Neural Correlates of Borderline Personality Disorder (BPD) Based on Electroencephalogram (EEG)—A Mechanistic Review
Abstract
1. Introduction
2. Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection Criteria
2.3. Screening Process
2.3.1. Title and Abstract Screening
2.3.2. Full-Text Assessment
2.4. EEG Frequency Bands
3. Results
3.1. Participants’ Characteristics
3.2. EEG Paradigms and Tasks
3.3. Recording Setups and Durations
3.4. EEG Measures and Frequency Bands
3.5. Clinical and Psychological Measures
3.6. Comparators and Classification Work
3.7. EEG Outcomes in BPD
3.7.1. Resting State Spectral Power
3.7.2. Frontal Alpha Asymmetry (FAA/FEA) and Approach–Withdrawal Tendencies
3.7.3. Reward/Feedback Processing (Time–Frequency EEG and EEG–fMRI)
3.7.4. Arousal Regulation and EEG-Vigilance
3.7.5. Network Dynamics: Microstates and Connectivity
3.7.6. Pain, Dissociation, and Theta Dynamics
3.7.7. Clinical EEG Abnormalities and Activation Protocols
3.7.8. Emotion Regulation (Reappraisal) and Frontal Theta/Connectivity
3.7.9. Diagnostic Differentiation and Machine Learning
3.8. Quality of Evidence and Risk of Bias
4. Discussion
4.1. Frontal EEG Asymmetry and Approach/Withdrawal Tendencies
4.2. Heightened Arousal and Hypervigilance
4.3. Neural Correlates of Emotion Regulation and Dissociation
4.4. EEG Abnormalities and Comorbidities
4.5. Role of Childhood Trauma and Mentalization Deficits
4.6. Resting State EEG Patterns
5. Limitations and Future Directions
5.1. Methodological Heterogeneity and Small Sample Sizes
5.2. Comorbidity and Medication Confounds
5.3. Task-Specific vs. Resting State Discrepancies
5.4. Underexplored Mechanisms: Childhood Trauma, Mentalization, and Dissociation
5.5. Toward Personalized EEG Biomarkers and Treatment
5.6. The Lack of Formulated Definitions of EEG Frequency Bands
5.7. Integrating Cross-Cultural and Developmental Perspectives
5.8. Broadening Multimodal Approaches and Collaboration
5.9. EEG in BPD—Chance for Neurofeedback?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leichsenring, F.; Fonagy, P.; Heim, N.; Kernberg, O.F.; Leweke, F.; Luyten, P.; Salzer, S.; Spitzer, C.; Steinert, C. Borderline personality disorder: A comprehensive review of diagnosis and clinical presentation, etiology, treatment, and current controversies. World Psychiatry 2024, 23, 4–25. [Google Scholar] [CrossRef]
- Grant, B.F.; Chou, S.P.; Goldstein, R.B.; Huang, B.; Stinson, F.S.; Saha, T.D.; Smith, S.M.; Dawson, D.A.; Pulay, A.J.; Pickering, R.P.; et al. Prevalence, correlates, disability, and comorbidity of DSM-IV borderline personality disorder: Results from the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions. J. Clin. Psychiatry 2008, 69, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Bozzatello, P.; Blua, C.; Brandellero, D.; Baldassarri, L.; Brasso, C.; Rocca, P.; Bellino, S. Gender differences in borderline personality disorder: A narrative review. Front. Psychiatry 2024, 15, 1320546. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Townsend, M.L.; Tan, W.J.; Grenyer, B.F.S. Sex differences in borderline personality disorder: A scoping review. PLoS ONE 2022, 17, e0279015. [Google Scholar] [CrossRef]
- Wetterborg, D.; Långström, N.; Andersson, G.; Enebrink, P. Borderline personality disorder: Prevalence and psychiatric comorbidity among male offenders on probation in Sweden. Compr. Psychiatry 2015, 62, 63–70. [Google Scholar] [CrossRef]
- Paris, J. Why Psychiatrists are Reluctant to Diagnose: Borderline Personality Disorder. Psychiatry 2007, 4, 35–39. [Google Scholar]
- Brüne, M. Borderline Personality Disorder: Why ‘fast and furious’? Evol. Med. Public Health 2016, 2016, 52–66. [Google Scholar] [CrossRef]
- Bozzatello, P.; Bellino, S.; Bosia, M.; Rocca, P. Early Detection and Outcome in Borderline Personality Disorder. Front. Psychiatry 2019, 10, 710. [Google Scholar] [CrossRef]
- Guilé, J.M.; Boissel, L.; Alaux-Cantin, S.; de La Rivière, S.G. Borderline personality disorder in adolescents: Prevalence, diagnosis, and treatment strategies. Adolesc. Health Med. Ther. 2018, 9, 199–210. [Google Scholar] [CrossRef]
- Videler, A.C.; Hutsebaut, J.; Schulkens, J.E.M.; Sobczak, S.; van Alphen, S.P.J. A Life Span Perspective on Borderline Personality Disorder. Curr. Psychiatry Rep. 2019, 21, 51. [Google Scholar] [CrossRef]
- Penders, K.A.P.; Peeters, I.G.P.; Metsemakers, J.F.M.; van Alphen, S.P.J. Personality Disorders in Older Adults: A Review of Epidemiology, Assessment, and Treatment. Curr. Psychiatry Rep. 2020, 22, 14. [Google Scholar] [CrossRef]
- De Moor, M.H.; Distel, M.A.; Trull, T.J.; Boomsma, D.I. Assessment of borderline personality features in population samples: Is the Personality Assessment Inventory-Borderline Features scale measurement invariant across sex and age? Psychol. Assess. 2009, 21, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Mungo, A.; Hein, M.; Hubain, P.; Loas, G.; Fontaine, P. Impulsivity and its Therapeutic Management in Borderline Personality Disorder: A Systematic Review. Psychiatr. Q. 2020, 91, 1333–1362. [Google Scholar] [CrossRef] [PubMed]
- Cattane, N.; Rossi, R.; Lanfredi, M.; Cattaneo, A. Borderline personality disorder and childhood trauma: Exploring the affected biological systems and mechanisms. BMC Psychiatry 2017, 17, 221. [Google Scholar] [CrossRef]
- Donegan, N.H.; Sanislow, C.A.; Blumberg, H.P.; Fulbright, R.K.; Lacadie, C.; Skudlarski, P.; Gore, J.C.; Olson, I.R.; McGlashan, T.H.; Wexler, B.E. Amygdala hyperreactivity in borderline personality disorder: Implications for emotional dysregulation. Biol. Psychiatry 2003, 54, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Paulus, M.P.; Feinstein, J.S.; Castillo, G.; Simmons, A.N.; Stein, M.B. Dose-dependent decrease of activation in bilateral amygdala and insula by lorazepam during emotion processing. Arch. Gen. Psychiatry 2005, 62, 282–288. [Google Scholar] [CrossRef]
- Ripoll, L.H. Psychopharmacologic treatment of borderline personality disorder. Dialogues Clin. Neurosci. 2013, 15, 213–224. [Google Scholar] [CrossRef]
- Tassone, V.K.; Gholamali Nezhad, F.; Demchenko, I.; Rueda, A.; Bhat, V. Amygdala biomarkers of treatment response in major depressive disorder: An fMRI systematic review of SSRI antidepressants. Psychiatry Res. Neuroimaging 2024, 338, 111777. [Google Scholar] [CrossRef]
- Klasen, M.; Zvyagintsev, M.; Schwenzer, M.; Mathiak, K.A.; Sarkheil, P.; Weber, R.; Mathiak, K. Quetiapine modulates functional connectivity in brain aggression networks. Neuroimage 2013, 75, 20–26. [Google Scholar] [CrossRef]
- Stoffers-Winterling, J.M.; Storebø, O.J.; Pereira Ribeiro, J.; Kongerslev, M.T.; Völlm, B.A.; Mattivi, J.T.; Faltinsen, E.; Todorovac, A.; Jørgensen, M.S.; Callesen, H.E.; et al. Pharmacological interventions for people with borderline personality disorder. Cochrane Database Syst. Rev. 2022, 11, CD012956. [Google Scholar] [CrossRef]
- Sicorello, M.; Schmahl, C. Emotion dysregulation in borderline personality disorder: A fronto-limbic imbalance? Curr. Opin. Psychol. 2021, 37, 114–120. [Google Scholar] [CrossRef]
- Lis, E.; Greenfield, B.; Henry, M.; Guilé, J.M.; Dougherty, G. Neuroimaging and genetics of borderline personality disorder: A review. J. Psychiatry Neurosci. 2007, 32, 162–173. [Google Scholar]
- Schmahl, C.; Berne, K.; Krause, A.; Kleindienst, N.; Valerius, G.; Vermetten, E.; Bohus, M. Hippocampus and amygdala volumes in patients with borderline personality disorder with or without posttraumatic stress disorder. J Psychiatry Neurosci. 2009, 34, 289–295. [Google Scholar] [PubMed]
- Opitz, B. Memory function and the hippocampus. Front. Neurol. Neurosci. 2014, 34, 51–59. [Google Scholar] [PubMed]
- Lei, X.; Zhong, M.; Zhang, B.; Yang, H.; Peng, W.; Liu, Q.; Zhang, Y.; Yao, S.; Tan, C.; Yi, J. Structural and Functional Connectivity of the Anterior Cingulate Cortex in Patients With Borderline Personality Disorder. Front. Neurosci. 2019, 13, 971. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Ahern, G.L.; Lane, R.D. The role of anterior and midcingulate cortex in emotional awareness: A domain-general processing perspective. Handb. Clin. Neurol. 2019, 166, 89–101. [Google Scholar]
- Golchert, J.; Smallwood, J.; Jefferies, E.; Liem, F.; Huntenburg, J.M.; Falkiewicz, M.; Lauckner, M.E.; Oligschläger, S.; Villringer, A.; Margulies, D.S. In need of constraint: Understanding the role of the cingulate cortex in the impulsive mind. Neuroimage 2017, 146, 804–813. [Google Scholar] [CrossRef]
- Niedermeyer, E.; da Silva, F.L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th ed.; Lippincott Williams & Wilkins: Ambler, PA, USA, 2005. [Google Scholar]
- Luck, S.J. An Introduction to the Event-Related Potential Technique, 2nd ed.; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Sanei, S.; Chambers, J.A. EEG Signal Processing, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Handy, T.C. Event-Related Potentials: A Methods Handbook; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Smith, S.J. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 2005, 76 (Suppl. S2), ii2–ii7. [Google Scholar] [CrossRef]
- Michel, C.M.; Murray, M.M.; Lantz, G.; Gonzalez, S.; Spinelli, L.; de Peralta, R.G. EEG source imaging. Clin. Neurophysiol. 2004, 115, 2195–2222. [Google Scholar] [CrossRef]
- Hooley, J.M. Borderline Personality Disorder, Borderline Traits, and Brain Structure. Psychiatry Cogn. Neurosci. Neuroimaging 2020, 5, 638–639. [Google Scholar] [CrossRef]
- Mecarelli, O. (Ed.) Past, Present and Future of the EEG. In Clinical Electroencephalography; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Schomer, D.L. Historical Aspects of Electroencephalography. In Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 7th ed.; online ed.; Schomer, D.L., da Silva, F.H.L., Eds.; Oxford Academic: New York, NY, USA, 2017. [Google Scholar]
- Kane, N.; Acharya, J.; Benickzy, S.; Caboclo, L.; Finnigan, S.; Kaplan, P.W.; Shibasaki, H.; Pressler, R.; van Putten, M.J.A.M. A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Revision 2017. Clin. Neurophysiol. Pract. 2017, 2, 170–185, Erratum in Clin. Neurophysiol. Pract. 2019, 4, 133. [Google Scholar] [CrossRef]
- Attar, E.T. Review of electroencephalography signals approaches for mental stress assessment. Neurosci. J. 2022, 27, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Beeney, J.E.; Levy, K.N.; Gatzke-Kopp, L.M.; Hallquist, M.N. EEG asymmetry in borderline personality disorder and depression following rejection. Personal. Disord. Theory Res. Treat. 2014, 5, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Jo, S.H.; Jeon, H.J.; Choo, B.; Seok, J.H.; Shin, H.; Kim, I.Y.; Choi, S.W.; Koo, B.H. Neurophysiological insights into impaired mentalization in borderline personality disorder an electroencephalography study. Front. Psychiatry 2024, 14, 1293347. [Google Scholar] [CrossRef] [PubMed]
- Popkirov, S.; Flasbeck, V.; Schlegel, U.; Juckel, G.; Brüne, M. Childhood trauma and dissociative symptoms predict frontal EEG asymmetry in borderline personality disorder. J. Trauma Dissociation 2019, 20, 32–47. [Google Scholar] [CrossRef]
- Flasbeck, V.; Popkirov, S.; Brüne, M. Frontal EEG asymmetry in borderline personality disorder is associated with alexithymia. Borderline Personal. Disord. Emot. Dysregulation 2017, 4, 20. [Google Scholar] [CrossRef]
- Snyder, S.; Pitts, W.M., Jr. Electroencephalography of DSM-III borderline personality disorder. Acta Psychiatr. Scandinavica. 1984, 69, 129–134. [Google Scholar] [CrossRef]
- Deiber, M.P.; Piguet, C.; Berchio, C.; Michel, C.M.; Perroud, N.; Ros, T. Resting-State EEG Microstates and Power Spectrum in Borderline Personality Disorder: A High-Density EEG Study. Brain Topogr. 2024, 37, 397–409. [Google Scholar] [CrossRef]
- Russ, M.J.; Campbell, S.S.; Kakuma, T.; Harrison, K.; Zanine, E. EEG theta activity and pain insensitivity in self-injurious borderline patients. Psychiatry Res. 1999, 89, 201–214. [Google Scholar] [CrossRef]
- Arikan, M.K.; Metin, B.; Günver, M.G.; Tarhan, N. Borderline Personality and Bipolar Disorders Cannot Be Differentiated Electrophysiologically. Clin. EEG Neurosci. 2019, 50, 383–388. [Google Scholar] [CrossRef]
- Ogiso, Y.; Moriya, N.; Ikuta, N.; Maher-Nishizono, A.; Takase, M.; Miyake, Y.; Minakawa, K. Relationship between clinical symptoms and EEG findings in borderline personality disorder. Psychiatry Clin. Neurosci. 1993, 47, 37–46. [Google Scholar] [CrossRef]
- Kramer, L.; Sander, C.; Bertsch, K.; Gescher, D.M.; Cackowski, S.; Hegerl, U.; Herpertz, S.C. EEG-vigilance regulation in Borderline Personality Disorder. Int. J. Psychophysiol. 2019, 139, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Schauer, P.A.; Rauh, J.; Leicht, G.; Andreou, C.; Mulert, C. Altered Oscillatory Responses to Feedback in Borderline Personality Disorder are Linked to Symptom Severity. Brain Topogr. 2019, 32, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Selvaraj, C.; Sivakumar, S. Electroencephalogram Abnormalities in Borderline Personality Disorder. Ann. Indian Psychiatry 2019, 3, 110–115. [Google Scholar] [CrossRef]
- Rezaei, S.; Azarmi, A.; Rohampour, K. Altered EEG Power Spectrum and Coherence in Students With Borderline Personality Disorder. Casp. J. Neurol. Sci. 2024, 10, 294–305. [Google Scholar] [CrossRef]
- Hegerl, U.; Stein, M.; Mulert, C.; Mergl, R.; Olbrich, S.; Dichgans, E.; Rujescu, D.; Pogarell, O. EEG-vigilance differences between patients with borderline personality disorder, patients with obsessive-compulsive disorder and healthy controls. Eur. Arch. Psychiatry Clin. Neurosci. 2008, 258, 137–143. [Google Scholar] [CrossRef]
- Stewart, J.G.; Singleton, P.; Benau, E.M.; Foti, D.; Allchurch, H.; Kaplan, C.S.; Aguirre, B.; Auerbach, R.P. Neurophysiological activity following rewards and losses among female adolescents and young adults with borderline personality disorder. J. Abnorm. Psychol. 2019, 128, 610–621. [Google Scholar] [CrossRef]
- Nazari, M.J.; Shalbafan, M.; Eissazade, N.; Khalilian, E.; Vahabi, Z.; Masjedi, N.; Ghidary, S.S.; Saadat, M.; Sadegh-Zadeh, S.A. A machine learning approach for differentiating bipolar disorder type II and borderline personality disorder using electroencephalography and cognitive abnormalities. PLoS ONE 2024, 19, e0303699. [Google Scholar] [CrossRef]
- Cowdry, R.W.; Pickar, D.; Davies, R. Symptoms and EEG findings in the borderline syndrome. Int. J. Psychiatry Med. 1986, 15, 201–211. [Google Scholar] [CrossRef]
- Pop-Jordanova, N.; Markovska-Simoska, S.; Milovanovic, M.; Lecic-Tosevski, D. Analysis of EEG Characteristics and Coherence in Patients Diagnosed as Borderline Personality. Prilozi 2019, 40, 57–68. [Google Scholar] [CrossRef]
- De la Fuente, J.M.; Tugendhaft, P.; Mavroudakis, N. Electroencephalographic abnormalities in borderline personality disorder. Psychiatry Res. 1998, 77, 131–138. [Google Scholar] [CrossRef]
- Cornelius, J.R.; Brenner, R.P.; Soloff, P.H.; Schulz, S.C.; Tumuluru, R.V. EEG abnormalities in borderline personality disorder: Specific or nonspecific. Biol. Psychiatry 1986, 21, 977–980. [Google Scholar] [CrossRef]
- Schauer, P.A.; Rauh, J.; Biedermann, S.V.; Haaf, M.; Steinmann, S.; Leicht, G.; Mulert, C. Simultaneous EEG-fMRI reveals theta network alterations during reward feedback processing in borderline personality disorder. Sci. Rep. 2021, 11, 17336. [Google Scholar] [CrossRef] [PubMed]
- Haaf, M.; Polomac, N.; Starcevic, A.; Lack, M.; Kellner, S.; Dohrmann, A.L.; Fuger, U.; Steinmann, S.; Rauh, J.; Nolte, G.; et al. Frontal theta oscillations during emotion regulation in people with borderline personality disorder. BJPsych. Open 2024, 10, e58. [Google Scholar] [CrossRef] [PubMed]
- Vukojević, J.; Mulc, D.; Kinder, I.; Jovičić, E.; Friganović, K.; Savić, A.; Cifrek, M.; Vidović, D. Borderline and Depression: A Thin EEG Line. Clin. EEG Neurosci. 2023, 54, 224–227. [Google Scholar] [CrossRef]
- Stead, V.E.; Schmidt, L.A.; Crowley, M.J.; Dyce, L.; Hall, G.B.; Van Lieshout, R.J.; Boylan, K. Frontal EEG asymmetry moderates the relation between borderline personality disorder features and feelings of social rejection in adolescents. Dev. Psychopathol. 2023, 35, 876–890. [Google Scholar] [CrossRef]
- Harmon-Jones, E.; Gable, P.A. On the role of asymmetric frontal cortical activity in approach and withdrawal motivation: An updated review of the evidence. Psychophysiology 2018, 55, e12879. [Google Scholar] [CrossRef]
- Wiesenfeller, J.; Flasbeck, V.; Brown, E.C.; Brüne, M. Approach and Avoidance Behavior in Female Patients with Borderline Personality Disorder. Front. Behav. Neurosci. 2020, 14, 588874. [Google Scholar] [CrossRef]
- Gray, J.A. The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal System; Clarendon Press/Oxford University Press: Oxford, UK, 1982. [Google Scholar]
- Carver, C.S.; White, T.L. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. J. Personal. Soc. Psychol. 1994, 67, 319–333. [Google Scholar] [CrossRef]
- Davidson, R.J. What does the prefrontal cortex “do” in affect: Perspectives on frontal EEG asymmetry research. Biol. Psychol. 2004, 67, 219–233. [Google Scholar] [CrossRef]
- Ebner-Priemer, U.W.; Welch, S.S.; Grossman, P.; Reisch, T.; Linehan, M.M.; Bohus, M. Psychophysiological ambulatory assessment of affective dysregulation in borderline personality disorder. Psychiatry Res. 2007, 150, 265–275. [Google Scholar] [CrossRef]
- Schmahl, C.; Bremner, J.D. Neuroimaging in borderline personality disorder. J. Psychiatr. Res. 2006, 40, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Krause-Utz, A.; Frost, R.; Winter, D.; Elzinga, B.M. Dissociation and Alterations in Brain Function and Structure: Implications for Borderline Personality Disorder. Curr. Psychiatry Rep. 2017, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Krause-Utz, A.; Winter, D.; Niedtfeld, I.; Schmahl, C. The latest neuroimaging findings in borderline personality disorder. Curr. Psychiatry Rep. 2014, 16, 438. [Google Scholar] [CrossRef] [PubMed]
- Lanius, R.A.; Brand, B.; Vermetten, E.; Frewen, P.A.; Spiegel, D. The dissociative subtype of posttraumatic stress disorder: Rationale, clinical and neurobiological evidence, and implications. Depress. Anxiety 2012, 29, 701–708. [Google Scholar] [CrossRef]
- Lieb, K.; Zanarini, M.C.; Schmahl, C.; Linehan, M.M.; Bohus, M. Borderline personality disorder. Lancet 2004, 364, 453–461. [Google Scholar] [CrossRef]
- Koenigsberg, H.W.; Fan, J.; Ochsner, K.N.; Liu, X.; Guise, K.; Pizzarello, S.; Dorantes, C.; Tecuta, L.; Guerreri, S.; Goodman, M.; et al. Neural correlates of using distancing to regulate emotional responses to social situations. Neuropsychologia 2010, 48, 1813–1822. [Google Scholar] [CrossRef]
- Cullen, K.R.; Vizueta, N.; Thomas, K.M.; Han, G.J.; Lim, K.O.; Camchong, J.; Mueller, B.A.; Bell, C.H.; Heller, M.D.; Schulz, S.C. Amygdala functional connectivity in young women with borderline personality disorder. Brain Connect. 2011, 1, 61–71. [Google Scholar] [CrossRef]
- Zanarini, M.C.; Frankenburg, F.R.; Dubo, E.D.; Sickel, A.E.; Trikha, A.; Levin, A.; Reynolds, V. Axis II comorbidity of borderline personality disorder. Compr. Psychiatry 1998, 39, 296–302. [Google Scholar] [CrossRef]
- Paris, J. Borderline personality disorder. CMAJ 2005, 172, 1579–1583. [Google Scholar] [CrossRef]
- Philipsen, A.; Limberger, M.F.; Lieb, K.; Feige, B.; Kleindienst, N.; Ebner-Priemer, U.; Barth, J.; Schmahl, C.; Bohus, M. Attention-deficit hyperactivity disorder as a potentially aggravating factor in borderline personality disorder. Br. J. Psychiatry 2008, 192, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Arns, M.; Conners, C.K.; Kraemer, H.C. A decade of EEG Theta/Beta Ratio Research in ADHD: A meta-analysis. J. Atten. Disord. 2013, 17, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.; Fonagy, P. Mentalization based treatment for borderline personality disorder. World Psychiatry 2010, 9, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Fonagy, P.; Bateman, A. The development of borderline personality disorder--a mentalizing model. J. Pers. Disord. 2008, 22, 4–21. [Google Scholar] [CrossRef]
- Heim, C.; Binder, E.B. Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp. Neurol. 2012, 233, 102–111. [Google Scholar] [CrossRef]
- Jedd, K.; Hunt, R.H.; Cicchetti, D.; Hunt, E.; Cowell, R.A.; Rogosch, F.A.; Toth, S.L.; Thomas, K.M. Long-term consequences of childhood maltreatment: Altered amygdala functional connectivity. Dev. Psychopathol. 2015, 27 Pt 2, 1577–1589. [Google Scholar] [CrossRef]
- Rao, S.; Broadbear, J. Borderline personality disorder and depressive disorder. Australas Psychiatry 2019, 27, 573–577. [Google Scholar] [CrossRef]
- Zimmerman, M.; Morgan, T.A. The relationship between borderline personality disorder and bipolar disorder. Dialogues Clin. Neurosci. 2013, 15, 155–169. [Google Scholar] [CrossRef]
- Bulbena-Cabré, A.; Perez-Rodriguez, M.M.; Porges, S.; Bulbena, A.; Goodman, M. Understanding Anxiety in Borderline Personality Disorder. Curr. Treat. Options Psychiatry 2017, 4, 281–294. [Google Scholar] [CrossRef]
- Ford, J.D.; Courtois, C.A. Complex PTSD and borderline personality disorder. Borderline Personal. Disord. Emot. Dysregulation 2021, 8, 16. [Google Scholar] [CrossRef]
- Kienast, T.; Stoffers, J.; Bermpohl, F.; Lieb, K. Borderline personality disorder and comorbid addiction: Epidemiology and treatment. Dtsch. Ärzteblatt Int. 2014, 111, 280–286. [Google Scholar]
- Aiyer, R.; Novakovic, V.; Barkin, R.L. A systematic review on the impact of psychotropic drugs on electroencephalogram waveforms in psychiatry. Postgrad. Med. 2016, 128, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Hyun, J.; Baik, M.J.; Kang, U.G. Effects of Psychotropic Drugs on Quantitative EEG among Patients with Schizophrenia-spectrum Disorders. Clin. Psychopharmacol. Neurosci. 2011, 9, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Bozzatello, P.; Rocca, P.; Baldassarri, L.; Bosia, M.; Bellino, S. The Role of Trauma in Early Onset Borderline Personality Disorder: A Biopsychosocial Perspective. Front. Psychiatry 2021, 12, 721361. [Google Scholar] [CrossRef]
- Goodman, M.; Yehuda, R. The Relationship Between Psychological Trauma and Borderline Personality Disorder. Psychiatr. Ann. 2002, 32, 337–345. [Google Scholar] [CrossRef]
- Freeman, C. What is mentalizing? An overview. Br. J. Psychother. 2016, 32, 189–201. [Google Scholar] [CrossRef]
- Luyten, P.; Campbell, C.; Fonagy, P. Borderline personality disorder, complex trauma, and problems with self and identity: A social-communicative approach. J. Personal. 2020, 88, 88–105. [Google Scholar] [CrossRef]
- Rishede, M.Z.; Juul, S.; Bo, S.; Gondan, M.; Bjerrum Møeller, S.; Simonsen, S. Personality Functioning and Mentalizing in Patients With Subthreshold or Diagnosed Borderline Personality Disorder: Implications for ICD-11. Front. Psychiatry 2021, 12, 634332. [Google Scholar] [CrossRef]
- Al-Shamali, H.F.; Winkler, O.; Talarico, F.; Greenshaw, A.J.; Forner, C.; Zhang, Y.; Vermetten, E.; Burback, L. A systematic scoping review of dissociation in borderline personality disorder and implications for research and clinical practice: Exploring the fog. Aust. N. Z. J. Psychiatry 2022, 56, 1252–1264. [Google Scholar] [CrossRef]
- Wagner-Skacel, J.; Riedl, D.; Kampling, H.; Lampe, A. Mentalization and dissociation after adverse childhood experiences. Sci. Rep. 2022, 12, 6809. [Google Scholar] [CrossRef]
- Katzman, W.; Papouchis, N. Effects of Childhood Trauma on Mentalization Capacities and Dissociative Experiences. J. Trauma Dissociation 2023, 24, 284–295. [Google Scholar] [CrossRef]
- Bablani, A.; Edla, D.R.; Dodia, S. Classification of EEG data using k-nearest neighbor approach for concealed information test. Procedia Comput. Sci. 2018, 143, 242–249. [Google Scholar] [CrossRef]
- Richhariya, B.; Tanveer, M. EEG signal classification using universum support vector machine. Expert Syst. Appl. 2018, 106, 169–182. [Google Scholar]
- Bastos, N.S.; Marques, B.P.; Adamatti, D.F.; Billa, C.Z. Analyzing EEG Signals Using Decision Trees: A Study of Modulation of Amplitude. Comput. Intell Neurosci. 2020, 2020, 3598416. [Google Scholar] [CrossRef]
- Munson, K.A.; Janney, C.A.; Goodwin, K.; Nagalla, M. Cultural Representations of Borderline Personality Disorder. Front. Sociol. 2022, 7, 832497. [Google Scholar] [CrossRef] [PubMed]
- Ronningstam, E.F.; Keng, S.L.; Ridolfi, M.E.; Arbabi, M.; Grenyer, B.F.S. Cultural Aspects in Symptomatology, Assessment, and Treatment of Personality Disorders. Curr. Psychiatry Rep. 2018, 20, 22. [Google Scholar] [CrossRef]
- Stepp, S.D. Development of borderline personality disorder in adolescence and young adulthood: Introduction to the special section. J. Abnorm. Child Psychol. 2012, 40, 1–5. [Google Scholar] [CrossRef]
- Enriquez-Geppert, S.; Huster, R.J.; Herrmann, C.S. EEG-Neurofeedback as a Tool to Modulate Cognition and Behavior: A Review Tutorial. Front. Hum. Neurosci. 2017, 11, 51. [Google Scholar] [CrossRef]
- Omejc, N.; Rojc, B.; Battaglini, P.P.; Marusic, U. Review of the therapeutic neurofeedback method using electroencephalography: EEG Neurofeedback. Bosn. J. Basic Med. Sci. 2019, 19, 213–220. [Google Scholar] [CrossRef]
Study | Participants | EEG Method/Design | Additional Tasks/Measures | Main EEG-Related Findings |
---|---|---|---|---|
Beeney et al. [39] | - 23 BPD, 13 MDD, 21 HC (all female, right-handed; 18–60 yrs) - BPD median age ≈ 31.84 | - 8 min baseline (eyes open/closed) - 2 min post-task resting EEG - Frontal alpha asymmetry (8–13 Hz), 11 frontal electrode pairs | - Cyberball social rejection task - Beck Depression Inventory-II (BDI-II), PANAS-X - Hostility and rejection sensitivity measures | - Baseline: No significant group differences, slight right-frontal asymmetry in MDD, balanced/left in BPD and HC - Post-rejection: Marked left-frontal asymmetry in BPD (approach) vs. right-frontal in MDD (withdrawal) - Leftward asymmetry correlated with higher hostility in BPD |
Yun et al. [40] | - 45 BPD (mean age ≈ 26) - 15 HC (age and gender matched) | - 5 min resting state EEG (eyes closed/open) - Power spectral density (PSD) in delta–gamma bands | - PROVE-ACE (childhood trauma) - PROVE-MC (mentalization) | - BPD showed reduced alpha (EC), indicating hyperarousal - Theta (EC) correlated with emotional awareness deficits - Delta (EO) linked to difficulties in emotional expression - Gamma (EO) negatively correlated with psychic equivalence |
Popkirov et al. [41] | - 26 BPD (median age 31.42) - 26 HC (age/gender/handedness matched) | - Resting state EEG (eyes open), 32 electrodes - Pre- and post-mood induction - Frontal EEG asymmetry (FEA) = ln(Right α) − ln(Left α) | - Childhood Trauma Questionnaire (CTQ) - Dissociative Experiences Scale (DES), BDI-II - Mood induction with negative/neutral IAPS images | - No overall FEA group difference at baseline - Both groups had a rightward FEA shift post-induction - BPD showed higher trauma/dissociation - Childhood trauma and dissociative symptoms predicted baseline FEA in BPD (51% variance) |
Flasbeck et al. [42] | - 37 BPD females (mean age ≈ 26.8) - 39 HC females (age-matched) | - 4 min resting state EEG (eyes closed), 32 electrodes - FEA = ln(Right α) − ln(Left α) | - Toronto Alexithymia Scale (TAS-20) - BDI-II, SCL-90-R | - No overall FEA difference BPD vs. HC - Within BPD, FEA correlated with alexithymia (especially “describing feelings”) - Depression and general psychopathology not linked to FEA |
Snyder et al. [43] | - 37 male BPD (DSM-III, stringent criteria) - 31 male dysthymic disorder | - 30 min resting EEG + 30 min sleep recording - Hyperventilation and eye-open/closed cycles | - Neurological evaluations - Abnormalities rated blind by neurologists | - 19% of BPD had marginally abnormal, 19% definitely abnormal EEG - Most frequent abnormality: slow-wave activity (19% in BPD vs. 3% in dysthymia) - No correlation with symptom severity, but older BPD had more severe abnormalities |
Deiber et al. [44] | - 16 BPD (15F; mean age ≈ 25) - 16 HC (10F; mean age ≈ 29.6) | - High-density (256-channel) resting state EEG (3 min, eyes closed) - Microstate analysis and spectral power (delta–beta) | - Montgomery-Åsberg Depression Rating Scale (MADRS) - Affective Lability Scale (ALS) | - BPD showed reduced alpha and increased delta in posterior-midline sites - Microstate C (DMN-related) reduced in BPD; Microstate E (salience-related) increased - Microstate changes correlated with affective lability |
Russ et al. [45] | - 22 BPD-P (pain during self-injury), 19 BPD-NP (no pain), 15 MDD, 20 HC - All female (BPD-P age ≈ 31, BPD-NP ≈ 26) | - 4 min resting state EEG (eyes closed) + 4 min cold pressor test (CPT) - 16 electrodes, delta–beta power | - Dissociative Experiences Scale (DES) - Pain ratings every 15 s during CPT | - BPD-NP showed lowest pain ratings and highest theta increases - Theta correlated with dissociation and inversely with pain - BPD-P had moderate theta increases; depressed group similar to HC |
Arikan et al. [46] | - 25 BPD (mean age ≈ 26.36) - 75 BD (33.56), 11 HC (32.33) | - 7 min resting state EEG (eyes closed) - Quantitative EEG (qEEG), multiple bands (delta–gamma) | - Retrospective chart review | - Significant group differences vs. HC in delta, theta, beta, gamma - No post hoc differences between BPD and BD - Suggests shared electrophysiological patterns in BPD & BD |
Ogiso et al. [47] | - 18 BPD (18–30 yrs, mean ≈ 23.1) - 21 non-BPD patients (mean ≈ 23.0) | - Resting EEG with eyes open/closed, hyperventilation, photic stimulation (3 min each) | - Diagnostic Interview for Borderline Patients (DIB) - DSM-III criteria | - No unique EEG abnormalities distinguishing BPD - Across all patients: certain spike/slow-wave patterns correlated with impulsivity and interpersonal issues, but not specific to BPD |
Kramer et al. [48] | - 40 unmedicated BPD (26F, 14M; mean age ≈ 27.95) - 42 HC (23F, 19M; mean age ≈ 27.98) | - 20 min resting state EEG (eyes closed) - EEG-vigilance analysis (VIGALL 2.0) | - Structured clinical interviews, borderline symptom measures, impulsivity, depression, childhood trauma, sleep quality | - BPD exhibited consistently higher vigilance stages (less transition to drowsiness/sleep) - Greater subjective sleepiness despite hyperarousal - Reduced lability in EEG-vigilance (rigidly high arousal) |
Schauer et al. [49] | - 18 BPD (mean age ≈ 28.28) - 22 HC (26.27) | - 64-channel EEG - Time-frequency analysis (alpha, low-beta) during gain/loss feedback | - Two-choice gambling task (low vs. high stakes) - BPD symptom severity (BSL-23) | - Alpha power: no group difference - Low-beta power: BPD showed increased gain > loss response - Low-beta gain-loss difference correlated with greater BPD symptom severity |
Shankar et al. [50] | - 60 BPD (18–40 yrs) - 60 HC (age-matched) | - 40 min EEG with standard activation (hyperventilation, photic stimulation) | - Symptom severity based on DSM-5 BPD criteria | - 31.7% BPD vs. 3.3% HC had EEG abnormalities - Frontal/temporal, right-sided predominance - Greater severity (≥9 criteria) linked to higher epileptiform discharges |
Rezaei et al. [51] | - 7 BPD (screened via MCMI-III) - 7 HC (university students, ~22 yrs) | - 5 min resting state EEG (eyes closed), 21 channels - Power spectral density (PSD) and coherence in delta–gamma | - MCMI-III screening - Artifacts processed in EEGLAB (MATLAB) | - BPD had increased delta power (frontotemporal/parietal) - Reduced alpha power (frontal/central) and lower alpha coherence - Suggestive of disrupted cortical connectivity |
Hegerl et al. [52] | - 20 BPD (mean age ≈ 27) - 20 OCD, 20 HC (age/gender matched) | - 5 min resting state EEG (eyes closed) - Computer-assisted EEG-vigilance staging (A1–A3, B, etc.) | - Structured interviews, impulsivity and borderline measures | - BPD showed lower vigilance state A vs. OCD and HC - Greater shifts to lower vigilance states (B) and more artifact segments - Vigilance instability remained significant after adjusting for artifacts |
Stewart et al. [53] | - 35 BPD females (13–23 yrs, median age ≈ 17.59) - 33 HC (female) | - EEG recorded during guessing task (monetary gain/loss) - ERP and time-frequency analysis (theta and delta) | - Structured Clinical Interview for DSM-IV Axis II - No neurological disorders | - BPD showed significantly lower delta power in response to rewards - No group differences in theta power or loss-related delta power |
Nazari et al. [54] | - 25 BPD (median age ≈ 30.64) - 20 BD II | - 10 min EEG (eyes-closed/open), 21 channels - Spectral/wavelet features (delta–beta) | - WCST, Integrated Cognitive Assessment (ICA) - Machine learning (KNN, SVM, decision trees) | - Strong EEG feature differences between BPD and BD II - Best classification (KNN) reached ~89% accuracy - Cognitive tests contributed minimally to differentiation |
Cowdry et al. [55] | - 39 BPD (mean age ≈ 20.2) - 20 unipolar depression (UP) | - Clinical EEG (16 electrodes, bipolar and monopolar), hospitalized | - Diagnosed before DSM-III - Research Diagnostic Criteria for major depression (UP) | - BPD had higher rate of EEG abnormalities (46%) vs. UP (10%) - Posterior sharp/spike-wave discharges common in BPD - Overlap with complex partial seizure (CPS) and episodic dyscontrol symptoms |
Pop-Jordanova et al. [56] | - 10 BPD (5M/5F, mean age 20.4) - 10 HC (6M/4F, mean age 24.2) | - 5 min resting EEG (eyes open) - Coherence analysis (delta–beta2) | - DSM-5 criteria for BPD | - BPD showed lower delta/theta coherence across regions - No alpha/beta coherence differences - Non-significant increase in delta/theta power in BPD |
De la Fuente et al. [57] | - 20 BPD inpatients (14F/6M; mean age 32.4) - Double-blind CBZ vs. placebo (n = 10 each) | - 17-channel EEG at baseline (day 0), day 16, day 32 - Resting + hyperventilation and photic stimulation | - DSM-III-R criteria - 10-day washout, 32-day treatment | - 40% showed diffuse slow activity (theta ± delta) at baseline - No focal or epileptiform discharges - CBZ did not significantly reduce EEG abnormalities |
Cornelius et al. [58] | - 69 BPD (mean age ≈ 26.1) - 22 non-BPD Axis II controls | - Routine 16-channel EEG (eyes closed) + hyperventilation and photic stimulation - Blind ratings of dysrhythmias | - Diagnostic Interview for Borderlines (DIB), DSM-III | - Mild abnormalities in 13% of BPD vs. 9.1% controls - Severe abnormalities in 5.7% of BPD vs. 0% controls - Differences not statistically significant - No linkage to specific BPD symptoms |
Schauer et al. [59] | - 19 BPD (mean age ≈ 27.47) - 18 HC | - Simultaneous EEG-fMRI - Gambling task (gain/loss feedback) - Focus on theta (4.4–5.8 Hz) and high-beta (22–29 Hz) | - Barratt Impulsiveness Scale (BIS) - Time-frequency (wavelets), BOLD responses | - BPD showed reduced theta power for loss feedback - fMRI: lower activations in left anterior insula and postcentral gyrus - Theta–fMRI coupling differences in dlPFC (loss vs. gain) |
Haaf et al. [60] | - 25 female BPD (mean age ≈ 27.2) - 25 female HC | - EEG during cognitive reappraisal task (neg. vs. neutral IAPS) - Theta band (3.5–8.5 Hz) power and connectivity (eLORETA, MIM) | - Emotion ratings and Emotion Regulation Questionnaire (ERQ) | - Both groups reduced negative affect with reappraisal - BPD showed smaller increases in frontal theta and weaker connectivity - Theta power correlated with reappraisal scores in BPD |
Vukojević et al. [61] | - 34 MDD - 34 BPD + MDD (ICD-10) - Total 146 EEGs (various conditions) | - 19-channel EEG - Resting, photostimulation, hyperventilation - Machine learning on linear and non-linear features | - Multiple classifiers: SVM, Random Forest, etc. | - No EEG feature set reliably differentiated MDD from BPD + MDD - Overlap in electrophysiological profiles of both groups |
Stead et al. [62] | - 64 adolescents (62.5% female, Mage ≈ 14.45) - Varying BPD symptoms (including subclinical) | - 3 min eyes open + 3-min eyes closed resting EEG - Frontal alpha asymmetry (FAA = ln(F4) − ln(F3)) | - Cyberball social rejection paradigm - Rejection sensitivity measures | - FAA moderated BPD symptoms and rejection sensitivity - Greater left FAA + high BPD = highest rejection sensitivity - Right FAA associated with moderate, stable levels of rejection sensitivity |
Risk of Bias | Quality of Evidence | Study | ||||
---|---|---|---|---|---|---|
Reporting Bias | Attrition Bias | Detection Bias | Performance Bias | Selection Bias | ||
Low | Low | Low/moderate | Low | Moderate | Moderate | Beeney et al. [39] |
Moderate | Low | Low/moderate | Low risk | Moderate/high risk | Moderate | Yun et al. [40] |
Moderate | Low | Low/moderate | Moderate | High | Low to moderate | Popkirov et al. [41] |
Low/moderate | Low | Low | Low/moderate | Moderate | Low to moderate | Flasbeck et al. [42] |
Moderate | Low | Moderate | Low/moderate | High | Low to moderate | Snyder et al. [43] |
Moderate | Low | Low/moderate | Low | Moderate | Low to moderate | Deiber et al. [44] |
Low/moderate | Moderate | Moderate | High | Moderate | Low to moderate | Russ et al. [45] |
Moderate | Low | Moderate | Low/moderate | High | Low to moderate | Arikan et al. [46] |
Moderate | Low | Low/moderate | Moderate | High | Low | Ogiso et al. [47] |
Low/moderate | Low | Low/moderate | Moderate | Low/moderate | Moderate to high | Kramer et al. [48] |
Moderate | Low | Low | Low | Low/moderate | Moderate | Schauer et al. [49] |
Low/moderate | Low | Low | Low | Low/moderate | Moderate | Shankar et al. [50] |
Moderate | Low | Moderate | Low/moderate | High | Low to moderate | Rezaei et al. [51] |
Low/moderate | Low | Low/moderate | Moderate | Moderate/high | Low to moderate | Hegerl et al. [52] |
Low/moderate | Low | Low | Low/moderate | Moderate/high | Moderate | Stewart et al. [53] |
Moderate | Low | Low | Low/moderate | High | Low to moderate | Nazari et al. [54] |
Moderate | Low | Low/moderate | Moderate | High | Low to moderate | Cowdry et al. [55] |
Moderate/high | Low | Moderate | Low/moderate | High | Low | Pop-Jordanova et al. [56] |
Moderate | Low | Low | Low | Low/moderate | Moderate | De la Fuente et al. [57] |
Low/moderate | Low | Low/moderate | Low | Moderate | Low to moderate | Cornelius et al. [58] |
Moderate | Low | Low | Low | Low/moderate | Moderate | Schauer et al. [59] |
Low/moderate | Low | Moderate | Low/moderate | Moderate | Moderate | Haaf et al. [60] |
Moderate/high | Low | Moderate | Low/moderate | High | Low to moderate | Vukojević et al. [61] |
Unclear | Low | Moderate | Moderate | High | Low to moderate | Stead et al. [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmiel, J.; Kurpas, D. Neural Correlates of Borderline Personality Disorder (BPD) Based on Electroencephalogram (EEG)—A Mechanistic Review. Int. J. Mol. Sci. 2025, 26, 8230. https://doi.org/10.3390/ijms26178230
Chmiel J, Kurpas D. Neural Correlates of Borderline Personality Disorder (BPD) Based on Electroencephalogram (EEG)—A Mechanistic Review. International Journal of Molecular Sciences. 2025; 26(17):8230. https://doi.org/10.3390/ijms26178230
Chicago/Turabian StyleChmiel, James, and Donata Kurpas. 2025. "Neural Correlates of Borderline Personality Disorder (BPD) Based on Electroencephalogram (EEG)—A Mechanistic Review" International Journal of Molecular Sciences 26, no. 17: 8230. https://doi.org/10.3390/ijms26178230
APA StyleChmiel, J., & Kurpas, D. (2025). Neural Correlates of Borderline Personality Disorder (BPD) Based on Electroencephalogram (EEG)—A Mechanistic Review. International Journal of Molecular Sciences, 26(17), 8230. https://doi.org/10.3390/ijms26178230