molecular Sciences. 2025; 26(17):8414. https://doi.org/10.3390/ijms26178414
Chicago/Turabian StyleSzalai, Boglárka, Orsolya Jójárt-Laczkovich, Anita Kovács, Szilvia Berkó, Bence Sipos, Gábor Katona, and Mária Budai-Szűcs. 2025. "Comparative Study of Dexamethasone-Loaded Thermoresponsive In Situ Gels and Polymeric Micelles for Ocular Drug Delivery" International Journal of Molecular Sciences 26, no. 17: 8414. https://doi.org/10.3390/ijms26178414
APA StyleSzalai, B., Jójárt-Laczkovich, O., Kovács, A., Berkó, S., Sipos, B., Katona, G., & Budai-Szűcs, M. (2025). Comparative Study of Dexamethasone-Loaded Thermoresponsive In Situ Gels and Polymeric Micelles for Ocular Drug Delivery. International Journal of Molecular Sciences, 26(17), 8414. https://doi.org/10.3390/ijms26178414