Abscopal Brain Proteomic Changes Associated with Microbiome Alterations Induced by Gastrointestinal Acute Radiation Syndrome in Swine
Abstract
1. Introduction
2. Results
2.1. Microbiomic Changes Following Gut Irradiation
2.2. MS Proteomic Profiling
2.3. STRING Analysis
2.4. DAVID Analysis
3. Discussion
4. Material and Methods
4.1. Tissue Sample Preparation
4.2. 16S rRNA Sequencing-Based Microbiome Analysis Procedures
4.3. Tandem Mass Tag (TMT) Proteomics Procedures and Data Analysis
4.4. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Fülling, C.; Dinan, T.G.; Cryan, J.F. Gut Microbe to Brain Signaling: What Happens in Vagus…. Neuron 2019, 101, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Sasmita, A.O. Modification of the gut microbiome to combat neurodegeneration. Rev. Neurosci. 2019, 30, 795–805. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, A.J.; Loughman, A.; Foster, J.A.; Jacka, F. Mood Disorders: The Gut Bacteriome and Beyond. Biol. Psychiatry 2024, 95, 319–328. [Google Scholar] [CrossRef]
- Thompson, S.L.; Ellegood, J.; Bowdish, D.M.E.; Lerch, J.P.; Foster, J.A. Sex- and brain region-specific alterations in brain volume in germ-free mice. iScience 2024, 27, 111429. [Google Scholar] [CrossRef]
- Venkidesh, B.S.; Narasimhamurthy, R.K.; Jnana, A.; Reghunathan, D.; Sharan, K.; Chandraguthi, S.G.; Saigal, M.; Murali, T.S.; Mumbrekar, K.D. Pelvic irradiation induces behavioural and neuronal damage through gut dysbiosis in a rat model. Chem.-Biol. Interact. 2023, 386, 110775. [Google Scholar] [CrossRef]
- Horseman, T.S.; Parajuli, B.; Frank, A.M.; Weaver, A.; Schauer, D.A.; Moran, S.; Anderson, J.A.; Holmes-Hampton, G.; Burmeister, D.M. Microbiome and Inflammasome Alterations Found During Radiation Dose Finding in a Sinclair Minipig Model of Gastrointestinal Acute Radiation Syndrome. Shock 2024, 62, 556–564. [Google Scholar] [CrossRef]
- Levy, R. The prefrontal cortex: From monkey to man. Brain 2024, 147, 794–815. [Google Scholar] [CrossRef]
- Jones, D.T.; Graff-Radford, J. Executive Dysfunction and the Prefrontal Cortex. Contin. Lifelong Learn. Neurol. 2021, 27, 1586–1601. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.W.; Demarco, B.; Broz, P. Pannexin-1 promotes NLRP3 activation during apoptosis but is dispensable for canonical or noncanonical inflammasome activation. Eur. J. Immunol. 2020, 50, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Shen, Y.; Huang, L.; Wang, J. TLR2/caspase-5/Panx1 pathway mediates necrosis-induced NLRP3 inflammasome activation in macrophages during acute kidney injury. Cell Death Discov. 2022, 8, 232. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Wu, X.; Block, M.L.; Liu, Y.; Breese, G.R.; Hong, J.S.; Knapp, D.J.; Crews, F.T. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007, 55, 453–462. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.; Sandhu, K.V.; Bastiaanssen, T.F.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, J.; Chen, Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients 2021, 13, 2099. [Google Scholar] [CrossRef]
- Banerjee, A.; Nelson, D.E. How Chlamydia trachomatis conquered gut microbiome-derived antimicrobial compounds and found a new home in the eye. Proc. Natl. Acad. Sci. USA 2019, 116, 12136–12138. [Google Scholar] [CrossRef]
- Horvath, T.D.; Ihekweazu, F.D.; Haidacher, S.J.; Ruan, W.; Engevik, K.A.; Fultz, R.; Hoch, K.M.; Luna, R.A.; Oezguen, N.; Spinler, J.K.; et al. Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. iScience 2022, 25, 104158. [Google Scholar] [CrossRef]
- Mandić, A.D.; Woting, A.; Jaenicke, T.; Sander, A.; Sabrowski, W.; Rolle-Kampcyk, U.; von Bergen, M.; Blaut, M. Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Sci. Rep. 2019, 9, 1177. [Google Scholar] [CrossRef]
- Socała, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Włodarczyk, M.; Zielińska, A.; Poleszak, E.; Fichna, J.; Wlaź, P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res. 2021, 172, 105840. [Google Scholar] [CrossRef]
- Hamamah, S.; Aghazarian, A.; Nazaryan, A.; Hajnal, A.; Covasa, M. Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines 2022, 10, 436. [Google Scholar] [CrossRef]
- Dicks, L.M.T. Gut Bacteria and Neurotransmitters. Microorganisms 2022, 10, 1838. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, S.; Wu, L.; Cao, H.; Fan, Y.; Wang, X.; Yu, Z.; Zhou, M.; Gao, R.; Wang, J. Coprococcus eutactus screened from healthy adolescent attenuates chronic restraint stress-induced depression-like changes in adolescent mice: Potential. roles in the microbiome and neurotransmitter modulation. J. Affect. Disord. 2024, 356, 737–752. [Google Scholar] [CrossRef] [PubMed]
- Leisner, J.J.; Laursen, B.G.; Prévost, H.; Drider, D.; Dalgaard, P. Carnobacterium: Positive and negative effects in the environment and in foods. FEMS Microbiol. Rev. 2007, 31, 592–613. [Google Scholar] [CrossRef]
- Cuesta, S.; Burdisso, P.; Segev, A.; Kourrich, S.; Sperandio, V. Gut colonization by Proteobacteria alters host metabolism and modulates cocaine neurobehavioral responses. Cell Host Microbe 2022, 30, 1615–1629.e5. [Google Scholar] [CrossRef]
- Dagorn, A.; Chapalain, A.; Mijouin, L.; Hillion, M.; Duclairoir-Poc, C.; Chevalier, S.; Taupin, L.; Orange, N.; Feuilloley, M.G. Effect of GABA, a bacterial metabolite, on Pseudomonas fluorescens surface properties and cytotoxicity. Int. J. Mol. Sci. 2013, 14, 12186–12204. [Google Scholar] [CrossRef]
- Barandouzi, Z.A.; Lee, J.; del Carmen Rosas, M.; Chen, J.; Henderson, W.A.; Starkweather, A.R.; Cong, X.S. Associations of neurotransmitters and the gut microbiome with emotional distress in mixed type of irritable bowel syndrome. Sci. Rep. 2022, 12, 1648. [Google Scholar] [CrossRef]
- Binda, C.; Lopetuso, L.R.; Rizzatti, G.; Gibiino, G.; Cennamo, V.; Gasbarrini, A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 2018, 50, 421–428. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D.; Xie, F.; Muhetaer, G.; Zhang, H. The cause-and-effect relationship between gut microbiota abundance and carcinoid syndrome: A bidirectional Mendelian randomization study. Front. Microbiol. 2023, 14, 1291699. [Google Scholar] [CrossRef]
- Wickborn, K.; van der Weijden, C.W.J.; de Vries, E.F.J.; Meijer, T.W.H.; Kramer, M.C.A.; Spikman, J.M.; Buunk, A.M.; van der Hoorn, A. Timeline of cognitive impairments after radiotherapy for head and neck cancer: A review. Clin. Transl. Radiat. Oncol. 2024, 52, 100890. [Google Scholar] [CrossRef]
- Krueger, M.E.; Boles, J.S.; Simon, Z.D.; Alvarez, S.D.; McFarland, N.R.; Okun, M.S.; Zimmermann, M.E.; Forsmark, C.E.; Tansey, M.G. Comparative analysis of Parkinson’s and inflammatory bowel disease gut microbiomes reveals shared butyrate-producing bacteria depletion. npj Park. Dis. 2025, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Mitrea, L.; Nemeş, S.A.; Szabo, K.; Teleky, B.E.; Vodnar, D.C. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front. Med. 2022, 9, 813204. [Google Scholar] [CrossRef]
- Cooke, M.B.; Catchlove, S.; Tooley, K.L. Examining the Influence of the Human Gut Microbiota on Cognition and Stress: A Systematic Review of the Literature. Nutrients 2022, 14, 4623. [Google Scholar] [CrossRef] [PubMed]
- Iacono, D.; Murphy, E.K.; Avantsa, S.S.; Perl, D.P.; Day, R.M. Reduction of pTau and APP levels in mammalian brain after low-dose radiation. Sci. Rep. 2021, 11, 2215. [Google Scholar] [CrossRef] [PubMed]
- Almond, P.R.; Biggs, P.J.; Coursey, B.M.; Hanson, W.F.; Huq, M.S.; Nath, R.; Rogers, D.W. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med. Phys. 1999, 26, 1847–1870. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4516–4522. [Google Scholar] [CrossRef]
- Thompson, L.R.; Sanders, J.G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K.J.; Prill, R.J.; Tripathi, A.; Gibbons, S.M.; Ackermann, G.; et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017, 551, 457–463. [Google Scholar] [CrossRef]
- Straub, D.; Blackwell, N.; Langarica-Fuentes, A.; Peltzer, A.; Nahnsen, S.; Kleindienst, S. Interpretations of Environmental Microbial Community Studies Are Biased by the Selected 16S rRNA (Gene) Amplicon Sequencing Pipeline. Front. Microbiol. 2020, 11, 550420. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 15 November 2024).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.S.; Moggridge, S.; Müller, T.; Sorensen, P.H.; Morin, G.B.; Krijgsveld, J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 2019, 14, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, F.; Gritsenko, M.A.; Wang, Y.; Clauss, T.; Liu, T.; Shen, Y.; Monroe, M.E.; Lopez-Ferrer, D.; Reno, T.; et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 2011, 11, 2019–2026. [Google Scholar] [CrossRef]
- Herbrich, S.M.; Cole, R.N.; West, K.P., Jr.; Schulze, K.; Yager, J.D.; Groopman, J.D.; Christian, P.; Wu, L.; O’Meally, R.N.; May, D.H.; et al. Statistical inference from multiple iTRAQ experiments without using common reference standards. J. Proteome Res. 2013, 12, 594–604. [Google Scholar] [CrossRef]
Bacteria ID Significant at Terminal Timepoint | Adj p Value | Direction of Change | |
---|---|---|---|
Phyla | k__Bacteria; p__Chlamydiae | 9.8 × 10−4 | Down |
k__Bacteria; p__Firmicutes | 9.9 × 10−4 | Down | |
Genera | k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__p-75-a5 | 5.98 × 10−15 | Down |
k__Bacteria; p__Actinobacteria; c__Coriobacteriia; o__Coriobacteriales; f__Coriobacteriaceae;g__ | 9.6 × 10−4 | Up | |
k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Planococcaceae; g__Rummeliibacillus | 0.003 | Down | |
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Acinetobacter | 0.003 | Up | |
k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Coprococcus | 0.009 | Down | |
k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Carnobacteriaceae; g__Carnobacterium | 0.014 | Down |
Term | Count | % | p-Value | Genes | |
---|---|---|---|---|---|
Molecular Function | serine-type endopeptidase inhibitor activity | 10 | 14.28571 | 1.64 × 10−10 | LOC396685, ITIH4, ITIH3, ITIH2, AMBP, PZP, SERPINF2, HRG, A2M, LOC100153899 |
endopeptidase inhibitor activity | 4 | 5.714286 | 3.16 × 10−5 | C5, AHSG, PZP, A2M | |
signaling receptor binding | 7 | 10 | 6.64 × 10−5 | FGB, FGA, FGG, NRG2, F2, HRG, A2M | |
haptoglobin binding | 3 | 4.285714 | 3.77 × 10−4 | HBZ, HBE1, HBB | |
organic acid binding | 3 | 4.285714 | 5.74 × 10−4 | HBZ, HBE1, HBB | |
oxygen carrier activity | 3 | 4.285714 | 0.0010859 | HBZ, HBE1, HBB | |
oxygen binding | 3 | 4.285714 | 0.0021445 | HBZ, HBE1, HBB | |
heme binding | 5 | 7.142857 | 0.0029643 | HBZ, AMBP, HBE1, HBB, HRG | |
phospholipid binding | 4 | 5.714286 | 0.0031406 | APOM, APOH, APOA1, APOB | |
cysteine-type endopeptidase inhibitor activity | 3 | 4.285714 | 0.0043586 | AHSG, HRG, KNG1 | |
peroxidase activity | 3 | 4.285714 | 0.0049488 | HBZ, HBE1, HBB | |
heparin binding | 4 | 5.714286 | 0.0101698 | APOH, F2, APOB, HRG | |
oxidoreductase activity | 4 | 5.714286 | 0.0178829 | AMBP, PYROXD1, ALDH1A1, CP | |
hemoglobin alpha binding | 2 | 2.857143 | 0.0195663 | HBE1, HBB | |
calcium ion binding | 7 | 10 | 0.0241982 | F9, KCNIP1, F12, S100A6, CDH13, F2, MBL1 | |
serine-type endopeptidase activity | 4 | 5.714286 | 0.0260039 | F9, F12, CD5L, F2 | |
protease binding | 3 | 4.285714 | 0.0346761 | PZP, SERPINF2, A2M | |
protein homodimerization activity | 6 | 8.571429 | 0.0416447 | HSD11B1, AMBP, SERPINF2, S100A6, APOA1, SLC4A1 | |
immunoglobulin receptor binding | 2 | 2.857143 | 0.0419182 | IGHM, LOC100125542 | |
Cellular Component | extracellular space | 27 | 38.57143 | 1.16 × 10−13 | CD5L, PZP, INHCA, C8B, C8A, KNG1, LOC396685, C5, SAL1, APOH, APOB, A2M, MBL1, LOC100153899, FGB, AHSG, F12, FGG, SERPINF2, APOA1, NRG2, F2, CP, TF, F9, S100A6, CDH13 |
extracellular region | 25 | 35.71429 | 1.24 × 10−13 | ITIH4, ITIH3, ITIH2, PZP, INHCA, A1BG, C8B, C8A, KNG1, C5, APOH, A2M, MBL1, FGB, FGA, AMBP, AHSG, F12, APOA1, NRG2, F2, CP, TF, F9, HRG | |
blood microparticle | 7 | 10 | 1.69 × 10−9 | HBZ, AHSG, HBE1, HBB, LOC100125542, HRG, KNG1 | |
fibrinogen complex | 4 | 5.714286 | 6.52 × 10−7 | FGB, FGA, FGG, SERPINF2 | |
very-low-density lipoprotein particle | 4 | 5.714286 | 1.16 × 10−5 | APOM, APOH, APOA1, APOB | |
membrane attack complex | 3 | 4.285714 | 2.16 × 10−4 | C5, C8B, C8A | |
low-density lipoprotein particle | 3 | 4.285714 | 2.88 × 10−4 | APOM, APOA1, APOB | |
haptoglobin-hemoglobin complex | 3 | 4.285714 | 5.62 × 10−4 | HBZ, HBE1, HBB | |
hemoglobin complex | 3 | 4.285714 | 5.62 × 10−4 | HBZ, HBE1, HBB | |
chylomicron | 3 | 4.285714 | 6.73 × 10−4 | APOH, APOA1, APOB | |
high-density lipoprotein particle | 3 | 4.285714 | 0.0013715 | APOM, APOH, APOA1 | |
cell surface | 6 | 8.571429 | 0.0120099 | IGHM, TF, AMBP, APOH, SERPINF2, HRG | |
collagen-containing extracellular matrix | 4 | 5.714286 | 0.0163355 | FGB, FGG, S100A6, F2 | |
spherical high-density lipoprotein particle | 2 | 2.857143 | 0.0225352 | APOM, APOA1 | |
cytoplasmic side of plasma membrane | 3 | 4.285714 | 0.0260414 | KCNIP1, S100A6, SLC4A1 | |
chromaffin granule | 2 | 2.857143 | 0.0351871 | LOC396685, LOC100153899 | |
external side of plasma membrane | 5 | 7.142857 | 0.0393067 | FGB, FGG, CDH13, LOC100125542, F2 | |
platelet alpha granule | 2 | 2.857143 | 0.0414524 | FGB, FGG | |
Biological Process | fibrinolysis | 6 | 8.571429 | 1.83 × 10−10 | FGB, FGA, F12, FGG, F2, HRG |
blood coagulation | 8 | 11.42857 | 3.03 × 10−10 | FGB, FGA, F9, F12, FGG, SLC4A1, F2, HRG | |
negative regulation of endopeptidase activity | 6 | 8.571429 | 6.83 × 10−7 | LOC396685, AHSG, SERPINF2, HRG, KNG1, LOC100153899 | |
platelet activation | 5 | 7.142857 | 1.50 × 10−6 | FGB, FGA, FGG, F2, HRG | |
complement activation, classical pathway | 5 | 7.142857 | 3.21 × 10−6 | C5, LOC100125542, C8B, C8A, MBL1 | |
innate immune response | 8 | 11.42857 | 1.07 × 10−4 | FGB, IGHM, FGA, C5, OAS2, LOC100125542, C8B, C8A | |
negative regulation of fibrinolysis | 3 | 4.285714 | 1.72 × 10−4 | APOH, SERPINF2, HRG | |
positive regulation of ERK1 and ERK2 cascade | 6 | 8.571429 | 2.91 × 10−4 | FGB, FGA, NDRG4, FGG, SERPINF2, MT3 | |
positive regulation of peptide hormone secretion | 3 | 4.285714 | 3.19 × 10−4 | FGB, FGA, FGG | |
hyaluronan metabolic process | 3 | 4.285714 | 4.09 × 10−4 | ITIH4, ITIH3, ITIH2 | |
plasminogen activation | 3 | 4.285714 | 4.09 × 10−4 | FGB, APOH, FGG | |
positive regulation of heterotypic cell–cell adhesion | 3 | 4.285714 | 6.23 × 10−4 | FGB, FGA, FGG | |
complement activation, alternative pathway | 3 | 4.285714 | 6.23 × 10−4 | C5, C8B, C8A | |
cellular oxidant detoxification | 3 | 4.285714 | 7.46 × 10−4 | HBZ, HBE1, HBB | |
protein polymerization | 3 | 4.285714 | 8.79 × 10−4 | FGB, FGA, FGG | |
oxygen transport | 3 | 4.285714 | 8.79 × 10−4 | HBZ, HBE1, HBB | |
complement activation | 3 | 4.285714 | 0.001706 | C5, C8B, C8A | |
acute-phase response | 3 | 4.285714 | 0.0027901 | ITIH4, AHSG, F2 | |
negative regulation of cell adhesion | 3 | 4.285714 | 0.0035605 | PODXL, CDH13, KNG1 | |
negative regulation of extrinsic apoptotic signaling pathway via death domain receptors | 3 | 4.285714 | 0.0035605 | FGB, FGA, FGG | |
zymogen activation | 3 | 4.285714 | 0.0035605 | F9, F12, CD5L | |
hydrogen peroxide catabolic process | 3 | 4.285714 | 0.0035605 | HBZ, HBE1, HBB | |
cholesterol efflux | 3 | 4.285714 | 0.0035605 | APOM, APOA1, APOB | |
platelet aggregation | 3 | 4.285714 | 0.005696 | FGB, FGA, FGG | |
antibacterial humoral response | 3 | 4.285714 | 0.0082861 | IGHM, TF, INHCA | |
iron ion transport | 3 | 4.285714 | 0.0082861 | TF, INHCA, CP | |
positive regulation of phagocytosis | 3 | 4.285714 | 0.0082861 | AHSG, APOA1, MBL1 | |
cytolysis by host of symbiont cells | 2 | 2.857143 | 0.0102421 | F2, HRG | |
negative regulation of endothelial cell apoptotic process | 3 | 4.285714 | 0.0132219 | FGB, FGA, FGG | |
negative regulation of blood coagulation | 2 | 2.857143 | 0.0170127 | APOH, KNG1 | |
adaptive immune response | 4 | 5.714286 | 0.0190219 | FGB, IGHM, FGA, LOC100125542 | |
blood coagulation, fibrin clot formation | 2 | 2.857143 | 0.0203809 | FGB, FGG | |
lipoprotein biosynthetic process | 2 | 2.857143 | 0.0237378 | APOA1, APOB | |
high-density lipoprotein particle assembly | 2 | 2.857143 | 0.0270833 | APOM, APOA1 | |
detoxification of copper ion | 2 | 2.857143 | 0.0304175 | MT1A, MT3 | |
positive regulation of blood coagulation | 2 | 2.857143 | 0.0337405 | F12, F2 | |
reverse cholesterol transport | 2 | 2.857143 | 0.0403528 | APOM, APOA1 | |
positive regulation of collagen biosynthetic process | 2 | 2.857143 | 0.0403528 | SERPINF2, F2 | |
negative regulation of proteolysis | 2 | 2.857143 | 0.0436423 | F2, KNG1 | |
high-density lipoprotein particle remodeling | 2 | 2.857143 | 0.0436423 | APOM, APOA1 | |
cellular response to zinc ion | 2 | 2.857143 | 0.0469207 | MT1A, MT3 |
Neuronal Associations [18] | Genera | Phyla | Direction | Log2 (FC) |
---|---|---|---|---|
Glutamate | Lactobacillus | Firmicutes | Down | −2.51933 |
Acetylcholine | ||||
Glutamate | Bacteroides | Bacteroidetes | Down | −1.00345 |
GABA | ||||
Glutamate | Campylobacter | Proteobacteria | Down | −0.64412 |
GABA | Bifidobacterium | Actinobacteria | Down | −0.77407 |
GABA | Parabacteroides | Bacteroidetes | Down | −1.67344 |
GABA | Eubacterium | Firmicutes | Up | 0.437964 |
Acetylcholine | Bacillus | Firmicutes | Up | 0.97433 |
Acetylcholine | Staphylococcus | Firmicutes | Down | −0.77694 |
Dopamine | ||||
Serotonin | ||||
Tyramine | ||||
Phenylethylamine | ||||
Tryptamine | ||||
Tyramine | Providencia | Proteobacteria | Down | −0.23084 |
Tryptamine | Ruminococcus | Firmicutes | Down | −1.38384 |
Tryptamine | Clostridium | Firmicute | Up | 0.918807 |
Neuronal Associations | Phyla | Genera | Neuronal Associations |
---|---|---|---|
Chlamydiae | |||
Serotonin [19] | d14 p = 0.00098 | ||
Down | |||
p-75-a5 | |||
d14 p = 5.98 × 10−15 | Glutamate [20] | ||
Down | |||
Serotonin [21] | Rummeliibacillus | ||
GABA [22] | Firmicutes | d14 p = 0.00261 | N/A |
Dopamine [23] | d14 p = 0.00099 | Down | |
Acetylcholine [18] | Down | Coprococcus | SCFA [24] |
Norepinephrine | d14 p = 0.00854 | Serotonin [25] | |
Down | |||
Carnobacterium | |||
d14 p = 0.01426 | Tyrosine [26] | ||
Down | |||
Norepinephrine [27] | Proteobacteria | Acinetobacter | |
GABA [28] | (ns) | d14 p = 0.00328 | N/A |
Serotonin [29] | Up | ||
Serotonin [30] | Actinobacteria | f__Coriobacteriaceae;g__ | |
GABA | (ns) | d14 p = 0.00096 | Serotonin [31] |
Dopamine | Up |
Neuronal Associations | FCtx Protein | Log2 (FC) | p-Value |
---|---|---|---|
GABA | GABBR1 | 0.05 | 0.044610083 |
GABRA3 | 0.15 | 0.048704857 | |
Glutamate | GRM3 | −0.19 | 0.030625303 |
GMPS | −0.03 | 0.032725995 | |
GRIA1 | 0.14 | 0.010037585 | |
Norepinephrine | ACP1 | 0.05 | 0.017387287 |
Dopamine | PTPN9 | 0.08 | 0.045813215 |
PTPRG | 0.17 | 0.026421571 | |
NAAG | NAALAD2 | −0.52 | 0.014497586 |
Acetylcholine | CHRM1 | 0.12 | 0.023931344 |
Serotonin | KYAT1 | 0.06 | 0.005224157 |
TPH2 | −0.23 | 0.02642157 | |
Histamine | HRG | −0.42 | 0.013733175 |
Protein | p Value | Log2 (FC) |
---|---|---|
APP | 0.592 | 0 |
MAPT | 0.622 | −0.01 |
SNCA | 0.816 | 0.01 |
LRRK2 | 0.737 | 0.11 |
PARK7 | 0.608 | −0.09 |
TH | --- | --- |
TARDBP | 0.1 | 0 |
GFAP | 0.323 | −0.14 |
AIF1L | 0.793 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatch, K.; Horseman, T.S.; Parajuli, B.; Murphy, E.K.; Cole, R.N.; O’Meally, R.N.; Perl, D.P.; Burmeister, D.M.; Iacono, D. Abscopal Brain Proteomic Changes Associated with Microbiome Alterations Induced by Gastrointestinal Acute Radiation Syndrome in Swine. Int. J. Mol. Sci. 2025, 26, 8121. https://doi.org/10.3390/ijms26178121
Hatch K, Horseman TS, Parajuli B, Murphy EK, Cole RN, O’Meally RN, Perl DP, Burmeister DM, Iacono D. Abscopal Brain Proteomic Changes Associated with Microbiome Alterations Induced by Gastrointestinal Acute Radiation Syndrome in Swine. International Journal of Molecular Sciences. 2025; 26(17):8121. https://doi.org/10.3390/ijms26178121
Chicago/Turabian StyleHatch, Kathleen, Timothy S. Horseman, Babita Parajuli, Erin K. Murphy, Robert N. Cole, Robert N. O’Meally, Daniel P. Perl, David M. Burmeister, and Diego Iacono. 2025. "Abscopal Brain Proteomic Changes Associated with Microbiome Alterations Induced by Gastrointestinal Acute Radiation Syndrome in Swine" International Journal of Molecular Sciences 26, no. 17: 8121. https://doi.org/10.3390/ijms26178121
APA StyleHatch, K., Horseman, T. S., Parajuli, B., Murphy, E. K., Cole, R. N., O’Meally, R. N., Perl, D. P., Burmeister, D. M., & Iacono, D. (2025). Abscopal Brain Proteomic Changes Associated with Microbiome Alterations Induced by Gastrointestinal Acute Radiation Syndrome in Swine. International Journal of Molecular Sciences, 26(17), 8121. https://doi.org/10.3390/ijms26178121