Melatonin/Chitosan Biomaterials for Wound Healing and Beyond: A Multifunctional Therapeutic Approach
Abstract
1. Introduction
2. Synergistic Applications of Chitosan and Melatonin
2.1. Wound Healing
2.2. Scaffolds and Hydrogels
2.3. Cosmetology/Dermatology (Hair Treatment)
2.4. Anti-Cancer Therapy
2.5. Drug Delivery Systems
2.6. Other Applications
3. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Kabanov, V.L.; Novinyuk, L.V. Chitosan application in food technology: A review of recent advances. Food Syst. 2020, 3, 10–15. [Google Scholar] [CrossRef]
- Kulka, K.; Sionkowska, A. Chitosan Based Materials in Cosmetic Applications: A Review. Molecules 2023, 28, 1817. [Google Scholar] [CrossRef] [PubMed]
- Matica, M.A.; Aachmann, F.L.; Tondervik, A.; Sletta, H.; Ostafe, V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019, 20, 5889. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan Derivatives and Their Application In Biomedicine. Int. J. Mol. Sci. 2020, 21, 487. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcantara, A.R.; Civera, M.C.; Arias, C.; Alorza, B.; Caballero, A.H.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Bhatt, S.; Pathak, R.; Punetha, V.D.; Punetha, M. Chitosan Nanocomposites as a Nano-Bio Tool in Phytopathogen Control. Carbohydr. Polym. 2024, 331, 121858. [Google Scholar] [CrossRef]
- Harugade, A.; Sherje, A.P.; Pethe, A. Chitosan: A Review on Properties, Biological Activities and Recent Progress in Biomedical Applications. React. Funct. Polym. 2023, 191, 105634. [Google Scholar] [CrossRef]
- Nasaj, M.; Chehelgerdi, M.; Asghari, B.; Ahmadieh-Yazdi, A.; Asgari, M.; Kabiri-Samani, S.; Sharifi, E.; Arabestani, M. Factors Influencing the Antimicrobial Mechanism of Chitosan Action and its Derivatives: A Review. Int. J. Biol. Macromol. 2024, 277, 134321. [Google Scholar] [CrossRef]
- Suryani, S.; Chaerunisaa, A.Y.; Joni, I.M.; Ruslin, R.; Ramadhan, L.O.A.N.; Wardhana, Y.W.; Sabarwati, S.H. Production of Low Molecular Weight Chitosan Using a Combination of Weak Acid and Ultrasonication Methods. Polymers 2022, 14, 3417. [Google Scholar] [CrossRef]
- Choi, J.; Hwang, D.S.; Lim, C.; Lee, D.W. Interaction Mechanism Between Low Molecular Weight Chitosan Nanofilm and Functionalized Surfaces in Aqueous Solutions. Carbohydr. Polym. 2024, 324, 121504. [Google Scholar] [CrossRef]
- Román-Doval, R.; Torres-Arellanes, S.P.; Tenorio-Barajas, A.Y.; Gómez-Sánchez, A.; Valencia-Lazcano, A.A. Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight. Polymers 2023, 15, 2867. [Google Scholar] [CrossRef] [PubMed]
- Pellis, A.; Guebnitz, G.M.; Nyanhongo, G.S. Chitosan: Sources, Processing and Modification Techniques. Gels 2022, 8, 393. [Google Scholar] [CrossRef]
- Rodrigues, S.; Dionisio, M.; Lopez, C.R.; Grenha, A. Biocompatibility of Chitosan Carriers with application in Drug Delivery. J. Funct. Biomater. 2012, 3, 615–641. [Google Scholar] [CrossRef]
- Fowler, S.; Hoedt, E.C.; Talley, N.J.; Keely, S.; Burns, G.L. Circadian Rhythms and Melatonin Metabolism in Patients With Disorders of Gut-Brain Interactions. Front. Neurosci. 2022, 16, 825246. [Google Scholar] [CrossRef]
- Ismaili, L.; Romero, A.; do Carmo Carreiras, M.; Marco-Contelles, J. Multitarget-Directed Antioxidants as Therapeutic Agents: Putting the Focus on the Oxidative Stress. In Design of Hybrid Molecules for Drug Development; Decker, M., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 5–46. [Google Scholar] [CrossRef]
- Slominski, A.; Wortsman, J.; Tobin, D.J. The cutaneous serotoninergic/melatoninergic system: Securing a place under the sun. FASEB J. 2005, 19, 176–194. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernández-Ruiz, J. Chapter 11—Phytomelatonin: Searching for Plants with High Levels for Use as a Natural Nutraceutical. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 519–545. [Google Scholar] [CrossRef]
- Barba, F.J.; María, J.; Esteve, M.J.; Frígola, A. Chapter 11—Bioactive Components from Leaf Vegetable Products. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 321–346. [Google Scholar] [CrossRef]
- Kim, T.K.; Slominski, R.M.; Pyza, E.; Kleszczynski, K.; Tuckey, R.C.; Reiter, R.J.; Holick, M.F.; Slominski, A.T. Evolutionary formation of melatonin and vitamin D in early life forms: Insects take centre stage. Biol. Rev. 2024, 99, 1772–1790. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Atigadda, V.R.; Brzeminski, P.; Fabisiak, A.; Tang, E.K.Y.; Tuckey, R.C.; Reiter, R.J.; Slominski, A.T. Detection of Serotonin, Melatonin, and Their Metabolites in Honey. ACS Food Sci. Technol. 2021, 1, 1228–1235. [Google Scholar] [CrossRef]
- Slominski, A.T.; Zmijewski, M.A.; Semak, I.; Kim, T.K.; Janjetovic, Z.; Slominski, R.M.; Zmijewski, J.W. Melatonin, mitochondria, and the skin. Cell. Mol. Life Sci. 2017, 74, 3913–3925. [Google Scholar] [CrossRef]
- Reiter, R.J.; Rosales-Corral, S.A.; Tan, D.X.; Acuna-Castroviejo, D.; Qin, L.; Yang, S.F.; Xu, K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int. J. Mol. Sci. 2017, 18, 843. [Google Scholar] [CrossRef]
- Slominski, A.T.; Kim, T.K.; Janjetovic, Z.; Slominski, R.M.; Ganguli-Indra, G.; Athar, M.; Indra, A.K.; Reiter, R.J.; Kleszczyński, K. Melatonin and the Skin: Current Progress and Perspectives for Human Health. J. Investig. Dermatol. 2025, 145, 1345–1360.e2. [Google Scholar] [CrossRef]
- Kleszczyński, K.; Fischer, T.W. Melatonin and human skin aging. Dermatoendocrinology 2012, 4, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Shokrzadeh, M.; Ashari, S.; Ghassemi-Barghi, N. Attenuation of Doxorubicin Induced Genotoxicity in HepG2 Cells: Effect of Melatonin Loading Chitosan-Tripolyphosphate Nanoparticles on Oxidative stress. Int. J. Cancer Res. Ther. 2020, 5, 35–42. [Google Scholar] [CrossRef]
- Slominski, A.; Wortsman, J. Neuroendocrinology of the skin. Endocr. Rev. 2000, 21, 457–487. [Google Scholar] [CrossRef] [PubMed]
- Tottili, E.M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics 2020, 12, 735. [Google Scholar] [CrossRef]
- Wilkinson, H.N.; Hardman, M.J. Wound healing: Cellular mechanism and pathological outcomes. Open Biol. 2023, 10, 200223. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D: Newer concepts of Its metabolism and function at the basic and clinical level. J. Endocr. Soc. 2020, 4, bvz038. [Google Scholar] [CrossRef]
- Slominski, R.M.; Raman, C.; Jetten, A.M.; Slominski, A.T. Neuro-immuno-endocrinology of the skin: How environment regulates body homeostasis. Nat. Rev. Endocrinol. 2025, in press. [Google Scholar] [CrossRef]
- Gardikiotis, I.; Cojocaru, F.-D.; Mihai, C.-T.; Balan, V.; Dodi, G. Borrowing the Features of Biopolymers for Emerging Wound Healing Dressings: A Review. Int. J. Mol. Sci. 2022, 23, 8778. [Google Scholar] [CrossRef]
- Landen, N.X.; Li, D.; Stahle, M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef]
- Reinke, J.M.; Sorg, H. Wound repair and regeneration. Eur. Surg. Res. 2012, 49, 35–43. [Google Scholar] [CrossRef]
- Boateng, J.S.; Metthews, K.H.; Stevens, H.N.E.; Eccleston, G.M. Wound Healing Dressing and Drug Delivery Systems: A Review. J. Pharm. Sci. 2008, 97, 2892–2923. [Google Scholar] [CrossRef] [PubMed]
- Ndlovu, S.P.; Ngece, K.; Alven, S.; Aderibigbe, B.A. Gelatin-Based Hybrid Scaffolds: Promising Wound Dressings. Polymers 2021, 13, 2959. [Google Scholar] [CrossRef] [PubMed]
- Romic, M.D.; Klaric, M.S.; Lovric, J.; Pepic, I.; Cetina-Cizmek, B.; Filipovic-Grcic, J.; Hafner, A. Melatonin-loaded chitosan/Pluronic F127 microspheres as in situ forming hydrogel: An innovative antimicrobial wound dressing. Eur. J. Pharm. Biopharm. 2016, 107, 67–79. [Google Scholar] [CrossRef]
- Romic, M.D.; Susac, A. Evaluation of stability and in vitro wound healing potential of melatonin loaded (lipid enriched) chitosan microspheres. Acta Pharm. 2019, 69, 635–648. [Google Scholar] [CrossRef]
- Romic, M.D.; Spoljaric, D.; Klaric, M.S.; Cetina-Cizmek, B.; Filipovic-Grcic, J.; Hafner, A. Melatonin loaded lipid enriched chitosan microspheres—Hybrid dressing for moderate exuding wounds. J. Drug Deliv. Sci. Technol. 2019, 52, 431–439. [Google Scholar] [CrossRef]
- Hafner, A.; Lovric, J.; Pepic, I.; Filipovic-Grcic, J. Lecithin/chitosan nanoparticles for transdermal delivery of melatonin. J. Microencapsul. 2011, 28, 807–815. [Google Scholar] [CrossRef]
- Blazevic, F.; Milekic, T. Nanopartcile-mediated interplay of chitosan and melatonin for improved wound epithelialization. Carbohyd. Polym. 2016, 146, 445–454. [Google Scholar] [CrossRef]
- Kaczmarek-Szczepańska, B.; Ostrowska, J.; Kozłowska, J.; Szota, Z.; Brożyna, A.A.; Dreier, R.; Reiter, R.J.; Slominski, A.T.; Steinbrink, K.; Kleszczyński, K. Evaluation of polymeric matrix loaded with melatonin for wound dressing. Int. J. Mol. Sci. 2021, 22, 5658. [Google Scholar] [CrossRef]
- Correa, V.; Martins, J.A.; de Souza, T.R.; Rincon, G.C.N.; Miguel, M.P.; de Menezes, L.B.; Amaral, A.C. Melatonin loaded lecithin-chitosan nanoparticles improved the wound healing in diabetic rats. Int. J. Biol. Macromol. 2020, 162, 1465–1475. [Google Scholar] [CrossRef]
- Soriano, J.L.; Calpena, A.C.; Rincon, M.; Perez, N.; Halbut, L.; Rodriguez, M.J.; Clares, B. Melatonin nanogel promotes skin healing response in burn wounds of rats. Nanomedicine 2020, 15, 2133–2147. [Google Scholar] [CrossRef]
- Mirmajidi, T.; Chogan, F.; Rezayan, A.H.; Sharifi, A.M. In vitro and in vivo evaluation of nanofiber wound dressing loaded with melatonin. Int. J. Pharm. 2021, 596, 120213. [Google Scholar] [CrossRef]
- Hafner, A.; Durrigl, M. Short- and Long-Term Stability of Lyophilised Melatonin-Loaded Lecithin/Chitosan Nanoparticles. Chem. Pharm. Bull. 2011, 59, 1117–1123. [Google Scholar] [CrossRef]
- Păncescu, F.M.; Rikabi, A.A.K.K.; Oprea, O.C.; Grosu, A.R.; Nechifor, A.C.; Grosu, V.-A.; Tanczos, S.-K.; Dumitru, F.; Nechifor, G.; Bungău, S.G. Chitosan-sEPDM and Melatonin—Chitosan—sEPDM Composite Membranes for Melatonin Transport and Release. Membranes 2023, 13, 282. [Google Scholar] [CrossRef]
- Shabbirahmed, A.M.; Sekar, R.; Gomez, L.A.; Sekhar, M.R.; Hiruthyaswamy, S.P.; Basavegowa, N.; Somu, P. Recent Developments of Silk-Based Scaffolds for Tissue Engineering and Regenerative Medicine Applications: A Special Focus on the Advancement of 3D Printing. Biomimetics 2023, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Sukpaita, T.; Chirachanchai, S.; Pimkhaokham, A.; Ampornaramveth, R.S. Chitosan-Based Scaffold for Mineralized Tissue Regeneration. Mar. Drugs 2021, 19, 551. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, N.; Hamlet, S.; Love, R.M.; Nguyen, N.T. Porous scaffolds for bone regeneration. J. Sci. Adv. Mater. Devices 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Lee, S.S.; Du, X.; Kim, I.; Ferguson, S.J. Scaffolds for bone-tissue engineering. Matter 2022, 5, 2722–2759. [Google Scholar] [CrossRef]
- Lauritano, D.; Limongelli, I.; Moreo, G.; Favia, G.; Carinci, F. Nanomaterials for Periodontal Tissue Engineering Chitosan-Based Scaffolds. A Systemic Review. Nanomaterials 2020, 10, 605. [Google Scholar] [CrossRef]
- Acosta, B.B.; Advincula, R.C.; Grande-Tovar, C.D. Chitosan-Based Scaffolds for the Treatment of myocardial Infraction: A Systemic Review. Molecules 2023, 28, 1920. [Google Scholar] [CrossRef]
- Martins, A.M.; Eng, G.; Caridade, S.G.; Mano, J.F.; Reis, R.L.; Vunjak-Novakovic, G. Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering. Biomacromolecules 2014, 15, 635–643. [Google Scholar] [CrossRef]
- Pezeshki-Modaress, M.; Zandi, M.; Rajabi, S. Tailoring the gelatin/chitosan electrospun scaffold for application in skin tissue engineering: An in vitro study. Prog. Biomater. 2018, 7, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Sandri, G.; Rossi, S.; Bonferoni, M.C.; Miele, D.; Faccendini, A.; Favero, E.; Di Cola, E.; Cornaglia, A.I.; Boselli, C.; Luxbacher, T.; et al. Chitosan/glycosaminoglycan scaffolds for skin reparation. Carbohydr. Polym. 2019, 220, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Jarrar, H.; Altindal, D.C.; Gumusderelioglu, M. Effect of melatonin/BMP-2 co-delivery scaffold on the osteoclast activity. J. Mater. Sci. Mater. Med. 2021, 32, 32. [Google Scholar] [CrossRef]
- Jarrar, H.; Çetin Altındal, D.; Gümüşderelioğlu, M. Scaffold-based osteogenic dual delivery system with melatonin and BMP-2 releasing PLGA microparticles. Int. J. Pharm. 2021, 600, 120489. [Google Scholar] [CrossRef] [PubMed]
- Topal, B.; Altindal, D.C.; Gumusderelioglu, M. Melatonin/HPBCD complex: Microwave synthesis, integration with chitosan scaffolds and inhibitory effects on MG-63CELLS. Int. J. Pharm. 2015, 496, 801–811. [Google Scholar] [CrossRef]
- Altindal, D.C.; Gumusderelioglu, M. Dual-functional melatonin releasing device loaded with PLGA microparticles and cyclodextrin inclusion complex for osteosarcoma therapy. J. Drug Deliv. Sci. Technol. 2019, 52, 586–596. [Google Scholar] [CrossRef]
- Huang, R.-Y.; Hsiao, P.Y.; Mau, L.P.; Tsai, Y.W.C.; Cochran, D.L.; Weng, P.W.; Cheng, W.C.; Chung, C.H.; Huang, Y.C. Synthesis and Characterization of Melatonin-Loaded Chitosan Microparticles Promote Differentiation and Mineralization in Preosteoblastic Cells. J. Oral Implantol. 2020, 46, 562–570. [Google Scholar] [CrossRef]
- Kaczmarek-Szczepańska, B.; Pin, J.M.; Zasada, L.; Sonne, M.M.; Reiter, R.J.; Slominski, A.T.; Steinbrink, K.; Kleszczyński, K. Assesment of Melatonin-Cultured Collagen/Chitosan Scaffolds Cross-Linked by a Glyoxal Solution as Biomaterials for Wound Healing. Antioxidants 2022, 11, 570. [Google Scholar] [CrossRef]
- Fischer, T.W.; Hänggi, G.; Innocenti, M.; Elsner, P.; Trüeb, R. Topical Melatonin for Treatment of Androgenetic Alopecia. Int. J. Trichology 2012, 4, 236–245. [Google Scholar] [CrossRef]
- Slominski, A.T.; Kim, T.K.; Slominski, R.M.; Song, Y.; Qayyum, S.; Placha, W.; Janjetovic, Z.; Kleszczynski, K.; Atigadda, V.; Song, Y.; et al. Melatonin and Its Metabolites Can Serve as Agonists on the Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor Gamma. Int. J. Mol. Sci. 2023, 24, 15496. [Google Scholar] [CrossRef]
- Fischer, T.W.; Slominski, A.; Tobin, D.J.; Paus, R. Melatonin and the hair follicle. J. Pineal Res. 2008, 44, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.W.; Sweatman, T.W.; Semak, I.; Sayre, R.M.; Wortsman, J.; Slominski, A. Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. FASEB J. 2006, 20, 1564–1566. [Google Scholar] [CrossRef]
- Elshall, A.A.; Ghoneim, A.M.; Abd-Elmonsif, N.M.; Osman, R.; Shaker, D.S. Boosting hair growth through follicular delivery of melatonin through lecithin-enhanced Pickering emulsion stabilized by chitosan-dextran nanoparticles in testosterone induced androgenic alopecia rat model. Int. J. Pharm. 2023, 639, 122972. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, V.; Beheshitizadeh, N.; Gharibshahian, M.; Sabouri, L.; Varzandeh, M.; Rezaei, N. Recent advances in regenerative medicine strategies for cancer treatment. Biomed. Pharmacother. 2021, 141, 111875. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol. 2021, 14, 85. [Google Scholar] [CrossRef]
- Mundekkad, D.; Cho, C.W. Nanoparticles in Clinical Translation for Cancer Therapy. Int. J. Mol. Sci. 2022, 23, 1685. [Google Scholar] [CrossRef]
- Huang, M.; Lu, J.-J.; Ding, J. Natural Products in Cancer Therapy: Past, Present and Future. Nat. Prod. Bioprospect. 2011, 11, 5–13. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Choi, W.S. Use of Melatonin in Cancer Treatment: Where Are We? Int. J. Mol. Sci. 2022, 23, 3779. [Google Scholar] [CrossRef]
- Talib, W.H.; Alsayed, A.R.; Abuawad, A.; Daoud, S.; Mahmod, A.I. Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021, 26, 2506. [Google Scholar] [CrossRef]
- Talib, W.H. Melatonin and Cancer Hallmarks. Molecules 2018, 23, 518. [Google Scholar] [CrossRef]
- Das, N.K.; Samanta, S. The potential anti-cancer effects of melatonin on breast cancer. Explor. Med. 2022, 3, 112–127. [Google Scholar] [CrossRef]
- Jafari, H.; Hassanpour, M.; Akbari, A.; Rezie, J.; Gohari, G.; Reza, G.; Mahdavinia, E. Jabbari Characterization of pH-sensitive chitosan/hydroxypropyl methycellulose nanopartciles for delivery of melatonin in cancer therapy. Mater. Lett. 2020, 282, 128818. [Google Scholar] [CrossRef]
- Yadav, S.K.; Srivastava, A.K.; Dev, A.; Kaundal, B.; Choudhury, S.R.; Karmakar, S. Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line. Nanotechnology 2017, 28, 365102. [Google Scholar] [CrossRef]
- Shokrzadeh, M.; Ghassemi-Barghi, N. Melatonin Loading Chitosan-Tripolyphosphate Nanoparticles: Application in Attenuating Etoposide-Induced Genotooxicity in HepG2 Cells. Pharmacology 2018, 102, 74–80. [Google Scholar] [CrossRef]
- Desai, N.; Rana, D.; Salave, S.; Gupta, R.; Patel, P.; Karunakaran, B.; Sharma, A.; Giri, J.; Benival, D.; Kommineni, N. Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics 2023, 15, 1313. [Google Scholar] [CrossRef] [PubMed]
- Bernkop-Schnürch, A.; Dünnhaupt, S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biophram. 2012, 81, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Garg, U.; Chauhan, S.; Nagaich, U.; Jain, N. Current Advances in Chitosan Nanoparticles Based Drug Delivery and Targeting. Adv. Pharm. Bull. 2019, 9, 195–204. [Google Scholar] [CrossRef]
- Li, J.; Cai, C.; Li, J.; Li, J.; Li, J.; Sun, T.; Wang, L.; Wu, H.; Yu, G. Chitosan-Based Nanomaterials for Drug Delivery. Molecules 2018, 23, 2661. [Google Scholar] [CrossRef]
- Mohhamed, M.A.; Syeda, J.T.M.; Wasan, K.M.; Wasan, E.K. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef]
- Wang, J.J.; Zeng, Z.W.; Xiao, R.Z.; Xie, T.; Zhou, G.L.; Zhan, X.R.; Wang, S.L. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomed. 2011, 6, 765–774. [Google Scholar] [CrossRef]
- Hafner, A.; Lovric, J.; Romić, M.D.; Juretic, M.; Pepic, I.; Cetina-Cizmek, B.; Filipovic-Grcic, J. Evaluation of cationic nanosystems with melatonin using an eye-related bioavailability prediction model. Eur. J. Pharm. Sci. 2015, 75, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Perchyonok, V.T.; Zhang, S.; Basson, N.J.; Grobler, S.; Oberholzer, T.; Massey, W. Insights into chitosan based gels as functional restorative biomaterials prototypes: In vitro approach. Open J. Stomatol. 2013, 3, 22–30. [Google Scholar] [CrossRef]
- Tawfik, H.N.; Kandil, O.M.; Mansour, I.M.; El-Debaky, H.A.; Ali, K.A.; Ismail, E.A.; Abedelaziz, S.A. Effect of Melatonin-loaded Chitosan Nanoparticles (CMN) on Gene Expression of in vitro Matured Buffalo Oocyte. J. Adv. Vet. Res. 2023, 13, 656–663. [Google Scholar]
- Soni, J.M.; Sardoiwala, M.N.; Choudhury, S.R.; Sharma, S.S.; Karmakar, S. Melatonin-loaded chitosan nanoparticles endows nitric oxide synthase 2 mediated anti-inflammatory activity in inflammatory bowel disease model. Mater. Sci. Eng. C 2021, 124, 112038. [Google Scholar] [CrossRef]
- Mohanbhai, S.J.; Sardoiwala, M.N.; Gupta, S.; Shrimali, N.; Choudhury, S.R.; Sharma, S.S.; Guchhait, P.; Karmakar, S. Colon targeted chitosan-melatonin nanotherapy for preclinical Inflammatory Bowel Disease. Biomater. Adv. 2022, 136, 212796. [Google Scholar] [CrossRef] [PubMed]
- Aghaz, F.; Vaisi-Raygani, A.; Khazaei, M.; Arkan, E.; Kashanian, S. Enhanced Synergistic-Antioxidant Activity of Melatonin and Tretinoin by Co-encapsulation into Amphiphilic Chitosan Nanocarriers: During Mice In Vitro Matured Oocyte/Morula-Compact Stage Embryo Culture Model. Reprod. Sci. 2021, 28, 3361–3379. [Google Scholar] [CrossRef] [PubMed]
- Ruscitto, C.; Ogden, J.; Ellis, J.G. To what extent is circadian predictive of subjective jet lag in long-haul cabin crew pre- and post-trip? Appl. Ergon. 2023, 106, 103882. [Google Scholar] [CrossRef]
- Chase, J.E.; Gidal, B.E. Melatonin: Therapeutic Use in Sleep Disorders. Ann. Pharmacother. 1997, 31, 1218–1226. [Google Scholar] [CrossRef]
- Razali, S.; Bose, A.; Chong, P.W.; Benetti, C.; Colombo, P.; Wong, T.W. Design of multi-particulate “Dome matrix” with sustained-release melatonin and delayed-release caffeine for jet lag treatment. Int. J. Pharm. 2020, 587, 119618. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Dong, Q.; Xu, C.; Deng, S.; Kang, Y.; Fan, M.; Li, L. Application of functionalized chitosan in food: A review. Int. J. Biol. Macromol. 2023, 235, 123716. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, L.; Belwal, T.; Jiang, Y.; Li, D.; Xu, Y.; Luo, Z.; Li, L. Chitosan-based melatonin bilayer coating for maintaining quality of fresh-cut products. Carbohydr. Polym. 2020, 235, 115973. [Google Scholar] [CrossRef] [PubMed]
- Al-Quarashi, A.D.; Awad, M.A.; Elsayed, M.I.; Ali, M.A. Postharvest melatonin and chitosan treatments retain quality of ‘Williams’ bananas during ripening. J. Food Sci. Technol. 2023, 61, 84–96. [Google Scholar] [CrossRef]
- Al-Qurashi, A.D.; Awad, M.A. Effect of exogenous melatonin and chitosan treatment of quality and chemical changes of ‘Balady Banzahir’ limes during shelf life. J. Anim. Plant Sci. 2023, 33, 310–319. [Google Scholar] [CrossRef]
- Bal, E. Impact of Chitosan-Melatonin Composite Coating on Postharvest Quality of Sweet Cherry. Appl. Fruit Sci. 2023, 66, 763–770. [Google Scholar] [CrossRef]
- Mwelase, S.; Opara, U.L.; Fawole, O.A. Effect of chitosan-based melatonin composite coating on the quality of minimally processed pomegranate aril-sacs during cold storage. J. Food Process. Preserv. 2022, 46, e17096. [Google Scholar] [CrossRef]
- Ullah, M.A.; Gyl, F.Z.; Zaman, G.; Iqbal, J.; Drouhet, S.; Tungmunnithum, D.; Hano, C.; Abbasi, B.H. The influence of exogenous melatonin and chitosan on secondary metabolites production and biological activities of tissue extracts in agitated micro-shoot cultures of Ajuga integrifolia Buch. Ham. Ex D. Don. Acta Physiol. Plant. 2023, 45, 106. [Google Scholar] [CrossRef]
- Zhou, B.; Yu, X.J.; Zhang, M.; Tian, H.Y.; Dong, J.J.; Guo, L.; Zhang, T.J. Melatonin chitosan microparticles decrease degradation and increase drought resistance properties of melatonin. J. Plant Nutr. Fertil. 2022, 28, 1308–1317. [Google Scholar] [CrossRef]
- Chen, J.; Qin, H.; Zhang, B.; Mao, W.; Lou, L.; Shen, C.; Mao, J.; Lin, Q. Development of melatonin nano-delivery systems to reduce cadmium accumulation in rice (Oryza sativa L.) seedlings: Insights from photosynthetic efficiency, antioxidative response and gene expression. Environ. Exp. Bot. 2022, 196, 104822. [Google Scholar] [CrossRef]
- Tabassum, M.; Noreen, Z.; Aslam, M.; Shah, A.N.; Usman, S.; Waqas, A.; Alsherif, E.A.; Korany, S.M.; Nazim, M. Chitosan modulated antioxidant activity, inorganic ions homeostasis and endogenous melatonin to improve yield of Pisum sativum L. accessions under salt stress. Sci. Hortic. 2024, 323, 112509. [Google Scholar] [CrossRef]
- López-Valverde, N.; López-Valverde, A.; Aragoneses, J.M.; Martínez-Martínez, F.; González-Escudero, M.C.; Ramírez, J.M. Bone density around titanium dental implants coating tested/coated with chitosan or melatonin: An evaluation via microtomography in jaws of beagle dogs. Coatings 2021, 11, 777. [Google Scholar] [CrossRef]
- Abdelrasoul, M.; El-Fattah, A.A.; Kotry, G.; Ramadan, O.; Essawy, M.; Kamaldin, J.; Kandil, S. Regeneration of critical-sized grade II furcation using a novel injectable melatonin-loaded scaffold. Oral Dis. 2023, 29, 3583–3598. [Google Scholar] [CrossRef] [PubMed]
- Abdelrasoul, M.; Kamaldin, J.B.; Ooi, J.P.; El-Fattah, A.A.; Kotry, G.; Ramadan, O.; Kandil, S. An eight-week in vivo study on the clinical signs of systemic toxicity and bone regenerative performance of composites containing beta tricalcium phosphate, hydrogel and melatonin in adult New Zealand Rabbit (Oryctolagus cuniculus). Malays. J. Med. Health Sci. 2020, 16, 38–45. [Google Scholar]
- Thomas, A.; Kumar, K.G. Acetylene black-chitosan mediated electro-oxidation of serotonin and melatonin: An efficient platform for simultaneous voltammetric sensing. Ionics 2019, 25, 2337–2349. [Google Scholar] [CrossRef]
- Sunon, P.; Wongkaew, P.; Johns, J.; Johns, N. Characterization of cerium oxide-chitosan nanocomposite-modified screen printed carbon electrode and application in melatonin determination. Int. J. GEOMATE 2018, 14, 151–157. [Google Scholar] [CrossRef]
- Tang, S.; Liang, A.; Liu, M.; Wang, W.; Zhang, F.; Luo, A. A glassy carbon electrode modified with a composite consisting of electrodeposited chitosan and carboxylated multi-walled carbon nanotubes for simultaneous voltammetric determination of dopamine, serotonin, and melatonin. Carbon Lett. 2023, 33, 2129–2139. [Google Scholar] [CrossRef]
- Mirza-Aghazadeh-Attari, M.; Mihanfar, A.; Yousefi, B.; Majidinia, M. Nanotechnology-based advances in the efficient delivery of melatonin. Cancer Cell Int. 2022, 22, 43. [Google Scholar] [CrossRef]
Chitosan/Melatonin Combination | ||||
---|---|---|---|---|
Application | Matrix Composition | Form/System | Year | Reference |
Wound healing | chitosan/Pluronic® F127 | microspheres | 2016 | [36] |
chitosan/Pluronic® F127 | microspheres enriched with nanostructured lipid carriers | 2019 | [37,38] | |
lecithin/chitosan | nanoparticles | 2011 | [39] | |
lecithin/chitosan | nanoparticles | 2016 | [40] | |
chitosan/collagen | scaffold | 2021 | [41] | |
lecithin/chitosan | nanoparticles | 2020 | [42] | |
Poloxamer407/chitosan/ hyaluronic acid | nanogel | 2020 | [43] | |
chitosan–polycaprolactone/ polyvinyl alcohol–melatonin/ chitosan–polycaprolactone | three-layer nanofiber | 2021 | [44] | |
lecithin/chitosan | nanoparticles | 2011 | [45] | |
chitosan/sulfonated ethylene-propylene-diene terpolymer (sEPDM) | membrane | 2023 | [46] | |
Scaffolds and hydrogels | chitosan/hydroxyapatite (HAp) | scaffold | 2021 | [57] |
chitosan | scaffold | 2015 | [58] | |
chitosan/hydroxyapatite (HAp) | scaffold | 2019 | [59] | |
chitosan | microparticles | 2020 | [60] | |
collagen/chitosan | scaffold | 2022 | [61] | |
Cosmetology/ dermatology | chitosan/dextran sulphate | nanoparticles for Pickering emulsion stabilization | 2023 | [66] |
Anti-cancer treatment | chitosan/tripolyphosphate | nanoparticles | 2020 | [25] |
chitosan/hydroxypropyl methylcellulose cross-linked in the presence of tripolyphosphate | nanoparticles | 2021 | [75] | |
chitosan/tripolyphosphate | nanoparticles | 2017 | [76] | |
chitosan/tripolyphosphate | nanoparticles | 2018 | [77] | |
Drug delivery systems | 1. lecithin/chitosan; 2. Pluronic® F127/chitosan. | 1. nanoparticles; 2. micelles. | 2015 | [84] |
chitosan | hydrogel | 2013 | [85] | |
chitosan | nanoparticles | 2023 | [86] | |
chitosan | nanoparticles | 2021 | [87] | |
chitosan | nanoparticles | 2022 | [88] | |
chitosan | amphiphilic nanocarrier (ACN) | 2021 | [89] | |
Others | Alginate/chitosan | pellets | 2020 | [92] |
chitosan/carboxymethyl chitosan + carboxymethyl cellulose | film | 2020 | [94] | |
chitosan | solution/film | 2024 | [95] | |
chitosan | solution/film | 2023 | [96] | |
chitosan | solution/film | 2023 | [97] | |
chitosan | solution/film | 2022 | [98] | |
chitosan | solution/film | 2023 | [99] | |
chitosan/sodium tripolyphosphate (TPP)/pectin | particles | 2022 | [100] | |
mesoporous silica nanoparticles (MSN)/chitosan | particles | 2022 | [101] | |
chitosan | film-forming solution | 2021 | [103] | |
alginate/chitosan/β-tricalcium phosphate | hydrogel | 2023 | [104] | |
alginate/chitosan/β-tricalcium phosphate | hydrogel | 2020 | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulka-Kamińska, K.; Brudzyńska, P.; Okura, M.; Ishii, T.; Skala, M.; Reiter, R.J.; Slominski, A.T.; Kishi, K.; Steinbrink, K.; Sionkowska, A.; et al. Melatonin/Chitosan Biomaterials for Wound Healing and Beyond: A Multifunctional Therapeutic Approach. Int. J. Mol. Sci. 2025, 26, 5918. https://doi.org/10.3390/ijms26135918
Kulka-Kamińska K, Brudzyńska P, Okura M, Ishii T, Skala M, Reiter RJ, Slominski AT, Kishi K, Steinbrink K, Sionkowska A, et al. Melatonin/Chitosan Biomaterials for Wound Healing and Beyond: A Multifunctional Therapeutic Approach. International Journal of Molecular Sciences. 2025; 26(13):5918. https://doi.org/10.3390/ijms26135918
Chicago/Turabian StyleKulka-Kamińska, Karolina, Patrycja Brudzyńska, Mayuko Okura, Tatsuyuki Ishii, Marco Skala, Russel J. Reiter, Andrzej T. Slominski, Kazuo Kishi, Kerstin Steinbrink, Alina Sionkowska, and et al. 2025. "Melatonin/Chitosan Biomaterials for Wound Healing and Beyond: A Multifunctional Therapeutic Approach" International Journal of Molecular Sciences 26, no. 13: 5918. https://doi.org/10.3390/ijms26135918
APA StyleKulka-Kamińska, K., Brudzyńska, P., Okura, M., Ishii, T., Skala, M., Reiter, R. J., Slominski, A. T., Kishi, K., Steinbrink, K., Sionkowska, A., & Kleszczyński, K. (2025). Melatonin/Chitosan Biomaterials for Wound Healing and Beyond: A Multifunctional Therapeutic Approach. International Journal of Molecular Sciences, 26(13), 5918. https://doi.org/10.3390/ijms26135918