Porcine Lymphotropic Herpesvirus (PLHV) Was Not Transmitted During Transplantation of Genetically Modified Pig Hearts into Baboons
Abstract
1. Introduction
2. Results
2.1. Presence of PLHV in Donor Pigs for Heart Xenotransplantation
2.2. Real-Time PCR-Based Detection of PLHV in Donor Pigs
3. Discussion
4. Materials and Methods
4.1. Animals and Tissue Samples
4.2. Blood Collection
4.3. DNA Isolation
4.4. PCR and Real-Time PCR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AlHV-1 | Alcelaphine herpesvirus type 1 |
DPS | Dippity pig syndrome |
EBV | Epstein–Barr virus |
HHV-4, HHV-8 | Human herpesvirus 4, 8 |
IE | Immediate-early genes |
KSHV | Kaposi sarcoma-associated herpesvirus |
NF-κB | Nuclear factor κB |
NFAT | Nuclear factor of activated T cells |
OvHV-2 | Ovine herpesvirus type 2 |
PBMCs | Peripheral blood mononuclear cells |
PCMV/PRV | Porcine cytomegalovirus, a porcine roseolovirus virus |
PLHV-1, PLHV-2, PLHV-3 | Porcine lymphotropic herpesviruses -1, -2, and -3 |
SINE SuHV-1, SuHV-2, SuHV-3, SuHV-4, SuHV-5 | Short Interspersed Nuclear Elements Suid herpesviruses 1, 2, 3, 4, and 5 |
vGPCRs | Viral G protein-coupled receptors |
References
- Ali, A.; Kemter, E.; Wolf, E. Advances in Organ and Tissue Xenotransplantation. Annu. Rev. Anim. Biosci. 2024, 12, 369–390. [Google Scholar] [CrossRef]
- Fishman, J.A.; Mueller, N.J. Infectious Diseases and Clinical Xenotransplantation. Emerg. Infect. Dis. 2024, 30, 1311–1318. [Google Scholar] [CrossRef]
- Griffith, B.P.; Goerlich, C.E.; Singh, A.K.; Rothblatt, M.; Lau, C.L.; Shah, A.; Lorber, M.; Grazioli, A.; Saharia, K.K.; Hong, S.N.; et al. Genetically Modified Porcine-to-Human Cardiac Xenotransplantation. N. Engl. J. Med. 2022, 387, 35–44. [Google Scholar] [CrossRef]
- Ehlers, B.; Ulrich, S.; Goltz, M. Detection of Two Novel Porcine Herpesviruses with High Similarity to Gammaherpesviruses. J. Gen. Virol. 1999, 80, 971–978. [Google Scholar] [CrossRef]
- Chmielewicz, B.; Goltz, M.; Franz, T.; Bauer, C.; Brema, S.; Ellerbrok, H.; Beckmann, S.; Rziha, H.J.; Lahrmann, K.H.; Romero, C.; et al. A Novel Porcine Gammaherpesvirus. Virology 2003, 308, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Denner, J. Porcine Lymphotropic Herpesviruses (PLHVs) and Xenotransplantation. Viruses 2021, 13, 1072. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.J.; Barth, R.N.; Yamamoto, S.; Kitamura, H.; Patience, C.; Yamada, K.; Cooper, D.K.; Sachs, D.H.; Kaur, A.; Fishman, J.A. Activation of Cytomegalovirus in Pig-to-Primate Organ Xenotransplantation. J. Virol. 2002, 76, 4734–4740. [Google Scholar] [CrossRef] [PubMed]
- Tucker, A.; McNeill, F.; Meehan, B.; Galbraith, D.; McArdle, P.; Allan, G.; Patience, C. Methods for the Exclusion of Circoviruses and Gammaherpesviruses from Pigs. Xenotransplantation 2003, 10, 343–348. [Google Scholar] [CrossRef]
- Dor, F.J.; Doucette, K.E.; Mueller, N.J.; Wilkinson, R.A.; Bajwa, J.A.; McMorrow, I.M.; Tseng, Y.L.; Kuwaki, K.; Houser, S.L.; Fishman, J.A.; et al. Posttransplant Lymphoproliferative Disease after Allogeneic Transplantation of the Spleen in Miniature Swine. Transplantation 2004, 78, 286–291. [Google Scholar] [CrossRef]
- Doucette, K.; Dor, F.J.; Wilkinson, R.A.; Martin, S.I.; Huang, C.A.; Cooper, D.K.; Sachs, D.H.; Fishman, J.A. Gene Expression of Porcine Lymphotropic Herpesvirus-1 in Miniature Swine with Posttransplant Lymphoproliferative Disorder. Transplantation 2007, 83, 87–90. [Google Scholar] [CrossRef]
- Huang, C.; Fuchimoto, Y.; Gleit, Z.; Ericsson, T.; Griesemer, A.; Scheier-Dolberg, R.; Melendy, E.; Kitamura, H.; Fishman, J.; Ferry, J.; et al. Posttransplantation Lymphoproliferative Disease in Miniature Swine after Allogeneic Hematopoietic Cell Transplantation: Similarity to Human PTLD and Association with a Porcine Gammaherpesvirus. Blood 2001, 97, 1467–1473. [Google Scholar] [CrossRef]
- Morozov, V.A.; Plotzki, E.; Rotem, A.; Barkai, U.; Denner, J. Extended Microbiological Characterization of Göttingen Minipigs: Porcine Cytomegalovirus and Other Viruses. Xenotransplantation 2016, 23, 490–496. [Google Scholar] [CrossRef]
- Plotzki, E.; Keller, M.; Ehlers, B.; Denner, J. Immunological Methods for the Detection of Porcine Lymphotropic Herpesviruses (PLHV). J. Virol. Methods 2016, 233, 72–77. [Google Scholar] [CrossRef]
- Krüger, L.; Kristiansen, Y.; Reuber, E.; Möller, L.; Laue, M.; Reimer, C.; Denner, J. A Comprehensive Strategy for Screening for Xenotransplantation-Relevant Viruses in a Second Isolated Population of Göttingen Minipigs. Viruses 2019, 12, 38. [Google Scholar] [CrossRef]
- Jhelum, H.; Grand, N.; Jacobsen, K.R.; Halecker, S.; Salerno, M.; Prate, R.; Krüger, L.; Kristiansen, Y.; Krabben, L.; Möller, L.; et al. First Virological and Pathological Study of Göttingen Minipigs with Dippity Pig Syndrome (DPS). PLoS ONE 2023, 18, e0281521. [Google Scholar] [CrossRef] [PubMed]
- Plotzki, E.; Heinrichs, G.; Kubícková, B.; Ulrich, R.G.; Denner, J. Microbiological Characterization of a Newly Established Pig Breed, Aachen Minipigs. Xenotransplantation 2016, 23, 159–167. [Google Scholar] [CrossRef]
- Halecker, S.; Metzger, J.; Strube, C.; Krabben, L.; Kaufer, B.; Denner, J. Virological and Parasitological Characterization of Mini-LEWE Minipigs Using Improved Screening Methods and an Overview of Data on Various Minipig Breeds. Microorganisms 2021, 9, 2617. [Google Scholar] [CrossRef]
- Jhelum, H.; Papatsiros, V.; Papakonstantinou, G.; Krabben, L.; Kaufer, B.; Denner, J. Screening for Viruses in Indigenous Greek Black Pigs. Microorganisms 2024, 12, 315. [Google Scholar] [CrossRef]
- Halecker, S.; Papatsiros, V.; Psalla, D.; Krabben, L.; Kaufer, B.; Denner, J. Virological Characterization of Pigs with Erythema Multiforme. Microorganisms 2022, 10, 652. [Google Scholar] [CrossRef] [PubMed]
- Jhelum, H.; Kaufer, B.; Denner, J. Application of Methods Detecting Xenotransplantation-Relevant Viruses for Screening German Slaughterhouse Pigs. Viruses 2024, 16, 1119. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.J.; Livingston, C.; Knosalla, C.; Barth, R.N.; Yamamoto, S.; Gollackner, B.; Dor, F.J.; Buhler, L.; Sachs, D.H.; Yamada, K.; et al. Activation of Porcine Cytomegalovirus, but Not Porcine Lymphotropic Herpesvirus, in Pig-to-Baboon Xenotransplantation. J. Infect. Dis. 2004, 189, 1628–1633. [Google Scholar] [CrossRef]
- Cybulski, P.; Socha, W.; Jabłoński, A.; Kondratiuk, R.; Rybkowska, W.; Stadejek, T.; Larska, M. First Molecular Detection of Porcine Cytomegalovirus (PCMV) and Porcine Lymphotropic Herpesvirus (PLHV) in Domestic Pigs in Poland. Pathogens 2025, 14, 396. [Google Scholar] [CrossRef] [PubMed]
- Dall Agnol, A.M.; Leme, R.A.; Suphoronski, S.A.; Oliveira, T.E.S.; Possatti, F.; Saporiti, V.; Headley, S.A.; Alfieri, A.A.; Alfieri, A.F. Porcine lymphotropic herpesvirus DNA detection in multiple organs of pigs in Brazil. Braz. J. Microbiol. 2020, 51, 2145–2152. [Google Scholar] [CrossRef]
- Franzo, G.; Drigo, M.; Legnardi, M.; Grassi, L.; Menandro, M.L.; Pasotto, D.; Cecchinato, M.; Tucciarone, C.M. Porcine Gammaherpesviruses in Italian Commercial Swine Population: Frequent but Harmless. Pathogens 2021, 10, 47. [Google Scholar] [CrossRef]
- McMahon, K.J.; Minihan, D.; Campion, E.M.; Loughran, S.T.; Allan, G.; McNeilly, F.; Walls, D. Infection of pigs in Ireland with lymphotropic gamma-herpesviruses and relationship to postweaning multisystemic wasting syndrome. Vet. Microbiol. 2006, 116, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Porto, G.S.; Leme, R.A.; Dall Agnol, A.M.; de Souza, T.C.G.D.; Alfieri, A.A.; Alfieri, A.F. Porcine lymphotropic herpesvirus (Gammaherpesvirinae) DNA in free-living wild boars (Sus scrofa Linnaeus, 1758) in Brazil. J. Vet. Sci. 2021, 22, e81. [Google Scholar] [CrossRef] [PubMed]
- Brema, S.; Lindner, I.; Goltz, M.; Ehlers, B. Development of a recombinant antigen-based ELISA for the sero-detection of porcine lymphotropic herpesviruses. Xenotransplantation 2008, 15, 357–364. [Google Scholar] [CrossRef]
- Halecker, S.; Hansen, S.; Krabben, L.; Ebner, F.; Kaufer, B.; Denner, J. How, where and when to screen for porcine cytomegalovirus (PCMV) in donor pigs for xenotransplantation. Sci. Rep. 2022, 12, 21545. [Google Scholar] [CrossRef] [PubMed]
- Russell, G.C.; Stewart, J.P.; Haig, D.M. Malignant catarrhal fever: A review. Vet. J. 2009, 179, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Längin, M.; Mayr, T.; Reichart, B.; Michel, S.; Buchholz, S.; Guethoff, S.; Dashkevich, A.; Baehr, A.; Egerer, S.; Bauer, A.; et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 2018, 564, 430–433. [Google Scholar] [CrossRef]
- Denner, J.; Bigley, T.M.; Phan, T.L.; Zimmermann, C.; Zhou, X.; Kaufer, B.B. Comparative Analysis of Roseoloviruses in Humans, Pigs, Mice, and Other Species. Viruses 2019, 11, 1108. [Google Scholar] [CrossRef] [PubMed]
- Denner, J.; Längin, M.; Reichart, B.; Krüger, L.; Fiebig, U.; Mokelke, M.; Radan, J.; Mayr, T.; Milusev, A.; Luther, F.; et al. Impact of porcine cytomegalovirus on long-term orthotopic cardiac xenotransplant survival. Sci. Rep. 2020, 10, 17531. [Google Scholar] [CrossRef]
- Krüger, L.; Böttger, J.; Huang, C.A.; Denner, J. Absence of porcine endogenous retrovirus (PERV) production from pig lymphoma cell lines. Virus Res. 2021, 295, 198286. [Google Scholar] [CrossRef] [PubMed]
- Jhelum, H.; Bender, M.; Reichart, B.; Mokelke, M.; Radan, J.; Neumann, E.; Krabben, L.; Abicht, J.M.; Kaufer, B.; Längin, M.; et al. Evidence for Microchimerism in Baboon Recipients of Pig Hearts. Viruses 2023, 15, 1618. [Google Scholar] [CrossRef]
- Fiebig, U.; Abicht, J.M.; Mayr, T.; Längin, M.; Bähr, A.; Guethoff, S.; Falkenau, A.; Wolf, E.; Reichart, B.; Shibahara, T.; et al. Distribution of Porcine Cytomegalovirus in Infected Donor Pigs and in Baboon Recipients of Pig Heart Transplantation. Viruses 2018, 10, 66. [Google Scholar] [CrossRef]
- Yamada, K.; Tasaki, M.; Sekijima, M.; Wilkinson, R.A.; Villani, V.; Moran, S.G.; Cormack, T.A.; Hanekamp, I.M.; Hawley, R.J.; Arn, J.S.; et al. Porcine cytomegalovirus infection is associated with early rejection of kidney grafts in a pig to baboon xenotransplantation model. Transplantation 2014, 98, 411–418. [Google Scholar] [CrossRef]
- Sekijima, M.; Waki, S.; Sahara, H.; Tasaki, M.; Wilkinson, R.A.; Villani, V.; Shimatsu, Y.; Nakano, K.; Matsunari, H.; Nagashima, H.; et al. Results of Life-Supporting Galactosyltransferase Knockout Kidneys in Cynomolgus Monkeys Using Two Different Sources of Galactosyltransferase Knockout Swine. Transplantation 2014, 98, 419–426. [Google Scholar] [CrossRef]
- Denner, J. Reduction of the survival time of pig xenotransplants by porcine cytomegalovirus. Virol. J. 2018, 15, 171. [Google Scholar] [CrossRef]
- Mohiuddin, M.M.; Singh, A.K.; Scobie, L.; Goerlich, C.E.; Grazioli, A.; Saharia, K.; Crossan, C.; Burke, A.; Drachenberg, C.; Oguz, C.; et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: A case report. Lancet 2023, 402, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Morozov, V.A.; Abicht, J.M.; Reichart, B.; Mayr, T.; Guethoff, S.; Denner, J. Active replication of porcine cytomegalovirus (PCMV) following transplantation of a pig heart into a baboon despite undetected virus in the donor pig. Ann. Virol. Res. 2016, 2, 1018. [Google Scholar]
- Denner, J. How Does a Porcine Herpesvirus, PCMV/PRV, Induce a Xenozoonosis. Int. J. Mol. Sci. 2025, 26, 3542. [Google Scholar] [CrossRef] [PubMed]
- Issa, N.C.; Wilkinson, R.A.; Griesemer, A.; Cooper, D.K.; Yamada, K.; Sachs, D.H.; Fishman, J.A. Absence of replication of porcine endogenous retrovirus and porcine lymphotropic herpesvirus type 1 with prolonged pig cell microchimerism after pig-to-baboon xenotransplantation. J. Virol. 2008, 82, 12441–12448. [Google Scholar] [CrossRef]
- Mueller, N.J.; Kuwaki, K.; Knosalla, C.; Dor, F.J.; Gollackner, B.; Wilkinson, R.A.; Arn, S.; Sachs, D.H.; Cooper, D.K.; Fishman, J.A. Early weaning of piglets fails to exclude porcine lymphotropic herpesvirus. Xenotransplantation 2005, 12, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Egerer, S.; Fiebig, U.; Kessler, B.; Zakhartchenko, V.; Kurome, M.; Reichart, B.; Kupatt, C.; Klymiuk, N.; Wolf, E.; Denner, J.; et al. Early weaning completely eliminates porcine cytomegalovirus from a newly established pig donor facility for xenotransplantation. Xenotransplantation 2018, 25, e12449. [Google Scholar] [CrossRef]
- Goltz, M.; Ericsson, T.; Patience, C.; Huang, C.A.; Noack, S.; Sachs, D.H.; Ehlers, B. Sequence analysis of the genome of porcine lymphotropic herpesvirus 1 and gene expression during posttransplant lymphoproliferative disease of pigs. Virology 2002, 294, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Rovnak, J.; Quackenbush, S.L.; Reyes, R.A.; Baines, J.D.; Parrish, C.R.; Casey, J.W. Detection of a novel bovine lymphotropic herpesvirus. J. Virol. 1998, 72, 4237–4242. [Google Scholar] [CrossRef]
- Li, H.; Keller, J.; Knowles, D.P.; Crawford, T.B. Recognition of another member of the malignant catarrhal fever virus group: An endemic gammaherpesvirus in domestic goats. J. Gen. Virol. 2001, 82, 227–232. [Google Scholar] [CrossRef]
- Li, H.; Keller, J.; Knowles, D.P.; Taus, N.S.; Oaks, J.L.; Crawford, T.B. Transmission of caprine herpesvirus 2 in domestic goats. Vet. Microbiol. 2005, 107, 23–29. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, Q.; Hu, X.; Chu, W.; Zhang, J.; Jiang, L.; Yu, X.; Zhang, X.; Cheng, S. Caprine herpesvirus 2-associated malignant catarrhal fever of captive sika deer (Cervus nippon) in an intensive management system. BMC Vet. Res. 2018, 14, 38. [Google Scholar] [CrossRef]
- Ulrich, S.; Goltz, M.; Ehlers, B. Characterization of the DNA Polymerase Loci of the Novel Porcine Lymphotropic Herpesviruses 1 and 2 in Domestic and Feral Pigs. J. Gen. Virol. 1999, 80, 3199–3205. [Google Scholar] [CrossRef]
- Allen, U.; Preiksaitis, J.; AST Infectious Diseases Community of Practice. Epstein-Barr virus and posttransplant lymphoproliferative disorder in solid organ transplant recipients. Am. J. Transplant. 2009, 9 (Suppl. S4), S87–S96. [Google Scholar] [CrossRef] [PubMed]
- El-Mallawany, N.K.; Rouce, R.H. EBV and post-transplant lymphoproliferative disorder: A complex relationship. Hematol. Am. Soc. Hematol. Educ. Program 2024, 2024, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Lindner, I.; Ehlers, B.; Noack, S.; Dural, G.; Yasmum, N.; Bauer, C.; Goltz, M. The porcine lymphotropic herpesvirus 1 encodes functional regulators of gene expression. Virology 2007, 357, 134–148. [Google Scholar] [CrossRef]
- Zuo, J.; Currin, A.; Griffin, B.D.; Shannon-Lowe, C.; Thomas, W.A.; Ressing, M.E.; Wiertz, E.J.H.J.; Rowe, M.; Früh, K. The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation. PLoS Pathog. 2009, 5, e1000255. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Quinn, L.L.; Tamblyn, J.; Thomas, W.A.; Feederle, R.; Delecluse, H.J.; Hislop, A.D.; Rowe, M. The Epstein-Barr Virus-Encoded BILF1 Protein Modulates Immune Recognition of Endogenously Processed Antigen by Targeting Major Histocompatibility Complex Class I Molecules Trafficking on Both the Exocytic and Endocytic Pathways. J. Virol. 2011, 85, 1604–1614. [Google Scholar] [CrossRef]
- Griffin, B.D.; Gram, A.M.; Mulder, A.; Van Leeuwen, D.; Claas, F.H.; Wang, F.; Ressing, M.E.; Wiertz, E. EBV BILF1 Evolved to Downregulate Cell Surface Display of a Wide Range of HLA Class I Molecules Through Their Cytoplasmic Tail. J. Immunol. 2013, 190, 1672–1684. [Google Scholar] [CrossRef]
- Quinn, L.L.; Zuo, J.; Abbott, R.J.; Shannon-Lowe, C.; Tierney, R.J.; Hislop, A.D.; Rowe, M.; Rooney, C.M. Cooperation Between Epstein-Barr Virus Immune Evasion Proteins Spreads Protection From CD8⁺ T Cell Recognition Across All Three Phases of the Lytic Cycle. PLoS Pathog. 2014, 10, e1004322. [Google Scholar] [CrossRef]
- Paulsen, S.J.; Rosenkilde, M.M.; Eugen-Olsen, J.; Kledal, T.N. Epstein-Barr Virus-Encoded BILF1 is a Constitutively Active G Protein-Coupled Receptor. J. Virol. 2005, 79, 536–546. [Google Scholar] [CrossRef]
- Lyngaa, R.; Norregaard, K.; Kristensen, M.; Kubale, V.; Rosenkilde, M.M.; Kledal, T.N. Cell Transformation Mediated by the Epstein-Barr Virus G Protein-Coupled Receptor BILF1 is Dependent on Constitutive Signaling. Oncogene 2010, 29, 4388–4398. [Google Scholar] [CrossRef]
- Mavri, M.; Kubale, V.; Depledge, D.P.; Zuo, J.; Huang, C.A.; Breuer, J.; Vrecl, M.; Jarvis, M.A.; Jovičić, E.J.; Petan, T.; et al. Epstein-Barr Virus-Encoded BILF1 Orthologues from Porcine Lymphotropic Herpesviruses Display Common Molecular Functionality. Front. Endocrinol. 2022, 13, 862940. [Google Scholar] [CrossRef]
- Santoni, F.; Lindner, I.; Caselli, E.; Goltz, M.; Di Luca, D.; Ehlers, B. Molecular interactions between porcine and human gammaherpesviruses: Implications for xenografts? Xenotransplantation 2006, 13, 308–317. [Google Scholar] [CrossRef]
- Ehlers, B. Robert Koch Institute: Berlin, Germany, Unpublished work. 2002.
- Duvigneau, J.; Hartl, R.; Groiss, S.; Gemeiner, M. Quantitative simultaneous multiplex real-time PCR for the detection of porcine cytokines. J. Immunol. Methods 2005, 306, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, R.; Fiebig, U.; Norley, S.; Gürtler, L.; Kurth, R.; Denner, J. A Neutralization Assay for HIV-2 Based on Measurement of Provirus Integration by Duplex Real-Time PCR. J. Virol. Methods 2009, 159, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.A.; Hughes, D.A.; Anders, B.A.; Shewale, J.; Sinha, S.K.; Batzer, M.A. Quantitative intra-short interspersed element PCR for species-specific DNA identification. Anal. Biochem. 2003, 316, 259–267. [Google Scholar] [CrossRef] [PubMed]
Pig Breed | Detection of Virus Using Real-Time PCR | Western Blot Analysis b | Reference | ||
---|---|---|---|---|---|
PLHV-1 a | PLHV-2 a | PLHV-3 a | |||
Number of Positive Animals/Number of Tested Animals | |||||
Göttingen minipigs 1 | 0/10 (0%) | 0/10 (0%) | 0/10 (0%) | 1/10 (0%) | Morozov et al., 2016 [12] |
Göttingen minipigs 2 | 0/10 (0%) | 0/10 (0%) | 0/10 (0%) | 0/10 (0%) | Plotzki et al., 2016 [13] |
Göttingen minipigs 3 | 2/11 (18%) | 2/11 (18%) | 2/11 (18%) | n.t. c | Krüger et al., 2019 [14] |
Göttingen minipigs with DPS d | 0/7 (0%) | 0/7 (0%) | 1/4 (25%) | n.t. | Jhelum et al., 2023 [15] |
Aachen minipigs | 0/18 (0%) | 5/18 (28%) | 2/18 (16%) | 0/10 (0%) | Plotzki et al., 2016 [16] |
Mini LEWE | 0/10 (0%) | 0/10 (0%) | 0/10 (0%) | n.t. | Halecker et al., 2021 [17] |
Indigenous Greek black pigs | 12/21 (57%) | 15/21 (71%) | 21/21 (100%) | n.t. | Jhelum et al., 2024 [18] |
Greek pigs with erythema multiforme | 5/5 (100%) | 1/5 (20%) | 4/5 (80%) | n.t. | Halecker et al., 2022 [19] |
German slaughterhouse pigs 1 | 2/36 (6%) | 0/36 (0%) | 10/36 (28%) | 7/36 (19%) | Plotzki et al., 2016 [13] |
German slaughterhouse pigs 2 | 10/10 (100%) | 0/10 (0%) | 10/10 (100%) | n.t. | Jhelum et al., 2024 [20] |
Large White × Landrace | 12/22 (55%) | 2/22 (9%) | n.t. | n.t. | Mueller et al., 2004 [21] |
Farm animals, Poland | 11/45 (24%) | n.t. | n.t. | n.t. | Cybulski et al. 2025 [22] |
Farm animals, Brazil | 12/19 (63%) | n.t. | n.t. | n.t. | Dall Agnol et al., 2020 [23] |
Italien pigs | 50/168 (30%) | 19/168 (11%) | 7/168 (7%) | n.t. | Franzo et al., 2021 [24] |
German pigs, lung spleen Italien pigs, blood | 21/27 (78%) 20/34 (59%) 16/20 (80%) | 11/27 (41% 9/34 (26%) 4/29 (20%) | 16/27 (59%) 21/34 (62%) 13/20 (65%) | n.t. | Chmielewicz et al., 2003 [5] |
Farm pigs, Ireland | 25/32 (78%) | 7/32 (22%) | 37/65 (60%) | n.t. | McMahon et al., 2006 [25] |
Wild boars, Brazil | 48/50 (96%) | 28/50 (56%) | 22/50 (44%) | n.t. | Porto et al., 2021 [26] |
Animal | ID Number | Transplant Survival Days | PCMV/PRV Real-Time PCR (ct) | PLHV-1 PCR | PLHV-2 PCR | PLHV-3 PCR |
---|---|---|---|---|---|---|
Pig 5528 | n.d. | Pos. | Neg. | Neg. | ||
Baboon J | 17,186 | 90 | n.d. | Neg. | Neg. | Neg. |
Pig 5415 | n.d. | Pos. | Neg. | Neg. | ||
Baboon K | 17,187 | 50 | n.d. | Neg. | Neg. | Neg. |
Pig 5420 | n.d. | Pos. | Neg. | Neg. | ||
Baboon L | 17,290 | 90 | n.d. | Neg. | Neg. | Neg. |
Pig 5623 | 27. | Pos. | Neg. | Neg. | ||
Baboon M | 17,188 | 10 | 26 | Neg. | Neg. | Neg. |
Pig 5803 | n.d. | Pos. | Neg. | Neg. | ||
Baboon O | 17,493 | 195 | n.d. | Neg. | Neg. | Neg. |
Pig 5807 | n.d. | Pos. | Neg. | Neg. | ||
Baboon N | 17,491 | 182 | n.d. | Neg. | Neg. | Neg. |
Pig 6249 | 29 | Pos. | Neg. | Neg. | ||
Baboon P | 17,494 | 15 | 28 | Neg. | Neg. | Neg. |
Pig 6253 | 30 | Pos. | Neg. | Neg. | ||
Baboon Q | 17,492 | 27 | 32 | Neg. | Neg. | Neg. |
Pig 6827 | n.d. | Neg. | Pos. | Neg. | ||
Baboon X | 28 | n.d. | Neg. | Neg. | Neg. | |
Pig 7094 | n.d. | Neg. | Pos. | Neg. | ||
Baboon Y | 90 | n.d, | Neg. | Neg. | Neg. | |
L23 cells | Neg. | Neg. | Pos. |
Animal | Organ Tested | PCMV/PRV Real-Time PCR ct | PLHV-1 | PLHV-2 | PLHV-3 | SINE | ||||
---|---|---|---|---|---|---|---|---|---|---|
Real-Time PCR ct | Copy Number | Real-Time PCR ct | Copy Number | Real-Time PCR ct | Copy Number | Real-Time PCR ct | Copy Number | |||
Pig 7649 | Spleen | n.d. | n.d | n.d | n.d | n.t. | ||||
Liver | n.d | n.d | n.d | n.d | n.t. | |||||
Baboon A | Spleen | n.d | n.d | n.d | n.d | 16.86 | 106 | |||
Liver | n.d | n.d | n.d | n.d | 23.12 | 104 | ||||
RV a | n.d | n.d | n.d | n.d | 28.48 | 103 | ||||
LV b | n.d | n.d | n.d | n.d | 28.00 | 103 | ||||
Pig 7654 | Spleen | n.d | n.d | 26.38 | 103 | n.d | n.t. | |||
Liver | n.d | n.d | 26.94 | 103 | n.d | n.t. | ||||
Baboon B | RV | n.d | n.d | n.d | n.d | 7.05 | 1010 | |||
LV | n.d | n.d | n.d. | n.d | 7.06 | 1010 | ||||
Pig 7687 | Spleen | n.d | 27.51 | 103 | n.d | 35.13 | 101 | n.t. | ||
Liver | n.d | 28.51 | 102 | n.d | 35.17 | 101 | n.t. | |||
Baboon C | Spleen | n.d | n.d | n.d | n.d | 19.55 | 106 | |||
Liver | n.d | n.d | n.d | n.d | 20.64 | 105 | ||||
RV | n.d | n.d | n.d | n.d | 7.2 | 1010 | ||||
LV | n.d | n.d | n.d | n.d | 6.54 | 1010 |
Primers Used for PCR | Sequence 5′-3′ | Nucleotide Position | Accession Number | Reference |
---|---|---|---|---|
Primers used for PCR | ||||
PLHV-1,-2 (747) fw PLHV-1,-2 (747) rev | CAYGGTAGTATTTATTCAGACA GATATCCTGGTACATTGGAAAG | 21,146–21,167 21,488–21,467 | AF478169.1 | Ehlers B., 2002 [62] |
PLHV-3 (905) fw PLHV-3 (905) rev | ACAAGAGCCTTAGGGTTCCAAACT GTGTCCAGTGTTGTAATGGATGCC | 13,472–13,495 13,727–13,704 | AY170316.1 | Chmielewicz et al., 2003 [5] |
Primers and probes used for real-time PCR | ||||
pGAPDH fw pGAPDH rev pGAPDH probe | ACATGGCCTCCAAGGAGTAAGA GATCGAGTTGGGGCTGTGACT HEX-CCACCAACCCCAGCAAGAGCACGC-BHQ1 | 1,083–1,104 1,188–1,168 1,114–1,137 | NM_001206359.1 | Duvigneau et al., 2005 [63] |
hGAPDH fw hGAPDH rev hGAPDH probe | GGCGATGCTGGCGCTGAGTAC TGGTTCACACCCATGACGA HEX-CTTCACCACCATGGAGAAGGCTGGG-BHQ1 | 3,568–3,587 3,803–3,783 3,655–3,678 | AF261085 | Behrendt et al., 2009 [64] |
PCMV/PRV fw PCMV/PRV rev PCMV/PRV probe | ACTTCGTCGCAGCTCATCTGA GTTCTGGGATTCCGAGGTTG 6FAM-CAGGGCGGCGGTCGAGCTC-BHQ1 | 45,206–45,226 45,268–45,249 45,247–45,229 | AF268039 | Mueller et al., 2002 [7] |
PLHV-1 (1125) fw PLHV-1 rev PLHV-1 probe | CTC ACC TCC AAA TAC AGC GA GCT TGA ATC GTG TGT TCC ATA G 6FAM-CTG GTC TAC TGA ATC GCC GCT AAC AG-TAMRA | 14,808–14,827 14,880–14,859 14,829–14,854 | AF478169 | Chmielewicz et al., 2003 [5] |
PLHV-2 (1155) fw PLHV-2 rev PLHV-2 probe | GTC ACC TGC AAA TAC ACA GG GGC TTG AAT CGT ATG TTC CAT AT 6FAM-CTG GTC TAC TGA AGC GCT GCC AAT AG-TAMRA | 10,814–10,833 10,887–10,865 10,835–10,860 | AY170314 | Chmielewicz et al., 2003 [5] |
PLHV-3 /210 s) fw PLHV-3 (210as) rev PLHV-3 (210) probe | AAC AGC GCC AGA AAA AAA GG GGA AAG GTA GAA GGT GAA CCA TAA AA 6-FAM CCA AAG AGG AAA ATC-MGB | 11,999–12,018 12,064–12,039 12,022–12,036 | AY170315.1 | McMahon et al., 2006 [25] |
PRE-1 fwd PRE-1 rev PRE-1 probe | GACTAGGAACCATGAGGTTGCG AGCCTACACCACAGCCACAG FAM-TTTGATCCCTGGCCTTGCTCAGTGG-BHQ1 | 37–58 61–85 151–170 | Y00104 | Walker et al., 2003 [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jhelum, H.; Bender, M.; Reichart, B.; Abicht, J.-M.; Längin, M.; Kaufer, B.B.; Denner, J. Porcine Lymphotropic Herpesvirus (PLHV) Was Not Transmitted During Transplantation of Genetically Modified Pig Hearts into Baboons. Int. J. Mol. Sci. 2025, 26, 7378. https://doi.org/10.3390/ijms26157378
Jhelum H, Bender M, Reichart B, Abicht J-M, Längin M, Kaufer BB, Denner J. Porcine Lymphotropic Herpesvirus (PLHV) Was Not Transmitted During Transplantation of Genetically Modified Pig Hearts into Baboons. International Journal of Molecular Sciences. 2025; 26(15):7378. https://doi.org/10.3390/ijms26157378
Chicago/Turabian StyleJhelum, Hina, Martin Bender, Bruno Reichart, Jan-Michael Abicht, Matthias Längin, Benedikt B. Kaufer, and Joachim Denner. 2025. "Porcine Lymphotropic Herpesvirus (PLHV) Was Not Transmitted During Transplantation of Genetically Modified Pig Hearts into Baboons" International Journal of Molecular Sciences 26, no. 15: 7378. https://doi.org/10.3390/ijms26157378
APA StyleJhelum, H., Bender, M., Reichart, B., Abicht, J.-M., Längin, M., Kaufer, B. B., & Denner, J. (2025). Porcine Lymphotropic Herpesvirus (PLHV) Was Not Transmitted During Transplantation of Genetically Modified Pig Hearts into Baboons. International Journal of Molecular Sciences, 26(15), 7378. https://doi.org/10.3390/ijms26157378