Next Article in Journal
Are You a Friend or an Enemy? The Dual Action of Methylglyoxal on Brain Microvascular Endothelial Cells
Next Article in Special Issue
The Plasmodium falciparum RING Finger Protein PfRNF1 Forms an Interaction Network with Regulators of Sexual Development
Previous Article in Journal
Integrative Single-Cell and Bulk RNA Sequencing Identifies a Glycolysis-Related Prognostic Signature for Predicting Prognosis in Pancreatic Cancer
Previous Article in Special Issue
A Possible Phenotype-to-Genotype Association of Novel Single-Nucleotide Variants in the Coding Exons of the ZNF469 Gene to Arterial Aneurysmal and Dissection Diseases
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

The Multifaceted Roles of Zinc Finger Proteins in Pluripotency and Reprogramming

The State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2025, 26(11), 5106; https://doi.org/10.3390/ijms26115106
Submission received: 3 May 2025 / Revised: 21 May 2025 / Accepted: 22 May 2025 / Published: 26 May 2025

Abstract

Zinc finger proteins (ZFPs) play a crucial role in regulating gene expression. In recent years, there has been increasing evidence highlighting the importance of zinc finger proteins in pluripotent stem cells, which hold great promise in regenerative medicine. The general mechanism by which zinc finger proteins function in gene regulation of pluripotent stem cells involves their interaction with core transcriptional regulatory networks. ZFPs can either enhance key pluripotency genes to maintain pluripotency or promote differentiation of stem cells towards specific lineages by suppressing these key pluripotency genes. Hence, understanding the role of ZFPs in pluripotency and reprogramming is crucial for unraveling the complex regulatory network that governs cell fate decisions. Here we provide a comprehensive review of the current knowledge regarding the multifaceted role of ZFPs in pluripotency maintenance and reprogramming. We propose that more efforts should be focused on fully understanding the fascinating functions of ZFPs in stem cell fate decision.

1. Introduction

The zinc finger domain was first identified in 1985 as a repeated zinc-binding motif in Xenopus transcription factor IIIA (TFIIIA), which contains conserved cysteine (Cys) and histidine (His) ligands [1]. In 1988, Frankel et al. elucidated that zinc finger proteins (ZFPs) consist of a compact amino acid sequence, where conserved Cys and His residues that self-fold by binding Zn2+ form short, stable, finger-like structures called zinc fingers [2]. Based on sequence, structural, and functional attributes, ZFPs are classified into nine types, namely C2H2, C4, C6, C8, C2HC5, C3HC4, C2HC, C3H, and C4HC3 [3]. Additionally, Krishna et al. categorized these proteins into eight groups according to their distinct spatial configurations, including the C2H2 like, Gag knuckle, Treble clef, Zinc ribbon, Zn2/Cys6, TAZ2 domain like, Zinc binding loops, and Metallothionein [4]. ZFPs contain a tandem of zinc finger motifs, which usually serve as interactors binding to RNA, DNA, small molecules, or proteins [5]. Among the various DNA-binding motifs, classical ZFPs form the largest family of sequence-specific DNA-binding proteins. This family is defined by the sequence CysX2–5CysX12–18HisX3–5His, where X represents an arbitrary amino acid [6]. Thus, ZFPs greatly expand their diverse role in gene regulation under different cellular environments or stimuli through different combinations of multiple zinc finger motifs.
As pivotal eukaryotic transcription factors, ZFPs function as either activators or repressors of gene expression [7,8,9], leveraging their versatile binding modes and affinities to orchestrate critical biological processes such as embryonic development [10,11]. Notably, ZFPs emerge as master regulators of pluripotency and lineage specification in pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) [12,13]. By establishing intricate gene regulatory networks, these proteins maintain PSC self-renewal [14] while guiding the cells towards specific lineages during differentiation [15]. Given their central role in PSC fate decisions, deciphering the universal principles governing ZFP-mediated gene regulation and their multifaceted functions in stem cell biology is imperative for advancing regenerative medicine and unlocking the therapeutic potential of PSCs. We review our current understanding of ZFP regulatory mechanisms and their diverse roles in PSCs, providing a framework for future investigations in this rapidly evolving field.

2. ZFPs and the Transcriptional Regulatory Networks of PSCs

PSCs possess two important properties: First, they can self-renew indefinitely in the long term; second: they are pluripotent and have the potential to differentiate into almost all cell types [16]. PSCs encompass various cell types, including embryonal carcinoma (EC) cells, mouse embryonic stem cells (mESCs), human embryonic stem cells (hESCs), pluripotent cell lines derived from germ cells, and induced pluripotent stem cells (iPSCs) [17]. At different stages of embryo development, three types of stem cells can be established through different culture systems: ESCs, extraembryonic endoderm cells (XENs), and trophoblast stem cells (TSCs) [18,19]. PSCs constantly balance self-renewal with differentiation, a process influenced by transcriptional regulatory networks, which together dictate cell fate decisions [20].
Research demonstrates that Oct4 (Pou5f1), Sox2, and Nanog form a core transcriptional factor (TF) network whose precise expression sustains pluripotency, while dysregulation disrupts self-renewal and triggers differentiation [21]. ZFPs act as versatile regulatory factors, exerting critical roles in maintaining PSC identity through their unique dual functions of transcriptional activation and repression [7,8,9] (Figure 1). For example, joint analysis of microarray datasets (GSE30293) and ChIP–chip data has unveiled that Zfp281 exhibits dual functional roles as both a transcriptional activator and repressor [7,8]. ChIP experiments further identified two distinct Zfp281 binding sites within the Nanog promoter region. Zfp281 not only directly activates Nanog expression by binding to a regulatory element adjacent to the Oct4–Sox2 binding site [7] but also restricts Nanog transcription under specific conditions [8]. Additionally, Zfp281 recruits AFF3 to the Meg3 enhancer region of the Dlk1–Dio3 locus, facilitating transcriptional elongation [22]. Prdm14 maintains stem cell identity through dual regulatory mechanisms: It suppresses the transcription of ExEn lineage-specific differentiation genes while promoting the activation of specific core ESC maintenance genes [9]. Moreover, ZFPs affect transcriptional regulation of downstream target genes via various functional domains. For instance, CIBZ (ZBTB38) exerts its transcriptional repression functions via the BTB domain [23] and plays a role in G1/S transition partly depending on Nanog expression [24]. Similarly, Sall4 plays an essential role in controlling the pluripotent property of ESCs by binding to AT-rich regions of genomic DNA [25,26]. Furthermore, the role of Sall4 extends to gene suppression by forming complexes with silencer entities such as nucleosome remodeling and deacetylase (NuRD) [27] and gene activation by interacting with pluripotent factors Oct4, Nanog, and Sox2 [28,29,30]. In summary, ZFPs play a crucial role in affecting the core transcriptional regulatory network, and their regulatory roles in pluripotency maintenance of PSCs will be elaborated on in subsequent sections.

3. ZFPs and Epigenetic State of PSCs

3.1. ZFPs and DNA Methylation

ZFPs play pivotal roles in the DNA methylation regulatory network through diverse mechanisms, forming an intricate interplay between their target-binding specificities and precise epigenetic modulation. Firstly, ZFP57 employs its first two C2H2 zinc finger domains to recognize methylated CpG sites (TGCmetCGC) [31] and cooperatively recruits DNA methyltransferases via KAP1 to maintain the DNA methylation imprint [32] while concomitantly regulating H3K9me3 deposition on both imprinted and non-imprinted regions of the maternally inherited chromosome in mESCs during preimplantation development [33]. Furthermore, Zbtb34 competitively binds telomeric DNA through its zinc finger domain, and its upregulation in mESCs significantly promotes telomere elongation while enhancing cellular proliferative capacity [34]. Moreover, ZBTB2 acts as a reader of unmethylated DNA in mESCs. It preferentially binds to CpG island promoters and acts as a transcriptional activator [35]. Meanwhile, Vezf1 is essential for maintaining DNA methylation at various genomic sites. Loss of both copies of Vezf1 results in widespread demethylation, affecting Line1 elements and minor satellite repeats, some imprinted genes, and CpG islands in mESCs [36]. Notably, Ssm1b is expressed in early embryos and promotes CpG methylation in the mouse transgene HRD (heavy chain enhancer, rearrangement by deletion) [37]. Finally, DNA hypomethylation at the ZNF206-exon 5 CpG island is associated with neuronal differentiation [38]. Collectively, these findings demonstrate that ZFPs construct a sophisticated epigenetic regulatory network through recognizing methylation marks, modulating chromatin accessibility, mediating methyltransferase activity, and preserving genomic stability.

3.2. ZFPs and Histone Modifications

ZFPs play a central role in pluripotency and differentiation in ESCs through dynamic regulation of histone modification networks [39,40]. They can either inhibit or promote gene transcription by recruiting various chromatin modifiers and interacting with different partner proteins (Figure 2A). ZFPs exert pivotal regulatory functions during ESC differentiation by mobilizing chromatin-remodeling complexes such as NuRD. For instance, Zfp217/Zfp516 work with Ctbp2 to recruit the NuRD complex, leading to H3K27 deacetylation, thereby establishing a repressive chromatin landscape [39]. Moreover, ZFPs, such as ZBTB2, can interact with GATAD2A/B of the NuRD via their BTB domains during pluripotency withdrawal [41,42]. In addition, Zfp281 can mediate Nanog autorepression by recruiting the NuRD complex [43]. Furthermore, Zic2 colocalizes with the Mbd3-NuRD complex and is essential for the maintenance of H3K27me3 chromatin state and transcriptional repression of the homeotic cluster in mESCs [15].
Many of the promoters of lineage-specific genes in human and mouse ESCs are marked by the active trimethylated histone H3 lysine 4 (H3K4me3) and the repressive trimethylated histone H3 lysine 27 (H3K27me3), known as bivalent domains [44,45]. Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. One of the hallmarks of heterochromatin gene repression is trimethylation of lysine 9 on histone H3 (H3K9me3) [46]. Zfp296 negatively regulates H3K9me3 in embryonic development. A knockout of Zfp296 downregulates early epiblast-marker genes and elevates chromatin accessibility, leading to a unique state of pluripotency in the ESCs [47,48,49]. Most notably when mediating H3K4me3-dependent activation of differentiation genes like Dnmt3L, Lin28a, and Foxh1. Zfp281 achieves chromatin state switching through interaction with the complex of proteins associated with Set1 (COMPASS) without altering overall accessibility, highlighting the functional diversity of ZFPs in gene expression regulation [50]. These interactions illustrate how ZFPs integrate multifaceted chromatin-modifying mechanisms to spatiotemporally orchestrate gene expression networks during ESC fate decisions.

3.3. ZFPs and N6-Methyladenosine (m6A) Methylation

N6-methyladenosine (m6A) methylation is the most common and abundant modification on mammalian messenger RNA (mRNA) and regulates the pluripotency of ESCs [51]. The newly discovered Zfp217 controls the molecular function of m6A deposition in ESCs [52]. Supplementation of melatonin during long-term ESC culture enhances the pluripotency of long-term ESCs. It was further found that melatonin promoted the expression of pluripotent factors mainly via Zfp217-dependent m6A modification [53]. Scientists employed methylated RNA immunoprecipitation sequencing (MeRIP-Seq) to conduct genome-wide profiling of m6A epigenetic modifications in control and Zfp217 knockdown ESCs. This analysis systematically identified that 3586 m6A modification sites increase upon Zfp217 knockdown. Furthermore, MeRIP revealed a significant elevation in m6A modification levels within target RNAs in Zfp217 knockdown cells, which was associated with a concomitant reduction in the stability of Nanog, Sox2, c-Myc, and Klf4 mRNAs. Further studies have elucidated the direct involvement of Zfp217 in the transcriptional activation of key pluripotency genes, including Nanog and Sox2. Zfp217 achieves this by interacting with the m6A methyltransferase complex component METTL3, sequestering it and thus modulating m6A deposition on these crucial transcripts [54]. In addition, LC-MS/MS shows that Zc3h13 plays a critical role in anchoring WTAP, Virilizer, and Hakai in the nucleus to promote m6A methylation and regulate mESC self-renewal [55] (Figure 2B).

4. ZFPs and ERV Regulatory Network in PSCs

Endogenous retroviruses (ERVs), remnants of ancient retroviral infections integrated into host genomes during evolution, play a crucial role in the silencing machinery of higher vertebrates [56]. KRAB-domain-containing zinc finger proteins (KRAB-ZFPs), the largest subclass of C2H2 zinc finger transcription factors encoded by vertebrate genomes, interact with the corepressor KAP1 (TRIM28/TIF1β) to orchestrate the repression of endogenous retroviral elements. The synergistic action of KRAB-ZFPs, KAP1, and SETDB1 not only directly suppresses ERV activity but also ensures long-term maintenance of genomic integrity [57]. For instance, ZFP932 and Gm15446 target subsets of endogenous retrovirus-K (ERVK) in mESCs [58], while Zfp819 interacts with KAP1 to suppress the activity of ERVs in ESCs [59]. Additionally, KAP1 collaborates with specific KRAB-ZNFs (ZNF114, ZNF483, ZNF589) to silence differentiation-related genes via H3K9me3 and DNA methylation, thereby reshaping the epigenetic landscape [60].
During mESC differentiation, KAP1 is actively recruited to pericentromeric heterochromatin regions [61], and the integrity of its RING/PHD domains is critical for maintaining human iPSC pluripotency [62]. The KZFP/KAP1 complex is pivotal in ESCs, where it anchors to imprinting control regions (ICRs) and transposable elements (TEs) in a sequence-specific manner [63]. For example, ZFP809 binds murine leukemia virus (MLV) DNA elements and recruits KAP1 to repress their activity in mESCs [64,65], whereas KAP1 paradoxically promotes ZFP809 degradation in differentiated cells [66]. ZFP708 [67], Zfp281 [68], and Zfp92 [69] target RMER19B, LINE-1, and B1/Alu SINE transposable elements, respectively, modulating retroelement and gene expression. In hESCs, the KZFP/KAP1 complex controls a broad spectrum of human-specific endogenous retroelements (EREs), with recruitment of KAP1 and DNA methylation exhibiting family-dependent interdependence [70]. YY1 participates in ERV repression by binding to their LTR regions [71], and ZNF91 interaction with the VNTR region of SVA elements restricts their transcriptional activity [72].

5. ZFPs in Embryonic Development

Zygotic genome activation (ZGA) marks a crucial stage in embryonic development, characterized by the activation and transcription of paternal and maternal genomes after fertilization, which initiates early embryogenesis [73]. During ZGA, embryos undergo changes in a series of epigenetic events, including whole-gene DNA methylation and histone modifications [74,75]. Interestingly, ZFPs collaboratively construct spatiotemporal-specific gene expression networks necessary for embryonic development by integrating epigenetic signals with chromatin remodeling [48,76,77,78]. Notably, YY1 acts as a critical regulator during ZGA by facilitating nucleosome assembly to modulate chromatin accessibility with its binding sites showing H3K27ac enrichment in 8-cell and morula embryos, indicating active enhancer establishment [79].
ZFPs play pivotal roles in various stages of embryonic development [80,81,82,83]. A recent study showed that Zfp191−/− embryos experienced severe developmental delay and died approximately 7.5 days post-fertilization [10]. Additionally, reducing the level of Zscan4 by siRNAs delayed the progression from the 2-cell stage to the 4-cell stage and prevented blastocysts from implanting or proliferating in blastocyst explant cultures [84]. Specific ZFP members like Zfhx1b [85,86], SALL1 [87], ZNF804A [88], and POGZ [89] are involved in neurodevelopment, while ZFP541 [90] and Rex1 [91] perform essential functions in germ cell meiosis. Furthermore, Zfp800 is predominantly expressed in pancreatic MPCs and endocrine progenitor populations with knockout mice displaying abnormal pancreatic developments [92].

6. ZFPs Act as Regulator of PSCs

PSCs are classified as naïve and primed based on their growth characteristics in vitro and their potential to give rise to all somatic lineages and the germ line in chimeras [93]. The transition from a naïve to a formative to a primed state accompanies dynamic changes in self-renewal ability and differentiation potential [94]. In mice, PSCs are thought to exist in a naïve state, which is the cell culture equivalent of the immature pre-implantation embryo, whereas in humans, PSCs are in a primed state, which is a more committed pluripotent state than a naïve state [95]. The acquisition and maintenance of pluripotency are intrinsically related to the core regulatory network of specific transcription factors and are tightly controlled by signaling pathways [96].

6.1. ZFPs Act as Regulator of Diverse Pluripotent States

ZFPs play a critical role as bidirectional regulators, orchestrating the delicate balance between the naïve and primed states of PSCs. These proteins determine the cell fate by facilitating transitions and maintaining the integrity of each pluripotent state [97,98]. For instance, Zfp281 functions as a bidirectional regulator of cell state interconversion, promoting exit from naïve pluripotency [99]. It achieves this by inhibiting the expression of genes associated with naïve pluripotency and interacting with Tet1 to drive the transition of mESCs from the naïve-to-primed state [40]. Furthermore, Zfp281 prevents mESCs from transitioning to the 2C-like state [100] and limits the differentiation of ESCs into XENs, thereby maintaining the pluripotency of ESCs [101]. In contrast, depleting Zfp819 in mESCs causes them to transition to a 2C-like state [102]. On the other hand, ZBTB12 acts as a molecular barrier to dedifferentiation in hPSCs; its depletion enhances hPSC self-renewal while promoting dedifferentiation toward a naïve-like state. Mechanistically, ZBTB12 silences long non-coding RNAs (lncRNAs) to drive exit from pluripotency and coordinate orderly three germ layer differentiation [103].

6.2. ZFPs Act as Regulators of ES Cell Identity

ZFPs, as key components of the core transcriptional regulatory network, play a crucial role in maintaining stem cell pluripotency and self-renewal. Multiple studies have revealed that various ZFPs are involved in regulating the pluripotent state of stem cells by directly binding to the promoter regions of key pluripotency genes like Sox2, Oct4, and Nanog [7,8,12,13,14,28,29,30,59,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124] (Table 1). Among them, Zscan10 (Zfp206) can activate the promoters of Oct4 and Nanog [104,105]. However, Zscan10 is dispensable for maintaining mESC pluripotency, as Zscan10 knockout has no significant effect on ESC self-renewal capacity [125]. Similarly, Rex1 (Zfp42) is expressed in various pluripotent cell types [123,126] and has been used as a mark to indicate the undifferentiated state of ESCs [127]. However, conflicting conclusions have emerged regarding the functional roles of Rex-1. When this gene is silenced via RNA interference, ESCs exhibit significantly compromised self-renewal capacity. Paradoxically, overexpression of Rex1 also exerts an inhibitory effect on self-renewal [128,129].
ZFPs play a crucial role in the pluripotency regulatory network of ESCs by integrating core signaling pathways such as LIF/Stat3 [111,131]. The Klf transcription factor family (Klf2/4/5) forms a synergistic regulatory network with Nanog, thereby maintaining the self-renewal capacity of mESCs [107,108,109,110]. Among them, the expression of Klf4 is selectively upregulated by the LIF/Stat3 signaling axis [132], while Zfp706/Zfp296 promote the timely exit of ESCs from self-renewal and initiate differentiation by inhibiting Klf4 expression [133,134]. PRDM family members maintain ESC pluripotency through multi-level regulatory mechanisms. Prdm4 acts upstream of Klf5 and is involved in regulating Klf5 function [135]. Recent experiments suggest that Prdm14 plays a pivotal role in maintaining the so-called naïve pluripotency. Specifically, Prdm14 can establish the global DNA hypomethylation signature characteristic of naïve pluripotency by inhibiting DNA methyltransferases (DNMT3A/3B/3L) and the FGF signaling pathway [136,137,138]. PRDM15 further ensures the stability of the naïve pluripotent state by activating the WNT pathway and inhibiting MAPK signaling [139] (Figure 3).

7. The Role of ZFPs in Differentiation of PSCs

ZFPs play a crucial role in maintaining the balance between self-renewal and differentiation potential of PSCs. They regulate the differentiation trajectories of PSCs towards the three germ layers [140,141,142,143,144,145,146,147] (Figure 4). Firstly, Zfp157 is expressed in the epiblast [143]. Deletion of Zc3h11a results in impaired differentiation towards epiblast-like cells [144]. An analysis of the interactions of Zic3 within mESCs has revealed its function in suppressing endodermal differentiation [114]. Additionally, ZFPs also play key roles in specific differentiations, such as promoting cardiac differentiation [148,149,150], regulating skeletal muscle differentiation [151,152], and osteogenic differentiation [153].
ZFPs play a pivotal role in hematopoietic development by precisely orchestrating gene regulatory networks that control the generation of various blood cell lineages. Specifically, these proteins employ multi-layered mechanisms to modulate hematopoietic lineage differentiation [154]. For example, aberrant overexpression of Gata2 significantly enhances the formation of hemogenic endothelial cells (HECs), highlighting the critical influence of transcription factor levels on cell fate determination [155]. In the process of erythropoiesis, GATA-1 acts as a master regulator [156] since it forms complexes with ZFPs Zfp281 and Zfp148 (ZBP-89) to collectively regulate a set of genes necessary for erythroid cell differentiation [157,158]. Notably, recent studies have revealed that ZNF648 depletion hinders the differentiation of megakaryocytes and erythroid cells [159], further underscoring the wide-ranging regulatory functions of the ZFPs in hematopoietic development.
ZFPs also play important roles in neural differentiation [15,160,161,162,163,164,165,166,167,168,169], participating in processes such as regulating the cell cycle [162], promoting the expression of neural markers [170,171], and influencing neural progenitor cells (NPCs) in the nervous system [166,172,173,174,175,176,177]. For example, the loss of Zic3 function leads to an increase in neural differentiation markers such as Neurog1 and Her9, indicating its inhibitory role in neural differentiation [170]. Furthermore, Zfp521 is key in maintaining neural differentiation [178], cooperating with p300 to activate early neural marker genes by activating early neural marker genes Sox1, Sox3, and Pax6 [171]. Interestingly, the influence of Zfp521 extends to other differentiation pathways, such as chondrocyte proliferation and differentiation [179], as well as bone formation [180].
Consistently, ZFPs exhibit multidimensional regulatory functions in cell fate determination of iPSCs. On one hand, iPSCs derived from schizophrenia patients differentiate into functional glutamatergic neurons expressing ZNF804A. This not only correlates with disease pathogenesis [181] but also regulates neurite outgrowth and dendritic spine morphology through synaptic localization [182]. Knockdown experiments further implicate ZNF804A in modulating neuronal inflammatory responses [183]. On the other hand, metabolic disease studies reveal that iPSCs from Jazf1 knockout cells showed impaired differentiation into insulin-secreting β-cells, leading to glucose homeostasis dysregulation and type 2 diabetes phenotype [184]. Notably, RREB1 modulates in vitro differentiation of hiPSCs into β-like cells, where its knockout induces NEUROG3 transcriptional activation that significantly accelerates endocrine lineage commitment. This altered expression pattern directly drives an accelerated differentiation trajectory toward the endocrine lineage [185].

8. ZFPs in Regulation of Somatic Cell Reprogramming

Since the groundbreaking discoveries by Yamanaka’s group [186,187] and another independent team [188] that demonstrated the reprogramming of fibroblasts into ESC-like cells using defined transcription factor combinations (OSKM/Yamanaka factors: Oct4, Sox2, Klf4, c-Myc; OSNL/Thomson factors: Oct4, Sox2, Nanog, Lin28), the field of regenerative medicine has undergone revolutionary advancements. Scientists have since experimented with different methods to obtain iPSCs by utilizing different variations of the OSKM cocktail and improve the derivation of iPSCs [189,190,191]. While subsequent studies have made significant progress in optimizing iPSC generation through modified factor combinations, reprogramming efficiency remains constrained by intricate molecular mechanisms. Recent investigations have shed light on the crucial regulatory roles of ZFPs in this process. These proteins can either directly replace traditional transcription factors or establish functional synergistic networks with them, allowing for precise bidirectional modulation of cellular reprogramming efficiency (Figure 5).

8.1. ZFPs in Promoting Somatic Cell Reprogramming

ZFPs can act through direct substitution or functional synergy with canonical transcription factors, thereby significantly enhancing both the efficiency and safety of cellular reprogramming processes [192,193,194,195,196,197]. The combinatorial expression of Zscan4 [192], Zfp322a [196], Zfp296 [197], Glis1, and Glis3 [198,199] with the Yamanaka factors synergistically enhances reprogramming efficiency, resulting in a more robust induction of iPSC formation. Knockdown of Zic3 during OSKM-induced iPSC generation significantly compromises colony formation efficiency [195]. Additionally, Zscan4 not only reactivates early embryonic genes and maintains genomic stability during reprogramming but also enhances iPSC generation efficiency through its family member Zscan4f-mediated metabolic reprogramming and proteasome function enhancement, thereby acting as a critical enhancer in promoting somatic cell reprogramming [193,194]. Our laboratory demonstrates that Zfp322a serves as a novel reprogramming factor capable of substituting Sox2 within the classical Yamanaka cocktail. Remarkably, this factor exhibits synergistic potential when combined with the Yamanaka factors, resulting in a pronounced augmentation of reprogramming efficiency and accelerated onset of the cellular reprogramming process [196]. Meanwhile, Glis1 replaces oncogenic c-Myc while significantly enhancing murine and human fibroblast reprogramming efficiency through early activation of glycolytic metabolic reprogramming. Its reduced oncogenic potential further provides critical safety advantages for clinical-grade iPSC production [200,201,202,203,204].
Furthermore, epigenetic modifications have been recognized as instrumental in enhancing reprogramming efficiency. Zfp127 overexpression in fibroblasts induced demethylation of the Oct4 promoter, thereby increasing Oct4 promoter activity, offering higher reprogramming efficiency [205]. Proper reprogramming of epigenetic marks is essential for somatic cells to regain pluripotency. Enhanced in vitro reprogramming into cloned embryos and iPSCs has been observed after the overexpression of Kdm4b in MEFs, which decreases H3K9/36me3 levels and is associated with the upregulation of Zfp37 [206]. Additionally, ZNF398 has been identified as a key player in the reprogramming process. The knockdown of ZNF398 results in a significant reduction of iPSC colony formation. Mechanically, ZNF398 collaborates with SMAD3 and the histone acetyltransferase EP300 to bind active promoters and enhancers, promoting the transcription of TGF-beta target genes [207].

8.2. ZFPs in Blocking Somatic Cell Reprogramming

Recent studies have revealed that not all ZFPs support the generation of iPSCs, with some like Glis2 [198] and Zfp281 [43,99] inhibiting the process. In addition, ZFP266 has been identified as an inhibitor of reprogramming. It binds to short interspersed nuclear elements (SINEs) near the binding sites of the reprogramming precursor factors OCT4 (POU5F1), SOX2, and KLF4, hindering chromatin opening. Remarkably, depletion of Zfp266 significantly boosts iPSC generation in various reprogramming scenarios, highlighting it as a major obstacle. However, ZFP266 was transformed from a suppressor to a potent promoter of iPSC reprogramming by replacing the KRAB co-suppressor with co-activation domains [208].
ZEB1 functions as the E-cadherin repressor and is typically suppressed to aid reprogramming. For instance, the pluripotency regulator NAC1 directly inhibits ZEB1 through transcriptional inhibition, which is essential for iPSC generation [209]. Moreover, reducing ZEB1 also enhances GSC reprogramming [210]. In addition, the miR-200c-141 cluster has been shown to significantly reduce the expression of ZEB1, thereby improving reprogramming efficiency [211].

9. The Role of ZFPs in Human Health

In recent years, dysfunction of ZFPs has been demonstrated to participate in the pathogenesis of various diseases by disrupting cellular signal transduction and gene regulatory networks. Representative examples include: Mowat–Wilson syndrome [212], autism spectrum disorder [213], neurodevelopmental disorder [214], autoimmune pathology [215], rheumatoid arthritis [216], osteoarthritis [217], and renal fibrosis [218]. Additionally, ZFPs serve as multifaceted prognostic biomarkers in various cancers linked to DNA damage repair and cell cycle regulation [219,220], immune infiltration [221,222], angiogenesis [223], EMT [224,225], and m6A modification [226,227], exhibiting dual oncogenic and tumor-suppressive roles. Clinically, they have been utilized both as therapeutic targets [228] and in combination with chemotherapy to enhance tumor sensitivity. For example, ZNF480 [229] and ZFP64 [230] significantly promote resistance to neoadjuvant chemotherapy and doxorubicin in breast cancer. Respectively, ZNF143 mediates resistance to lenvatinib and sorafenib in hepatocellular carcinoma [231]. ZNF263 enhances the tolerance of colorectal cancer cells to combined chemoradiotherapy (CRT) [232]. Additionally, targeting ZFP64 enhances the therapeutic efficacy of nab-paclitaxel and reverses the immunosuppressive microenvironment in gastric cancer [233]. Furthermore, GLI2 inhibitors demonstrate significant potential in reversing platinum resistance in gastric cancer experimental models, effectively enhancing the chemotherapy sensitivity of tumor cells to cisplatin [234]. These studies suggest that ZFPs play divergent functions which are context dependent. Malfunctions of ZFPs may be associated with different human diseases, highlighting the important role of ZFPs in human health.

10. Conclusions and Prospects

PSCs including ESCs and iPSCs have provided unprecedented opportunities for cell-based therapies targeting incurable diseases and injuries [235]. In this article, we reviewed the progress of ZFPs in pluripotent stem cells, including their impact on pluripotency and differentiation through regulating core transcriptional network pathways, as well as their roles in promoting or inhibiting gene expression by regulating epigenetic mechanisms such as DNA methylation and histone modification. ZFPs also play important roles in regulating somatic reprogramming. By understanding the mechanisms through which ZFPs exert their effects, researchers can potentially manipulate pluripotent stem cells for therapeutic purposes, including generating specific cell types for tissue engineering or developing novel strategies for treating degenerative diseases. Furthermore, the emerging work based on CRISPR and zinc finger proteins technology treats diseases by precisely editing disease-causing genes. For instance, scientists have employed the dCas9 protein and ZFPs for targeted localization to Nav1.7, thereby inhibiting its expression and alleviating chronic pain in murine models [236]. Despite significant progress, there are still scientific challenges to overcome and opportunities for further research. Firstly, each ZFP is unique and functions in a different way. Hence, further work is required to identify novel ZFPs that are important in pluripotency and reprogramming; secondly, how ZFPs are integrated into the whole ESC transcriptional network and how ZFPs crosstalk with other genetic/epigenetic factors are still unclear; thirdly, biochemical and structural studies might be required to uncover the dynamic interactions between zin finger domains with DNA/RNA/proteins. Nevertheless, with the help of cutting-edge technologies, the comprehensive study of ZFPs will unlock new insights into cellular functions and epigenetic regulation, ultimately advancing biomedical sciences and creating new opportunities for therapeutic applications.

Author Contributions

Conceptualization, Q.W.; methodology, Y.Q. and Q.W.; formal analysis, Y.Q. and Q.W.; investigation, Y.Q. and Q.W.; resources, Q.W.; data curation, Y.Q.; writing—original draft preparation, Y.Q.; writing—review and editing, Y.Q. and Q.W.; visualization, Y.Q.; supervision, Q.W.; project administration, Q.W.; funding acquisition, Q.W. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by The Science and Technology Development Fund, Macau SAR (File no. 006/2023/SKL).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Miller, J.; McLachlan, A.D.; Klug, A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985, 4, 1609–1614. [Google Scholar] [CrossRef]
  2. Frankel, A.D.; Pabo, C.O. Fingering too many proteins. Cell 1988, 53, 675. [Google Scholar] [CrossRef]
  3. Berg, J.M.; Shi, Y. The galvanization of biology: A growing appreciation for the roles of zinc. Science 1996, 271, 1081–1085. [Google Scholar] [CrossRef]
  4. Krishna, S.S.; Majumdar, I.; Grishin, N.V. Structural classification of zinc fingers: Survey and summary. Nucleic Acids Res. 2003, 31, 532–550. [Google Scholar] [CrossRef]
  5. Laity, J.H.; Lee, B.M.; Wright, P.E. Zinc finger proteins: New insights into structural and functional diversity. Curr. Opin. Struct. Biol. 2001, 11, 39–46. [Google Scholar] [CrossRef]
  6. Lee, S.J.; Michel, S.L.J. Structural metal sites in nonclassical zinc finger proteins involved in transcriptional and translational regulation. Acc. Chem. Res. 2014, 47, 2643–2650. [Google Scholar] [CrossRef]
  7. Wang, Z.X.; Teh, C.H.; Chan, C.M.; Chu, C.; Rossbach, M.; Kunarso, G.; Allapitchay, T.B.; Wong, K.Y.; Stanton, L.W. The transcription factor Zfp281 controls embryonic stem cell pluripotency by direct activation and repression of target genes. Stem Cells 2008, 26, 2791–2799. [Google Scholar] [CrossRef]
  8. Fidalgo, M.; Shekar, P.C.; Ang, Y.S.; Fujiwara, Y.; Orkin, S.H.; Wang, J. Zfp281 functions as a transcriptional repressor for pluripotency of mouse embryonic stem cells. Stem Cells 2011, 29, 1705–1716. [Google Scholar] [CrossRef]
  9. Ma, Z.; Swigut, T.; Valouev, A.; Rada-Iglesias, A.; Wysocka, J. Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates. Nat. Struct. Mol. Biol. 2011, 18, 120–127. [Google Scholar] [CrossRef]
  10. Li, J.; Chen, X.; Yang, H.; Wang, S.; Guo, B.; Yu, L.; Wang, Z.; Fu, J. The zinc finger transcription factor 191 is required for early embryonic development and cell proliferation. Exp. Cell Res. 2006, 312, 3990–3998. [Google Scholar] [CrossRef]
  11. Su, J.; Miao, X.; Archambault, D.; Mager, J.; Cui, W. ZC3H4-a novel Cys-Cys-Cys-His-type zinc finger protein-is essential for early embryogenesis in mice. Biol. Reprod. 2021, 104, 325–335. [Google Scholar] [CrossRef]
  12. Ow, J.R.; Ma, H.; Jean, A.; Goh, Z.; Lee, Y.H.; Chong, Y.M.; Soong, R.; Fu, X.Y.; Yang, H.; Wu, Q. Patz1 regulates embryonic stem cell identity. Stem Cells Dev. 2014, 23, 1062–1073. [Google Scholar] [CrossRef]
  13. Yu, S.; Ma, H.; Ow, J.R.; Goh, Z.; Chiang, R.; Yang, H.; Loh, Y.H.; Wu, Q. Zfp553 Is Essential for Maintenance and Acquisition of Pluripotency. Stem Cells Dev. 2016, 25, 55–67. [Google Scholar] [CrossRef]
  14. Chen, X.; Fang, F.; Liou, Y.C.; Ng, H.H. Zfp143 regulates Nanog through modulation of Oct4 binding. Stem Cells (Dayt. Ohio) 2008, 26, 2759–2767. [Google Scholar] [CrossRef]
  15. Luo, Z.; Gao, X.; Lin, C.; Smith, E.R.; Marshall, S.A.; Swanson, S.K.; Florens, L.; Washburn, M.P.; Shilatifard, A. Zic2 is an enhancer-binding factor required for embryonic stem cell specification. Mol. Cell 2015, 57, 685–694. [Google Scholar] [CrossRef]
  16. Romito, A.; Cobellis, G. Pluripotent Stem Cells: Current Understanding and Future Directions. Stem Cells Int. 2016, 2016, 9451492. [Google Scholar] [CrossRef]
  17. Yu, J.; Thomson, J.A. Pluripotent stem cell lines. Genes. Dev. 2008, 22, 1987–1997. [Google Scholar] [CrossRef]
  18. Harrison, S.E.; Sozen, B.; Christodoulou, N.; Kyprianou, C.; Zernicka-Goetz, M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 2017, 356, eaal1810. [Google Scholar] [CrossRef]
  19. Sozen, B.; Amadei, G.; Cox, A.; Wang, R.; Na, E.; Czukiewska, S.; Chappell, L.; Voet, T.; Michel, G.; Jing, N.; et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat. Cell Biol. 2018, 20, 979–989. [Google Scholar] [CrossRef]
  20. Kim, J.; Chu, J.; Shen, X.; Wang, J.; Orkin, S.H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 2008, 132, 1049–1061. [Google Scholar] [CrossRef]
  21. Yeo, J.-C.; Ng, H.-H. The transcriptional regulation of pluripotency. Cell Res. 2013, 23, 20–32. [Google Scholar] [CrossRef]
  22. Wang, Y.; Shen, Y.; Dai, Q.; Yang, Q.; Zhang, Y.; Wang, X.; Xie, W.; Luo, Z.; Lin, C. A permissive chromatin state regulated by ZFP281-AFF3 in controlling the imprinted Meg3 polycistron. Nucleic Acids Res. 2017, 45, 1177–1185. [Google Scholar] [CrossRef]
  23. Sasai, N.; Matsuda, E.; Sarashina, E.; Ishida, Y.; Kawaichi, M. Identification of a novel BTB-zinc finger transcriptional repressor, CIBZ, that interacts with CtBP corepressor. Genes. Cells Devoted Mol. Cell. Mech. 2005, 10, 871–885. [Google Scholar] [CrossRef]
  24. Nishii, T.; Oikawa, Y.; Ishida, Y.; Kawaichi, M.; Matsuda, E. CtBP-interacting BTB zinc finger protein (CIBZ) promotes proliferation and G1/S transition in embryonic stem cells via Nanog. J. Biol. Chem. 2012, 287, 12417–12424. [Google Scholar] [CrossRef]
  25. Ru, W.; Koga, T.; Wang, X.; Guo, Q.; Gearhart, M.D.; Zhao, S.; Murphy, M.; Kawakami, H.; Corcoran, D.; Zhang, J.; et al. Structural studies of SALL family protein zinc finger cluster domains in complex with DNA reveal preferential binding to an AATA tetranucleotide motif. J. Biol. Chem. 2022, 298, 102607. [Google Scholar] [CrossRef] [PubMed]
  26. Kong, N.R.; Bassal, M.A.; Tan, H.K.; Kurland, J.V.; Yong, K.J.; Young, J.J.; Yang, Y.; Li, F.; Lee, J.D.; Liu, Y.; et al. Zinc Finger Protein SALL4 Functions through an AT-Rich Motif to Regulate Gene Expression. Cell Rep. 2021, 34, 108574. [Google Scholar] [CrossRef] [PubMed]
  27. Lu, J.; Jeong, H.-W.; Kong, N.; Yang, Y.; Carroll, J.; Luo, H.R.; Silberstein, L.E.; Yupoma; Chai, L. Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex. PLoS ONE 2009, 4, e5577. [Google Scholar] [CrossRef]
  28. Yang, J.; Chai, L.; Fowles, T.C.; Alipio, Z.; Xu, D.; Fink, L.M.; Ward, D.C.; Ma, Y. Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells. Proc. Natl. Acad. Sci. USA 2008, 105, 19756–19761. [Google Scholar] [CrossRef]
  29. Tanimura, N.; Saito, M.; Ebisuya, M.; Nishida, E.; Ishikawa, F. Stemness-related factor Sall4 interacts with transcription factors Oct-3/4 and Sox2 and occupies Oct-Sox elements in mouse embryonic stem cells. J. Biol. Chem. 2013, 288, 5027–5038. [Google Scholar] [CrossRef]
  30. Wu, Q.; Chen, X.; Zhang, J.; Loh, Y.-H.; Low, T.-Y.; Zhang, W.; Zhang, W.; Sze, S.-K.; Lim, B.; Ng, H.-H. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J. Biol. Chem. 2006, 281, 24090–24094. [Google Scholar] [CrossRef]
  31. Baglivo, I.; Esposito, S.; De Cesare, L.; Sparago, A.; Anvar, Z.; Riso, V.; Cammisa, M.; Fattorusso, R.; Grimaldi, G.; Riccio, A.; et al. Genetic and epigenetic mutations affect the DNA binding capability of human ZFP57 in transient neonatal diabetes type 1. FEBS Lett. 2013, 587, 1474–1481. [Google Scholar] [CrossRef]
  32. Zuo, X.; Sheng, J.; Lau, H.T.; McDonald, C.M.; Andrade, M.; Cullen, D.E.; Bell, F.T.; Iacovino, M.; Kyba, M.; Xu, G.; et al. Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J. Biol. Chem. 2012, 287, 2107–2118. [Google Scholar] [CrossRef]
  33. Shi, H.; Strogantsev, R.; Takahashi, N.; Kazachenka, A.; Lorincz, M.C.; Hemberger, M.; Ferguson-Smith, A.C. ZFP57 regulation of transposable elements and gene expression within and beyond imprinted domains. Epigenet. Chromatin 2019, 12, 49. [Google Scholar] [CrossRef] [PubMed]
  34. Liu, Z.; Wei, X.; Gao, Y.; Gao, X.; Li, X.; Zhong, Y.; Wang, X.; Liu, C.; Shi, T.; Lv, J.; et al. Zbtb34 promotes embryonic stem cell proliferation by elongating telomere length. Aging 2022, 14, 7126–7136. [Google Scholar] [CrossRef]
  35. Karemaker, I.D.; Vermeulen, M. ZBTB2 reads unmethylated CpG island promoters and regulates embryonic stem cell differentiation. EMBO Rep. 2018, 19, e44993. [Google Scholar] [CrossRef]
  36. Gowher, H.; Stuhlmann, H.; Felsenfeld, G. Vezf1 regulates genomic DNA methylation through its effects on expression of DNA methyltransferase Dnmt3b. Genes. Dev. 2008, 22, 2075–2084. [Google Scholar] [CrossRef] [PubMed]
  37. Ratnam, S.; Bozek, G.; Martin, T.; Gallagher, S.J.; Payne, C.J.; Storb, U. Ssm1b expression and function in germ cells of adult mice and in early embryos. Mol. Reprod. Dev. 2017, 84, 596–613. [Google Scholar] [CrossRef] [PubMed]
  38. Kawashima, H.; Sugito, K.; Yoshizawa, S.; Uekusa, S.; Furuya, T.; Ikeda, T.; Koshinaga, T.; Shinojima, Y.; Hasegawa, R.; Mishra, R.; et al. DNA hypomethylation at the ZNF206-exon 5 CpG island associated with neuronal differentiation in mice and development of neuroblastoma in humans. Int. J. Oncol. 2012, 40, 31–39. [Google Scholar] [CrossRef]
  39. Kwak, S.; Kim, T.W.; Kang, B.H.; Kim, J.H.; Lee, J.S.; Lee, H.T.; Hwang, I.Y.; Shin, J.; Lee, J.H.; Cho, E.J.; et al. Zinc finger proteins orchestrate active gene silencing during embryonic stem cell differentiation. Nucleic Acids Res. 2018, 46, 6592–6607. [Google Scholar] [CrossRef]
  40. Fidalgo, M.; Huang, X.; Guallar, D.; Sanchez-Priego, C.; Valdes, V.J.; Saunders, A.; Ding, J.; Wu, W.-S.; Clavel, C.; Wang, J. Zfp281 Coordinates Opposing Functions of Tet1 and Tet2 in Pluripotent States. Cell Stem Cell 2016, 19, 355–369. [Google Scholar] [CrossRef]
  41. Russo, R.; Russo, V.; Cecere, F.; Valletta, M.; Gentile, M.T.; Colucci-D’Amato, L.; Angelini, C.; Riccio, A.; Pedone, P.V.; Chambery, A.; et al. ZBTB2 protein is a new partner of the Nucleosome Remodeling and Deacetylase (NuRD) complex. Int. J. Biol. Macromol. 2021, 168, 67–76. [Google Scholar] [CrossRef] [PubMed]
  42. Olivieri, D.; Paramanathan, S.; Bardet, A.F.; Hess, D.; Smallwood, S.A.; Elling, U.; Betschinger, J. The BTB-domain transcription factor ZBTB2 recruits chromatin remodelers and a histone chaperone during the exit from pluripotency. J. Biol. Chem. 2021, 297, 100947. [Google Scholar] [CrossRef] [PubMed]
  43. Fidalgo, M.; Faiola, F.; Pereira, C.-F.; Ding, J.; Saunders, A.; Gingold, J.; Schaniel, C.; Lemischka, I.R.; Silva, J.C.R.; Wang, J. Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming. Proc. Natl. Acad. Sci. USA 2012, 109, 16202–16207. [Google Scholar] [CrossRef] [PubMed]
  44. Bernstein, B.E.; Mikkelsen, T.S.; Xie, X.; Kamal, M.; Huebert, D.J.; Cuff, J.; Fry, B.; Meissner, A.; Wernig, M.; Plath, K.; et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006, 125, 315–326. [Google Scholar] [CrossRef] [PubMed]
  45. Zhao, X.D.; Han, X.; Chew, J.L.; Liu, J.; Chiu, K.P.; Choo, A.; Orlov, Y.L.; Sung, W.-K.; Shahab, A.; Kuznetsov, V.A.; et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 2007, 1, 286–298. [Google Scholar] [CrossRef]
  46. Vignaux, P.A.; Bregio, C.; Hathaway, N.A. Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts. PLoS ONE 2019, 14, e0217699. [Google Scholar] [CrossRef]
  47. Matsuura, T.; Miyazaki, S.; Miyazaki, T.; Tashiro, F.; Miyazaki, J.I. Zfp296 negatively regulates H3K9 methylation in embryonic development as a component of heterochromatin. Sci. Rep. 2017, 7, 12462. [Google Scholar] [CrossRef]
  48. Gao, L.; Zhang, Z.; Zheng, X.; Wang, F.; Deng, Y.; Zhang, Q.; Wang, G.; Zhang, Y.; Liu, X. The Novel Role of Zfp296 in Mammalian Embryonic Genome Activation as an H3K9me3 Modulator. Int. J. Mol. Sci. 2023, 24, 11377. [Google Scholar] [CrossRef]
  49. Miyazaki, S.; Yamano, H.; Motooka, D.; Tashiro, F.; Matsuura, T.; Miyazaki, T.; Miyazaki, J.I. Zfp296 knockout enhances chromatin accessibility and induces a unique state of pluripotency in embryonic stem cells. Commun. Biol. 2023, 6, 771. [Google Scholar] [CrossRef]
  50. Ishiuchi, T.; Ohishi, H.; Sato, T.; Kamimura, S.; Yorino, M.; Abe, S.; Suzuki, A.; Wakayama, T.; Suyama, M.; Sasaki, H. Zfp281 Shapes the Transcriptome of Trophoblast Stem Cells and Is Essential for Placental Development. Cell Rep. 2019, 27, 1742–1754.e6. [Google Scholar] [CrossRef]
  51. Geula, S.; Moshitch-Moshkovitz, S.; Dominissini, D.; Mansour, A.A.; Kol, N.; Salmon-Divon, M.; Hershkovitz, V.; Peer, E.; Mor, N.; Manor, Y.S.; et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 2015, 347, 1002–1006. [Google Scholar] [CrossRef] [PubMed]
  52. Lee, D.F.; Walsh, M.J.; Aguiló, F. ZNF217/ZFP217 Meets Chromatin and RNA. Trends Biochem. Sci. 2016, 41, 986–988. [Google Scholar] [CrossRef] [PubMed]
  53. Yang, L.; Liu, X.; Song, L.; Su, G.; Di, A.; Bai, C.; Wei, Z.; Li, G. Melatonin restores the pluripotency of long-term-cultured embryonic stem cells through melatonin receptor-dependent m6A RNA regulation. J. Pineal Res. 2020, 69, e12669. [Google Scholar] [CrossRef]
  54. Aguilo, F.; Zhang, F.; Sancho, A.; Fidalgo, M.; Di Cecilia, S.; Vashisht, A.; Lee, D.F.; Chen, C.H.; Rengasamy, M.; Andino, B.; et al. Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming. Cell Stem Cell 2015, 17, 689–704. [Google Scholar] [CrossRef]
  55. Wen, J.; Lv, R.; Ma, H.; Shen, H.; He, C.; Wang, J.; Jiao, F.; Liu, H.; Yang, P.; Tan, L.; et al. Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Mol. Cell 2018, 69, 1028–1038.e6. [Google Scholar] [CrossRef]
  56. Gautam, P.; Yu, T.; Loh, Y.-H. Regulation of ERVs in pluripotent stem cells and reprogramming. Curr. Opin. Genet. Dev. 2017, 46, 194–201. [Google Scholar] [CrossRef]
  57. Rowe, H.M.; Friedli, M.; Offner, S.; Verp, S.; Mesnard, D.; Marquis, J.; Aktas, T.; Trono, D. De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET. Development 2013, 140, 519–529. [Google Scholar] [CrossRef] [PubMed]
  58. Ecco, G.; Cassano, M.; Kauzlaric, A.; Duc, J.; Coluccio, A.; Offner, S.; Imbeault, M.; Rowe, H.M.; Turelli, P.; Trono, D. Transposable Elements and Their KRAB-ZFP Controllers Regulate Gene Expression in Adult Tissues. Dev. Cell 2016, 36, 611–623. [Google Scholar] [CrossRef]
  59. Tan, X.; Xu, X.; Elkenani, M.; Smorag, L.; Zechner, U.; Nolte, J.; Engel, W.; Pantakani, D.V. Zfp819, a novel KRAB-zinc finger protein, interacts with KAP1 and functions in genomic integrity maintenance of mouse embryonic stem cells. Stem Cell Res. 2013, 11, 1045–1059. [Google Scholar] [CrossRef]
  60. Oleksiewicz, U.; Gładych, M.; Raman, A.T.; Heyn, H.; Mereu, E.; Chlebanowska, P.; Andrzejewska, A.; Sozańska, B.; Samant, N.; Fąk, K.; et al. TRIM28 and Interacting KRAB-ZNFs Control Self-Renewal of Human Pluripotent Stem Cells through Epigenetic Repression of Pro-differentiation Genes. Stem Cell Rep. 2017, 9, 2065–2080. [Google Scholar] [CrossRef]
  61. Briers, S.; Crawford, C.; Bickmore, W.A.; Sutherland, H.G. KRAB zinc-finger proteins localise to novel KAP1-containing foci that are adjacent to PML nuclear bodies. J. Cell Sci. 2009, 122, 937–946. [Google Scholar] [CrossRef] [PubMed]
  62. Mazurek, S.; Oleksiewicz, U.; Czerwińska, P.; Wróblewska, J.; Klimczak, M.; Wiznerowicz, M. Disruption of RING and PHD Domains of TRIM28 Evokes Differentiation in Human iPSCs. Cells 2021, 10, 1933. [Google Scholar] [CrossRef] [PubMed]
  63. Coluccio, A.; Ecco, G.; Duc, J.; Offner, S.; Turelli, P.; Trono, D. Individual retrotransposon integrants are differentially controlled by KZFP/KAP1-dependent histone methylation, DNA methylation and TET-mediated hydroxymethylation in naive embryonic stem cells. Epigenetics Chromatin 2018, 11, 7. [Google Scholar] [CrossRef]
  64. Jacobs, F.M.; Greenberg, D.; Nguyen, N.; Haeussler, M.; Ewing, A.D.; Katzman, S.; Paten, B.; Salama, S.R.; Haussler, D. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 2014, 516, 242–245. [Google Scholar] [CrossRef]
  65. Wolf, D.; Goff, S.P. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 2009, 458, 1201–1204. [Google Scholar] [CrossRef]
  66. Wang, C.; Goff, S.P. Differential control of retrovirus silencing in embryonic cells by proteasomal regulation of the ZFP809 retroviral repressor. Proc. Natl. Acad. Sci. USA 2017, 114, E922–E930. [Google Scholar] [CrossRef]
  67. Seah, M.K.Y.; Wang, Y.; Goy, P.A.; Loh, H.M.; Peh, W.J.; Low, D.H.P.; Han, B.Y.; Wong, E.; Leong, E.L.; Wolf, G.; et al. The KRAB-zinc-finger protein ZFP708 mediates epigenetic repression at RMER19B retrotransposons. Development 2019, 146, dev170266. [Google Scholar] [CrossRef]
  68. Dai, Q.; Shen, Y.; Wang, Y.; Wang, X.; Francisco, J.C.; Luo, Z.; Lin, C. Striking a balance: Regulation of transposable elements by Zfp281 and Mll2 in mouse embryonic stem cells. Nucleic Acids Res. 2017, 45, 12301–12310. [Google Scholar] [CrossRef] [PubMed]
  69. Osipovich, A.B.; Dudek, K.D.; Trinh, L.T.; Kim, L.H.; Shrestha, S.; Cartailler, J.-P.; Magnuson, M.A. ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes. PLoS Genet. 2023, 19, e1010729. [Google Scholar] [CrossRef]
  70. Turelli, P.; Castro-Diaz, N.; Marzetta, F.; Kapopoulou, A.; Raclot, C.; Duc, J.; Tieng, V.; Quenneville, S.; Trono, D. Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res. 2014, 24, 1260–1270. [Google Scholar] [CrossRef]
  71. Schlesinger, S.; Lee, A.H.; Wang, G.Z.; Green, L.; Goff, S.P. Proviral silencing in embryonic cells is regulated by Yin Yang 1. Cell Rep. 2013, 4, 50–58. [Google Scholar] [CrossRef] [PubMed]
  72. Haring, N.L.; van Bree, E.J.; Jordaan, W.S.; Roels, J.R.E.; Sotomayor, G.C.; Hey, T.M.; White, F.T.G.; Galland, M.D.; Smidt, M.P.; Jacobs, F.M.J. ZNF91 deletion in human embryonic stem cells leads to ectopic activation of SVA retrotransposons and up-regulation of KRAB zinc finger gene clusters. Genome Res. 2021, 31, 551–563. [Google Scholar] [CrossRef] [PubMed]
  73. Svoboda, P. Mammalian zygotic genome activation. Semin. Cell Dev. Biol. 2018, 84, 118–126. [Google Scholar] [CrossRef] [PubMed]
  74. Liu, G.; Wang, W.; Hu, S.; Wang, X.; Zhang, Y. Inherited DNA methylation primes the establishment of accessible chromatin during genome activation. Genome Res. 2018, 28, 998–1007. [Google Scholar] [CrossRef]
  75. Xia, W.; Xu, J.; Yu, G.; Yao, G.; Xu, K.; Ma, X.; Zhang, N.; Liu, B.; Li, T.; Lin, Z.; et al. Resetting histone modifications during human parental-to-zygotic transition. Science 2019, 365, 353–360. [Google Scholar] [CrossRef]
  76. Li, X.; Ito, M.; Zhou, F.; Youngson, N.; Zuo, X.; Leder, P.; Ferguson-Smith, A.C. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 2008, 15, 547–557. [Google Scholar] [CrossRef]
  77. Ogawa, S.; Yamada, M.; Nakamura, A.; Sugawara, T.; Nakamura, A.; Miyajima, S.; Harada, Y.; Ooka, R.; Okawa, R.; Miyauchi, J.; et al. Zscan5b Deficiency Impairs DNA Damage Response and Causes Chromosomal Aberrations during Mitosis. Stem Cell Rep. 2019, 12, 1366–1379. [Google Scholar] [CrossRef]
  78. Srinivasan, R.; Nady, N.; Arora, N.; Hsieh, L.J.; Swigut, T.; Narlikar, G.J.; Wossidlo, M.; Wysocka, J. Zscan4 binds nucleosomal microsatellite DNA and protects mouse two-cell embryos from DNA damage. Sci. Adv. 2020, 6, eaaz9115. [Google Scholar] [CrossRef]
  79. Sakamoto, M.; Abe, S.; Miki, Y.; Miyanari, Y.; Sasaki, H.; Ishiuchi, T. Dynamic nucleosome remodeling mediated by YY1 underlies early mouse development. Genes. Dev. 2023, 37, 590–604. [Google Scholar] [CrossRef]
  80. Yang, P.; Wang, Y.; Hoang, D.; Tinkham, M.; Patel, A.; Sun, M.-A.; Wolf, G.; Baker, M.; Chien, H.-C.; Lai, K.-Y.N.; et al. A placental growth factor is silenced in mouse embryos by the zinc finger protein ZFP568. Science 2017, 356, 757–759. [Google Scholar] [CrossRef]
  81. Ishiguro, K.I.; Nakatake, Y.; Chikazawa-Nohtomi, N.; Kimura, H.; Akiyama, T.; Oda, M.; Ko, S.B.; Ko, M.S. Expression analysis of the endogenous Zscan4 locus and its coding proteins in mouse ES cells and preimplantation embryos. Vitr. Cell Dev. Biol. Anim. 2017, 53, 179–190. [Google Scholar] [CrossRef] [PubMed]
  82. Han, B.Y.; Seah, M.K.Y.; Brooks, I.R.; Quek, D.H.P.; Huxley, D.R.; Foo, C.S.; Lee, L.T.; Wollmann, H.; Guo, H.; Messerschmidt, D.M.; et al. Global translation during early development depends on the essential transcription factor PRDM10. Nat. Commun. 2020, 11, 3603. [Google Scholar] [CrossRef]
  83. Nishio, M.; Matsuura, T.; Hibi, S.; Ohta, S.; Oka, C.; Sasai, N.; Ishida, Y.; Matsuda, E. Heterozygous loss of Zbtb38 leads to early embryonic lethality via the suppression of Nanog and Sox2 expression. Cell Prolif. 2022, 55, e13215. [Google Scholar] [CrossRef]
  84. Falco, G.; Lee, S.L.; Stanghellini, I.; Bassey, U.C.; Hamatani, T.; Ko, M.S. Zscan4: A novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev. Biol. 2007, 307, 539–550. [Google Scholar] [CrossRef]
  85. Dang, L.T.; Wong, L.; Tropepe, V. Zfhx1b induces a definitive neural stem cell fate in mouse embryonic stem cells. Stem Cells Dev. 2012, 21, 2838–2851. [Google Scholar] [CrossRef]
  86. Dang, L.T.H.; Tropepe, V. FGF dependent regulation of Zfhx1b gene expression promotes the formation of definitive neural stem cells in the mouse anterior neurectoderm. Neural Dev. 2010, 5, 13. [Google Scholar] [CrossRef] [PubMed]
  87. Scott, E.P.; Breyak, E.; Nishinakamura, R.; Nakagawa, Y. The zinc finger transcription factor Sall1 is required for the early developmental transition of microglia in mouse embryos. Glia 2022, 70, 1720–1733. [Google Scholar] [CrossRef]
  88. Ebrahim, N.; Kondratyev, N.; Artyuhov, A.; Timofeev, A.; Gurskaya, N.; Andrianov, A.; Izrailov, R.; Volchkov, E.; Dyuzheva, T.; Kopantseva, E.; et al. Human pancreatic islet-derived stromal cells reveal combined features of mesenchymal stromal cells and pancreatic stellate cells. Stem Cell Res. Ther. 2024, 15, 351. [Google Scholar] [CrossRef] [PubMed]
  89. Deng, L.; Mojica-Perez, S.P.; Azaria, R.D.; Schultz, M.; Parent, J.M.; Niu, W. Loss of POGZ alters neural differentiation of human embryonic stem cells. Mol. Cell. Neurosci. 2022, 120, 103727. [Google Scholar] [CrossRef]
  90. Horisawa-Takada, Y.; Kodera, C.; Takemoto, K.; Sakashita, A.; Horisawa, K.; Maeda, R.; Shimada, R.; Usuki, S.; Fujimura, S.; Tani, N.; et al. Meiosis-specific ZFP541 repressor complex promotes developmental progression of meiotic prophase towards completion during mouse spermatogenesis. Nat. Commun. 2021, 12, 3184. [Google Scholar] [CrossRef]
  91. Rogers, M.B.; Hosler, B.A.; Gudas, L.J. Specific expression of a retinoic acid-regulated, zinc-finger gene, Rex-1, in preimplantation embryos, trophoblast and spermatocytes. Development 1991, 113, 815–824. [Google Scholar] [CrossRef] [PubMed]
  92. Osipovich, A.B.; Dudek, K.D.; Greenfest-Allen, E.; Cartailler, J.-P.; Manduchi, E.; Potter Case, L.; Choi, E.; Chapman, A.G.; Clayton, H.W.; Gu, G.; et al. A developmental lineage-based gene co-expression network for mouse pancreatic β-cells reveals a role for Zfp800 in pancreas development. Development 2021, 148, dev196964. [Google Scholar] [CrossRef]
  93. Nichols, J.; Smith, A. Naive and primed pluripotent states. Cell Stem Cell 2009, 4, 487–492. [Google Scholar] [CrossRef] [PubMed]
  94. Takahashi, S.; Kobayashi, S.; Hiratani, I. Epigenetic differences between naïve and primed pluripotent stem cells. Cell. Mol. Life Sci. CMLS 2018, 75, 1191–1203. [Google Scholar] [CrossRef]
  95. Romayor, I.; Herrera, L.; Burón, M.; Martin-Inaraja, M.; Prieto, L.; Etxaniz, J.; Inglés-Ferrándiz, M.; Pineda, J.R.; Eguizabal, C. A Comparative Study of Cell Culture Conditions during Conversion from Primed to Naive Human Pluripotent Stem Cells. Biomedicines 2022, 10, 1358. [Google Scholar] [CrossRef]
  96. Ng, H.-H.; Surani, M.A. The transcriptional and signalling networks of pluripotency. Nat. Cell Biol. 2011, 13, 490–496. [Google Scholar] [CrossRef]
  97. Yang, Y.; Xiao, L.; Xue, Y.; Idris, M.O.; Liu, J.; Pei, D.; Shi, Y.; Liao, B.; Li, F. ZBTB7A regulates primed-to-naïve transition of pluripotent stem cells via recognition of the PNT-associated sequence by zinc fingers 1-2 and recognition of γ-globin -200 gene element by zinc fingers 1–4. FEBS J. 2023, 290, 3896–3909. [Google Scholar] [CrossRef]
  98. Lea, R.A.; McCarthy, A.; Boeing, S.; Fallesen, T.; Elder, K.; Snell, P.; Christie, L.; Adkins, S.; Shaikly, V.; Taranissi, M.; et al. KLF17 promotes human naive pluripotency but is not required for its establishment. Development 2021, 148, dev199378. [Google Scholar] [CrossRef] [PubMed]
  99. Mayer, D.; Stadler, M.B.; Rittirsch, M.; Hess, D.; Lukonin, I.; Winzi, M.; Smith, A.; Buchholz, F.; Betschinger, J. Zfp281 orchestrates interconversion of pluripotent states by engaging Ehmt1 and Zic2. EMBO J. 2020, 39, e102591. [Google Scholar] [CrossRef]
  100. Wen, X.; Lin, Z.; Wu, H.; Cao, L.; Fu, X. Zfp281 Inhibits the Pluripotent-to-Totipotent State Transition in Mouse Embryonic Stem Cells. Front. Cell Dev. Biol. 2022, 10, 879428. [Google Scholar] [CrossRef]
  101. Huang, X.; Bashkenova, N.; Yang, J.; Li, D.; Wang, J. ZFP281 recruits polycomb repressive complex 2 to restrict extraembryonic endoderm potential in safeguarding embryonic stem cell pluripotency. Protein Cell 2021, 12, 213–219. [Google Scholar] [CrossRef]
  102. Fernandes, L.P.; Enriquez-Gasca, R.; Gould, P.A.; Holt, J.H.; Conde, L.; Ecco, G.; Herrero, J.; Gifford, R.; Trono, D.; Kassiotis, G.; et al. A satellite DNA array barcodes chromosome 7 and regulates totipotency via ZFP819. Sci. Adv. 2022, 8, eabp8085. [Google Scholar] [CrossRef] [PubMed]
  103. Han, D.; Liu, G.; Oh, Y.; Oh, S.; Yang, S.; Mandjikian, L.; Rani, N.; Almeida, M.C.; Kosik, K.S.; Jang, J. ZBTB12 is a molecular barrier to dedifferentiation in human pluripotent stem cells. Nat. Commun. 2023, 14, 632. [Google Scholar] [CrossRef]
  104. Wang, Z.X.; Kueh, J.L.; Teh, C.H.; Rossbach, M.; Lim, L.; Li, P.; Wong, K.Y.; Lufkin, T.; Robson, P.; Stanton, L.W. Zfp206 is a transcription factor that controls pluripotency of embryonic stem cells. Stem Cells 2007, 25, 2173–2182. [Google Scholar] [CrossRef]
  105. Yu, H.B.; Kunarso, G.; Hong, F.H.; Stanton, L.W. Zfp206, Oct4, and Sox2 are integrated components of a transcriptional regulatory network in embryonic stem cells. J. Biol. Chem. 2009, 284, 31327–31335. [Google Scholar] [CrossRef]
  106. Zhang, W.; Walker, E.; Tamplin, O.J.; Rossant, J.; Stanford, W.L.; Hughes, T.R. Zfp206 regulates ES cell gene expression and differentiation. Nucleic Acids Res. 2006, 34, 4780–4790. [Google Scholar] [CrossRef] [PubMed]
  107. Jiang, J.; Chan, Y.-S.; Loh, Y.-H.; Cai, J.; Tong, G.-Q.; Lim, C.-A.; Robson, P.; Zhong, S.; Ng, H.-H. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat. Cell Biol. 2008, 10, 353–360. [Google Scholar] [CrossRef] [PubMed]
  108. Chan, K.K.; Zhang, J.; Chia, N.Y.; Chan, Y.S.; Sim, H.S.; Tan, K.S.; Oh, S.K.; Ng, H.H.; Choo, A.B. KLF4 and PBX1 directly regulate NANOG expression in human embryonic stem cells. Stem Cells 2009, 27, 2114–2125. [Google Scholar] [CrossRef]
  109. Ema, M.; Mori, D.; Niwa, H.; Hasegawa, Y.; Yamanaka, Y.; Hitoshi, S.; Mimura, J.; Kawabe, Y.-i.; Hosoya, T.; Morita, M.; et al. Krüppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell 2008, 3, 555–567. [Google Scholar] [CrossRef]
  110. Parisi, S.; Passaro, F.; Aloia, L.; Manabe, I.; Nagai, R.; Pastore, L.; Russo, T. Klf5 is involved in self-renewal of mouse embryonic stem cells. J. Cell Sci. 2008, 121, 2629–2634. [Google Scholar] [CrossRef]
  111. Tang, L.; Wang, M.; Liu, D.; Gong, M.; Ying, Q.L.; Ye, S. Sp5 induces the expression of Nanog to maintain mouse embryonic stem cell self-renewal. PLoS ONE 2017, 12, e0185714. [Google Scholar] [CrossRef] [PubMed]
  112. Yamaguchi, Y.; Takamura, H.; Tada, Y.; Akagi, T.; Oyama, K.; Miyashita, T.; Tajima, H.; Kitagawa, H.; Fushida, S.; Yokota, T.; et al. Nanog positively regulates Zfp57 expression in mouse embryonic stem cells. Biochem. Biophys. Res. Commun. 2014, 453, 817–820. [Google Scholar] [CrossRef]
  113. Fang, F.; Xia, N.; Angulo, B.; Carey, J.; Cady, Z.; Durruthy-Durruthy, J.; Bennett, T.; Sebastiano, V.; Reijo Pera, R.A. A distinct isoform of ZNF207 controls self-renewal and pluripotency of human embryonic stem cells. Nat. Commun. 2018, 9, 4384. [Google Scholar] [CrossRef] [PubMed]
  114. Lim, L.S.; Loh, Y.H.; Zhang, W.W.; Li, Y.X.; Chen, X.; Wang, Y.N.; Bakre, M.; Ng, H.H.; Stanton, L.W. Zic3 is required for maintenance of pluripotency in embryonic stem cells. Mol. Biol. Cell 2007, 18, 1348–1358. [Google Scholar] [CrossRef] [PubMed]
  115. Lim, L.S.; Hong, F.H.; Kunarso, G.; Stanton, L.W. The pluripotency regulator Zic3 is a direct activator of the Nanog promoter in ESCs. Stem Cells (Dayt. Ohio) 2010, 28, 1961–1969. [Google Scholar] [CrossRef]
  116. Karantzali, E.; Lekakis, V.; Ioannou, M.; Hadjimichael, C.; Papamatheakis, J.; Kretsovali, A. Sall1 Regulates Embryonic Stem Cell Differentiation in Association with Nanog. J. Biol. Chem. 2011, 286, 1037–1045. [Google Scholar] [CrossRef]
  117. Massé, J.; Piquet-Pellorce, C.; Viet, J.; Guerrier, D.; Pellerin, I.; Deschamps, S. ZFPIP/Zfp462 is involved in P19 cell pluripotency and in their neuronal fate. Exp. Cell Res. 2011, 317, 1922–1934. [Google Scholar] [CrossRef]
  118. Massé, J.; Laurent, A.; Nicol, B.; Guerrier, D.; Pellerin, I.; Deschamps, S. Involvement of ZFPIP/Zfp462 in chromatin integrity and survival of P19 pluripotent cells. Exp. Cell Res. 2010, 316, 1190–1201. [Google Scholar] [CrossRef]
  119. Storm, M.P.; Kumpfmueller, B.; Thompson, B.; Kolde, R.; Vilo, J.; Hummel, O.; Schulz, H.; Welham, M.J. Characterization of the Phosphoinositide 3-Kinase-Dependent Transcriptome in Murine Embryonic Stem Cells: Identification of Novel Regulators of Pluripotency. Stem Cells (Dayt. Ohio) 2009, 27, 764–775. [Google Scholar] [CrossRef]
  120. Pérez-Palacios, R.; Climent, M.; Santiago-Arcos, J.; Macías-Redondo, S.; Klar, M.; Muniesa, P.; Schoorlemmer, J. YY2 in Mouse Preimplantation Embryos and in Embryonic Stem Cells. Cells 2021, 10, 1123. [Google Scholar] [CrossRef]
  121. Galan-Caridad, J.M.; Harel, S.; Arenzana, T.L.; Hou, Z.E.; Doetsch, F.K.; Mirny, L.A.; Reizis, B. Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell 2007, 129, 345–357. [Google Scholar] [CrossRef] [PubMed]
  122. Harel, S.; Tu, E.Y.; Weisberg, S.; Esquilin, M.; Chambers, S.M.; Liu, B.; Carson, C.T.; Studer, L.; Reizis, B.; Tomishima, M.J. ZFX Controls the Self-Renewal of Human Embryonic Stem Cells. PLoS ONE 2012, 7, e0042302. [Google Scholar] [CrossRef] [PubMed]
  123. Mongan, N.P.; Martin, K.M.; Gudas, L.J. The putative human stem cell marker, Rex-1 (Zfp42): Structural classification and expression in normal human epithelial and carcinoma cell cultures. Mol. Carcinog. 2006, 45, 887–900. [Google Scholar] [CrossRef]
  124. Masui, S.; Ohtsuka, S.; Yagi, R.; Takahashi, K.; Ko, M.S.H.; Niwa, H. Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC Dev. Biol. 2008, 8, 45. [Google Scholar] [CrossRef]
  125. Yamane, M.; Fujii, S.; Ohtsuka, S.; Niwa, H. Zscan10 is dispensable for maintenance of pluripotency in mouse embryonic stem cells. Biochem. Biophys. Res. Commun. 2015, 468, 826–831. [Google Scholar] [CrossRef]
  126. Chan, E.M.; Ratanasirintrawoot, S.; Park, I.-H.; Manos, P.D.; Loh, Y.-H.; Huo, H.; Miller, J.D.; Hartung, O.; Rho, J.; Ince, T.A.; et al. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat. Biotechnol. 2009, 27, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
  127. Toyooka, Y.; Shimosato, D.; Murakami, K.; Takahashi, K.; Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 2008, 135, 909–918. [Google Scholar] [CrossRef]
  128. Zhang, J.-Z.; Gao, W.; Yang, H.-B.; Zhang, B.; Zhu, Z.-Y.; Xue, Y.-F. Screening for genes essential for mouse embryonic stem cell self-renewal using a subtractive RNA interference library. Stem Cells 2006, 24, 2661–2668. [Google Scholar] [CrossRef]
  129. Guallar, D.; Pérez-Palacios, R.; Climent, M.; Martínez-Abadía, I.; Larraga, A.; Fernández-Juan, M.; Vallejo, C.; Muniesa, P.; Schoorlemmer, J. Expression of endogenous retroviruses is negatively regulated by the pluripotency marker Rex1/Zfp42. Nucleic Acids Res. 2012, 40, 8993–9007. [Google Scholar] [CrossRef]
  130. Tahmasebi, S.; Jafarnejad, S.M.; Tam, I.S.; Gonatopoulos-Pournatzis, T.; Matta-Camacho, E.; Tsukumo, Y.; Yanagiya, A.; Li, W.; Atlasi, Y.; Caron, M.; et al. Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2. Proc. Natl. Acad. Sci. USA 2016, 113, 12360–12367. [Google Scholar] [CrossRef]
  131. Akagi, T.; Usuda, M.; Matsuda, T.; Ko, M.S.H.; Niwa, H.; Asano, M.; Koide, H.; Yokota, T. Identification of Zfp-57 as a downstream molecule of STAT3 and Oct-3/4 in embryonic stem cells. Biochem. Biophys. Res. Commun. 2005, 331, 23–30. [Google Scholar] [CrossRef] [PubMed]
  132. Hall, J.; Guo, G.; Wray, J.; Eyres, I.; Nichols, J.; Grotewold, L.; Morfopoulou, S.; Humphreys, P.; Mansfield, W.; Walker, R.; et al. Oct4 and LIF/Stat3 Additively Induce Kruppel Factors to Sustain Embryonic Stem Cell Self-Renewal. Cell Stem Cell 2009, 5, 597–609. [Google Scholar] [CrossRef]
  133. Leeb, M.; Dietmann, S.; Paramor, M.; Niwa, H.; Smith, A. Genetic exploration of the exit from self-renewal using haploid embryonic stem cells. Cell Stem Cell 2014, 14, 385–393. [Google Scholar] [CrossRef] [PubMed]
  134. Fujii, Y.; Kakegawa, M.; Koide, H.; Akagi, T.; Yokota, T. Zfp296 is a novel Klf4-interacting protein and functions as a negative regulator. Biochem. Biophys. Res. Commun. 2013, 441, 411–417. [Google Scholar] [CrossRef]
  135. Bogani, D.; Morgan, M.A.; Nelson, A.C.; Costello, I.; McGouran, J.F.; Kessler, B.M.; Robertson, E.J.; Bikoff, E.K. The PR/SET domain zinc finger protein Prdm4 regulates gene expression in embryonic stem cells but plays a nonessential role in the developing mouse embryo. Mol. Cell. Biol. 2013, 33, 3936–3950. [Google Scholar] [CrossRef] [PubMed]
  136. Yamaji, M.; Ueda, J.; Hayashi, K.; Ohta, H.; Yabuta, Y.; Kurimoto, K.; Nakato, R.; Yamada, Y.; Shirahige, K.; Saitou, M. PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 2013, 12, 368–382. [Google Scholar] [CrossRef]
  137. Leitch, H.G.; McEwen, K.R.; Turp, A.; Encheva, V.; Carroll, T.; Grabole, N.; Mansfield, W.; Nashun, B.; Knezovich, J.G.; Smith, A.; et al. Naive pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 2013, 20, 311–316. [Google Scholar] [CrossRef]
  138. Grabole, N.; Tischler, J.; Hackett, J.A.; Kim, S.; Tang, F.; Leitch, H.G.; Magnúsdóttir, E.; Surani, M.A. Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep. 2013, 14, 629–637. [Google Scholar] [CrossRef]
  139. Mzoughi, S.; Zhang, J.; Hequet, D.; Teo, S.X.; Fang, H.; Xing, Q.R.; Bezzi, M.; Seah, M.K.Y.; Ong, S.L.M.; Shin, E.M.; et al. PRDM15 safeguards naive pluripotency by transcriptionally regulating WNT and MAPK-ERK signaling. Nat. Genet. 2017, 49, 1354–1363. [Google Scholar] [CrossRef]
  140. Winata, C.L.; Kondrychyn, I.; Korzh, V. Changing Faces of Transcriptional Regulation Reflected by Zic3. Curr. Genom. 2015, 16, 117–127. [Google Scholar] [CrossRef]
  141. Zhao, X.; Monson, C.; Gao, C.; Gouon-Evans, V.; Matsumoto, N.; Sadler, K.C.; Friedman, S.L. Klf6/copeb is required for hepatic outgrowth in zebrafish and for hepatocyte specification in mouse ES cells. Dev. Biol. 2010, 344, 79–93. [Google Scholar] [CrossRef] [PubMed]
  142. Rong, L.; Liu, J.; Qi, Y.; Graham, A.M.; Parmacek, M.S.; Li, S. GATA-6 promotes cell survival by up-regulating BMP-2 expression during embryonic stem cell differentiation. Mol. Biol. Cell 2012, 23, 3754–3763. [Google Scholar] [CrossRef] [PubMed]
  143. Oliver, C.H.; Nichols, J.; Watson, C.J. The KRAB domain zinc finger protein, Zfp157, is expressed in multiple tissues during mouse embryogenesis and in specific cells in adult mammary gland and skin. Genesis 2013, 51, 179–186. [Google Scholar] [CrossRef] [PubMed]
  144. Younis, S.; Jouneau, A.; Larsson, M.; Oudin, J.-F.; Adenot, P.; Omar, J.; Brochard, V.; Andersson, L. Ablation of ZC3H11A causes early embryonic lethality and dysregulation of metabolic processes. Proc. Natl. Acad. Sci. USA 2023, 120, e2216799120. [Google Scholar] [CrossRef] [PubMed]
  145. Cencioni, C.; Spallotta, F.; Savoia, M.; Kuenne, C.; Guenther, S.; Re, A.; Wingert, S.; Rehage, M.; Sürün, D.; Siragusa, M.; et al. Zeb1-Hdac2-eNOS circuitry identifies early cardiovascular precursors in naive mouse embryonic stem cells. Nat. Commun. 2018, 9, 1281. [Google Scholar] [CrossRef]
  146. Ninfali, C.; Siles, L.; Esteve-Codina, A.; Postigo, A. The mesodermal and myogenic specification of hESCs depend on ZEB1 and are inhibited by ZEB2. Cell Rep. 2023, 42, 113222. [Google Scholar] [CrossRef]
  147. Stryjewska, A.; Dries, R.; Pieters, T.; Verstappen, G.; Conidi, A.; Coddens, K.; Francis, A.; Umans, L.; van Ijcken, W.F.J.; Berx, G.; et al. Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells. Stem Cells 2017, 35, 611–625. [Google Scholar] [CrossRef]
  148. Zhu, L.; Harutyunyan, K.G.; Peng, J.L.; Wang, J.; Schwartz, R.J.; Belmont, J.W. Identification of a novel role of ZIC3 in regulating cardiac development. Hum. Mol. Genet. 2007, 16, 1649–1660. [Google Scholar] [CrossRef]
  149. Busser, B.W.; Lin, Y.; Yang, Y.; Zhu, J.; Chen, G.; Michelson, A.M. An Orthologous Epigenetic Gene Expression Signature Derived from Differentiating Embryonic Stem Cells Identifies Regulators of Cardiogenesis. PLoS ONE 2015, 10, e0141066. [Google Scholar] [CrossRef]
  150. Kotoku, T.; Kosaka, K.; Nishio, M.; Ishida, Y.; Kawaichi, M.; Matsuda, E. CIBZ Regulates Mesodermal and Cardiac Differentiation of by Suppressing T and Mesp1 Expression in Mouse Embryonic Stem Cells. Sci. Rep. 2016, 6, 34188. [Google Scholar] [CrossRef]
  151. Di Filippo, E.S.; Costamagna, D.; Giacomazzi, G.; Cortés-Calabuig, Á.; Stryjewska, A.; Huylebroeck, D.; Fulle, S.; Sampaolesi, M. Zeb2 Regulates Myogenic Differentiation in Pluripotent Stem Cells. Int. J. Mol. Sci. 2020, 21, 2525. [Google Scholar] [CrossRef] [PubMed]
  152. Lynch, S.A.; McLeod, M.A.; Orsech, H.C.; Cirelli, A.M.; Waddell, D.S. Zinc finger protein 593 is upregulated during skeletal muscle atrophy and modulates muscle cell differentiation. Exp. Cell Res. 2019, 383, 111563. [Google Scholar] [CrossRef]
  153. Seo, K.W.; Roh, K.H.; Bhandari, D.R.; Park, S.B.; Lee, S.K.; Kang, K.S. ZNF281 Knockdown Induced Osteogenic Differentiation of Human Multipotent Stem Cells In Vivo and In Vitro. Cell Transpl. 2013, 22, 29–40. [Google Scholar] [CrossRef]
  154. Kim, J.Y.; Lee, R.H.; Kim, T.M.; Kim, D.W.; Jeon, Y.J.; Huh, S.H.; Oh, S.Y.; Kyba, M.; Kataoka, H.; Choi, K.; et al. OVOL2 is a critical regulator of ER71/ETV2 in generating FLK1+, hematopoietic, and endothelial cells from embryonic stem cells. Blood 2014, 124, 2948–2952. [Google Scholar] [CrossRef]
  155. Kitajima, K.; Kanokoda, M.; Nakajima, M.; Hara, T. Domain-specific biological functions of the transcription factor Gata2 on hematopoietic differentiation of mouse embryonic stem cells. Genes. Cells Devoted Mol. Cell. Mech. 2018, 23, 753–766. [Google Scholar] [CrossRef] [PubMed]
  156. Sugiyama, D.; Tanaka, M.; Kitajima, K.; Zheng, J.; Yen, H.; Murotani, T.; Yamatodani, A.; Nakano, T. Differential context-dependent effects of friend of GATA-1 (FOG-1) on mast-cell development and differentiation. Blood 2008, 111, 1924–1932. [Google Scholar] [CrossRef] [PubMed]
  157. Woo, A.J.; Patry, C.A.A.; Ghamari, A.; Pregernig, G.; Yuan, D.; Zheng, K.N.; Piers, T.; Hibbs, M.; Li, J.; Fidalgo, M.; et al. Zfp281 (ZBP-99) plays a functionally redundant role with Zfp148 (ZBP-89) during erythroid development. Blood Adv. 2019, 3, 2499–2511. [Google Scholar] [CrossRef]
  158. Woo, A.J.; Moran, T.B.; Schindler, Y.L.; Choe, S.K.; Langer, N.B.; Sullivan, M.R.; Fujiwara, Y.; Paw, B.H.; Cantor, A.B. Identification of ZBP-89 as a novel GATA-1-associated transcription factor involved in megakaryocytic and erythroid development. Mol. Cell. Biol. 2008, 28, 2675–2689. [Google Scholar] [CrossRef]
  159. Ferguson, D.C.J.; Mokim, J.H.; Meinders, M.; Moody, E.R.R.; Williams, T.A.; Cooke, S.; Trakarnsanga, K.; Daniels, D.E.; Ferrer-Vicens, I.; Shoemark, D.; et al. Characterization and evolutionary origin of novel C2H2 zinc finger protein (ZNF648) required for both erythroid and megakaryocyte differentiation in humans. Haematologica 2021, 106, 2859–2873. [Google Scholar] [CrossRef]
  160. Brown, L.; Brown, S. Zic2 is expressed in pluripotent cells in the blastocyst and adult brain expression overlaps with makers of neurogenesis. Gene Expr. Patterns 2009, 9, 43–49. [Google Scholar] [CrossRef]
  161. Birkhoff, J.C.; Brouwer, R.W.W.; Kolovos, P.; Korporaal, A.L.; Bermejo-Santos, A.; Boltsis, I.; Nowosad, K.; van den Hout, M.; Grosveld, F.G.; van IJcken, W.F.; et al. Targeted chromatin conformation analysis identifies novel distal neural enhancers of ZEB2 in pluripotent stem cell differentiation. Hum. Mol. Genet. 2020, 29, 2535–2550. [Google Scholar] [CrossRef] [PubMed]
  162. Pao, P.C.; Huang, N.K.; Liu, Y.W.; Yeh, S.H.; Lin, S.T.; Hsieh, C.P.; Huang, A.M.; Huang, H.S.; Tseng, J.T.; Chang, W.C.; et al. A novel RING finger protein, Znf179, modulates cell cycle exit and neuronal differentiation of P19 embryonal carcinoma cells. Cell Death Differ. 2011, 18, 1791–1804. [Google Scholar] [CrossRef] [PubMed]
  163. Kuo, C.J.; Lee, K.H.; Huang, C.C.; Wang, I.F.; Hsieh, C.C.; Lin, H.C.; Lee, Y.C. Purα regulates the induction of Znf179 transcription during neuronal differentiation. Biochem. Biophys. Res. Commun. 2020, 533, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
  164. Tsou, J.-H.; Yang, Y.-C.; Pao, P.-C.; Lin, H.-C.; Huang, N.-K.; Lin, S.-T.; Hsu, K.-S.; Yeh, C.-M.; Lee, K.-H.; Kuo, C.-J.; et al. Important Roles of Ring Finger Protein 112 in Embryonic Vascular Development and Brain Functions. Mol. Neurobiol. 2017, 54, 2286–2300. [Google Scholar] [CrossRef] [PubMed]
  165. Lin, H.C.; Ko, C.Y.; Lee, K.H.; Chen, I.H.; Kao, T.J.; Chang, W.C.; Hsu, T.I.; Lee, Y.C. E2f1 regulates the induction of promyelocytic leukemia zinc finger transcription in neuronal differentiation of pluripotent P19 embryonal carcinoma cells. Biochem. Biophys. Res. Commun. 2019, 512, 629–634. [Google Scholar] [CrossRef]
  166. Rraklli, V.; Södersten, E.; Nyman, U.; Hagey, D.W.; Holmberg, J. Elevated levels of ZAC1 disrupt neurogenesis and promote rapid in vivo reprogramming. Stem Cell Res. 2016, 16, 1–9. [Google Scholar] [CrossRef]
  167. Hoffmann, A.; Spengler, D. A new coactivator function for Zac1’s C2H2 zinc finger DNA-binding domain in selectively controlling PCAF activity. Mol. Cell. Biol. 2008, 28, 6078–6093. [Google Scholar] [CrossRef]
  168. Yasui, G.; Katayama, S.; Kubota, Y.; Takatsuka, H.; Ito, M.; Inazu, T. Zinc finger protein 483 (ZNF483) regulates neuronal differentiation and methyl-CpG-binding protein 2 (MeCP2) intracellular localization. Biochem. Biophys. Res. Commun. 2021, 568, 68–75. [Google Scholar] [CrossRef]
  169. Jiang, Y.; Yan, L.; Xia, L.; Lu, X.; Zhu, W.; Ding, D.; Du, M.; Zhang, D.; Wang, H.; Hu, B. Zinc finger E-box-binding homeobox 1 (ZEB1) is required for neural differentiation of human embryonic stem cells. J. Biol. Chem. 2018, 293, 19317–19329. [Google Scholar] [CrossRef]
  170. Winata, C.L.; Kondrychyn, I.; Kumar, V.; Srinivasan, K.G.; Orlov, Y.; Ravishankar, A.; Prabhakar, S.; Stanton, L.W.; Korzh, V.; Mathavan, S. Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish. PLoS Genet. 2013, 9, e1003852. [Google Scholar] [CrossRef]
  171. Kamiya, D.; Banno, S.; Sasai, N.; Ohgushi, M.; Inomata, H.; Watanabe, K.; Kawada, M.; Yakura, R.; Kiyonari, H.; Nakao, K.; et al. Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature 2011, 470, 503–509. [Google Scholar] [CrossRef] [PubMed]
  172. Birkhoff, J.C.; Korporaal, A.L.; Brouwer, R.W.W.; Nowosad, K.; Milazzo, C.; Mouratidou, L.; van den Hout, M.; van Ijcken, W.F.J.; Huylebroeck, D.; Conidi, A. Zeb2 DNA-Binding Sites in Neuroprogenitor Cells Reveal Autoregulation and Affirm Neurodevelopmental Defects, Including in Mowat-Wilson Syndrome. Genes 2023, 14, 629. [Google Scholar] [CrossRef] [PubMed]
  173. Jeon, K.; Kumar, D.; Conway, A.E.; Park, K.; Jothi, R.; Jetten, A.M. GLIS3 Transcriptionally Activates WNT Genes to Promote Differentiation of Human Embryonic Stem Cells into Posterior Neural Progenitors. Stem Cells 2019, 37, 202–215. [Google Scholar] [CrossRef]
  174. Shimizu, T.; Nakazawa, M.; Kani, S.; Bae, Y.K.; Shimizu, T.; Kageyama, R.; Hibi, M. Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain. Development 2010, 137, 1875–1885. [Google Scholar] [CrossRef]
  175. Bai, M.; Li, G.; Jiapaer, Z.; Guo, X.; Xi, J.; Wang, G.; Ye, D.; Chen, W.; Duan, B.; Kang, J. Linc1548 Promotes the Transition of Epiblast Stem Cells Into Neural Progenitors by Engaging OCT6 and SOX2. Stem Cells 2022, 40, 22–34. [Google Scholar] [CrossRef]
  176. Hashemi, M.S.; Esfahani, A.K.; Peymani, M.; Nejati, A.S.; Ghaedi, K.; Nasr-Esfahani, M.H.; Baharvand, H. Zinc finger protein 521 overexpression increased transcript levels of Fndc5 in mouse embryonic stem cells. J. Biosci. 2016, 41, 69–76. [Google Scholar] [CrossRef]
  177. Kumar, A.; Declercq, J.; Eggermont, K.; Agirre, X.; Prosper, F.; Verfaillie, C.M. Zic3 induces conversion of human fibroblasts to stable neural progenitor-like cells. J. Mol. Cell Biol. 2012, 4, 252–255. [Google Scholar] [CrossRef]
  178. Shen, S.; Pu, J.; Lang, B.; McCaig, C.D. A zinc finger protein Zfp521 directs neural differentiation and beyond. Stem Cell Res. Ther. 2011, 2, 20. [Google Scholar] [CrossRef] [PubMed]
  179. Correa, D.; Hesse, E.; Seriwatanachai, D.; Kiviranta, R.; Saito, H.; Yamana, K.; Neff, L.; Atfi, A.; Coillard, L.; Sitara, D.; et al. Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes. Dev. Cell 2010, 19, 533–546. [Google Scholar] [CrossRef]
  180. Wu, M.; Hesse, E.; Morvan, F.; Zhang, J.-P.; Correa, D.; Rowe, G.C.; Kiviranta, R.; Neff, L.; Philbrick, W.M.; Horne, W.C.; et al. Zfp521 antagonizes Runx2, delays osteoblast differentiation in vitro, and promotes bone formation in vivo. Bone 2009, 44, 528–536. [Google Scholar] [CrossRef]
  181. Pedrosa, E.; Sandler, V.; Shah, A.; Carroll, R.; Chang, C.; Rockowitz, S.; Guo, X.; Zheng, D.; Lachman, H.M. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J. Neurogenet. 2011, 25, 88–103. [Google Scholar] [CrossRef] [PubMed]
  182. Deans, P.J.M.; Raval, P.; Sellers, K.J.; Gatford, N.J.F.; Halai, S.; Duarte, R.R.R.; Shum, C.; Warre-Cornish, K.; Kaplun, V.E.; Cocks, G.; et al. Psychosis Risk Candidate ZNF804A Localizes to Synapses and Regulates Neurite Formation and Dendritic Spine Structure. Biol. Psychiatry 2017, 82, 49–61. [Google Scholar] [CrossRef]
  183. Chen, J.; Lin, M.; Hrabovsky, A.; Pedrosa, E.; Dean, J.; Jain, S.; Zheng, D.; Lachman, H.M. ZNF804A Transcriptional Networks in Differentiating Neurons Derived from Induced Pluripotent Stem Cells of Human Origin. PLoS ONE 2015, 10, e0124597. [Google Scholar] [CrossRef]
  184. Park, S.J.; Kwon, W.; Park, S.; Jeong, J.; Kim, D.; Jang, S.; Kim, S.Y.; Sung, Y.; Kim, M.O.; Choi, S.K.; et al. Jazf1 acts as a regulator of insulin-producing β-cell differentiation in induced pluripotent stem cells and glucose homeostasis in mice. FEBS J. 2021, 288, 4412–4427. [Google Scholar] [CrossRef] [PubMed]
  185. Mattis, K.K.; Krentz, N.A.J.; Metzendorf, C.; Abaitua, F.; Spigelman, A.F.; Sun, H.; Ikle, J.M.; Thaman, S.; Rottner, A.K.; Bautista, A.; et al. Loss of RREB1 in pancreatic beta cells reduces cellular insulin content and affects endocrine cell gene expression. Diabetologia 2023, 66, 674–694. [Google Scholar] [CrossRef] [PubMed]
  186. Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
  187. Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
  188. Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318, 1917–1920. [Google Scholar] [CrossRef]
  189. Buganim, Y.; Faddah, D.A.; Jaenisch, R. Mechanisms and models of somatic cell reprogramming. Nat. Rev. Genet. 2013, 14, 427–439. [Google Scholar] [CrossRef]
  190. Theunissen, T.W.; Jaenisch, R. Molecular control of induced pluripotency. Cell Stem Cell 2014, 14, 720–734. [Google Scholar] [CrossRef]
  191. Takahashi, K.; Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 2016, 17, 183–193. [Google Scholar] [CrossRef] [PubMed]
  192. Jiang, J.; Lv, W.; Ye, X.; Wang, L.; Zhang, M.; Yang, H.; Okuka, M.; Zhou, C.; Zhang, X.; Liu, L.; et al. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Res. 2013, 23, 92–106. [Google Scholar] [CrossRef] [PubMed]
  193. Kwon, Y.-W.; Paek, J.-S.; Cho, H.-J.; Lee, C.-S.; Lee, H.-J.; Park, I.-H.; Roh, T.-Y.; Kang, C.-M.; Yang, H.-M.; Park, Y.-B.; et al. Role of Zscan4 in secondary murine iPSC derivation mediated by protein extracts of ESC or iPSC. Biomaterials 2015, 59, 102–115. [Google Scholar] [CrossRef]
  194. Cheng, Z.-L.; Zhang, M.-L.; Lin, H.-P.; Gao, C.; Song, J.-B.; Zheng, Z.; Li, L.; Zhang, Y.; Shen, X.; Zhang, H.; et al. The Zscan4-Tet2 Transcription Nexus Regulates Metabolic Rewiring and Enhances Proteostasis to Promote Reprogramming. Cell Rep. 2020, 32, 107877. [Google Scholar] [CrossRef] [PubMed]
  195. Declercq, J.; Sheshadri, P.; Verfaillie, C.M.; Kumar, A. Zic3 enhances the generation of mouse induced pluripotent stem cells. Stem Cells Dev. 2013, 22, 2017–2025. [Google Scholar] [CrossRef]
  196. Ma, H.; Ng, H.M.; Teh, X.; Li, H.; Lee, Y.H.; Chong, Y.M.; Loh, Y.H.; Collins, J.J.; Feng, B.; Yang, H.; et al. Zfp322a Regulates mouse ES cell pluripotency and enhances reprogramming efficiency. PLoS Genet. 2014, 10, e1004038. [Google Scholar] [CrossRef]
  197. Fischedick, G.; Klein, D.C.; Wu, G.M.; Esch, D.; Höing, S.; Han, D.W.; Reinhardt, P.; Hergarten, K.; Tapia, N.; Schöler, H.R.; et al. Zfp296 Is a Novel, Pluripotent-Specific Reprogramming Factor. PLoS ONE 2012, 7, e0034645. [Google Scholar] [CrossRef]
  198. Lee, S.-Y.; Noh, H.B.; Kim, H.-T.; Lee, K.-I.; Hwang, D.-Y. Glis family proteins are differentially implicated in the cellular reprogramming of human somatic cells. Oncotarget 2017, 8, 77041–77049. [Google Scholar] [CrossRef] [PubMed]
  199. Yasuoka, Y.; Matsumoto, M.; Yagi, K.; Okazaki, Y. Evolutionary History of GLIS Genes Illuminates Their Roles in Cell Reprograming and Ciliogenesis. Mol. Biol. Evol. 2020, 37, 100–109. [Google Scholar] [CrossRef]
  200. Yoshioka, N.; Gros, E.; Li, H.-R.; Kumar, S.; Deacon, D.C.; Maron, C.; Muotri, A.R.; Chi, N.C.; Fu, X.-D.; Yu, B.D.; et al. Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell 2013, 13, 246–254. [Google Scholar] [CrossRef]
  201. Maekawa, M.; Yamaguchi, K.; Nakamura, T.; Shibukawa, R.; Kodanaka, I.; Ichisaka, T.; Kawamura, Y.; Mochizuki, H.; Goshima, N.; Yamanaka, S. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 2011, 474, 225–229. [Google Scholar] [CrossRef] [PubMed]
  202. Li, L.; Chen, K.; Wang, T.; Wu, Y.; Xing, G.; Chen, M.; Hao, Z.; Zhang, C.; Zhang, J.; Ma, B.; et al. Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade. Nat. Metab. 2020, 2, 882–892. [Google Scholar] [CrossRef] [PubMed]
  203. Maekawa, M.; Yamanaka, S. Glis1, a unique pro-reprogramming factor, may facilitate clinical applications of iPSC technology. Cell Cycle (Georget. Tex.) 2011, 10, 3613–3614. [Google Scholar] [CrossRef]
  204. Wang, B.; Wu, L.; Li, D.; Liu, Y.; Guo, J.; Li, C.; Yao, Y.; Wang, Y.; Zhao, G.; Wang, X.; et al. Induction of Pluripotent Stem Cells from Mouse Embryonic Fibroblasts by Jdp2-Jhdm1b-Mkk6-Glis1-Nanog-Essrb-Sall4. Cell Rep. 2019, 27, 3473–3485. [Google Scholar] [CrossRef]
  205. Kwon, Y.W.; Ahn, H.S.; Park, J.Y.; Yang, H.M.; Cho, H.J.; Kim, H.S. Imprinted gene Zinc finger protein 127 is a novel regulator of master pluripotency transcription factor, Oct4. BMB Rep. 2018, 51, 242–248. [Google Scholar] [CrossRef]
  206. Wei, J.; Antony, J.; Meng, F.; MacLean, P.; Rhind, R.; Laible, G.; Oback, B. KDM4B-mediated reduction of H3K9me3 and H3K36me3 levels improves somatic cell reprogramming into pluripotency. Sci. Rep. 2017, 7, 7514. [Google Scholar] [CrossRef] [PubMed]
  207. Zorzan, I.; Pellegrini, M.; Arboit, M.; Incarnato, D.; Maldotti, M.; Forcato, M.; Tagliazucchi, G.M.; Carbognin, E.; Montagner, M.; Oliviero, S.; et al. The transcriptional regulator ZNF398 mediates pluripotency and epithelial character downstream of TGF-beta in human PSCs. Nat. Commun. 2020, 11, 2364. [Google Scholar] [CrossRef]
  208. Kaemena, D.F.; Yoshihara, M.; Beniazza, M.; Ashmore, J.; Zhao, S.; Bertenstam, M.; Olariu, V.; Katayama, S.; Okita, K.; Tomlinson, S.R.; et al. B1 SINE-binding ZFP266 impedes mouse iPSC generation through suppression of chromatin opening mediated by reprogramming factors. Nat. Commun. 2023, 14, 488. [Google Scholar] [CrossRef]
  209. Faiola, F.; Yin, N.; Fidalgo, M.; Huang, X.; Saunders, A.; Ding, J.; Guallar, D.; Dang, B.; Wang, J. NAC1 Regulates Somatic Cell Reprogramming by Controlling Zeb1 and E-cadherin Expression. Stem Cell Rep. 2017, 9, 913–926. [Google Scholar] [CrossRef]
  210. An, J.; Zheng, Y.; Dann, C.T. Mesenchymal to Epithelial Transition Mediated by CDH1 Promotes Spontaneous Reprogramming of Male Germline Stem Cells to Pluripotency. Stem Cell Rep. 2017, 8, 446–459. [Google Scholar] [CrossRef]
  211. Zhang, Y.; He, Y.; Wu, P.; Hu, S.; Zhang, Y.; Chen, C. miR-200c-141 Enhances Sheep Kidney Cell Reprogramming into Pluripotent Cells by Targeting ZEB1. Int. J. Stem Cells 2021, 14, 423–433. [Google Scholar] [CrossRef] [PubMed]
  212. Barington, M.; Bak, M.; Kjartansdóttir, K.R.; Hansen, T.v.O.; Birkedal, U.; Østergaard, E.; Hove, H.B. Novel Alu insertion in the ZEB2 gene causing Mowat-Wilson syndrome. Am. J. Med. genetics. Part A 2024, 194, e63581. [Google Scholar] [CrossRef]
  213. Treccarichi, S.; Vinci, M.; Musumeci, A.; Rando, R.G.; Papa, C.; Saccone, S.; Federico, C.; Failla, P.; Ruggieri, M.; Calì, F.; et al. Investigating the Role of the Zinc Finger Protein ZC2HC1C on Autism Spectrum Disorder Susceptibility. Medicina 2025, 61, 574. [Google Scholar] [CrossRef]
  214. Laugwitz, L.; Cheng, F.; Collins, S.C.; Hustinx, A.; Navarro, N.; Welsch, S.; Cox, H.; Hsieh, T.-C.; Vijayananth, A.; Buchert, R.; et al. ZSCAN10 deficiency causes a neurodevelopmental disorder with characteristic oto-facial malformations. Brain A J. Neurol. 2024, 147, 2471–2482. [Google Scholar] [CrossRef] [PubMed]
  215. Dai, D.; Gu, S.; Han, X.; Ding, H.; Jiang, Y.; Zhang, X.; Yao, C.; Hong, S.; Zhang, J.; Shen, Y.; et al. The transcription factor ZEB2 drives the formation of age-associated B cells. Science 2024, 383, 413–421. [Google Scholar] [CrossRef] [PubMed]
  216. Fattah, S.A.; Abdel Fattah, M.A.; Mesbah, N.M.; Saleh, S.M.; Abo-Elmatty, D.M.; Mehanna, E.T. The expression of zinc finger 804a (ZNF804a) and cyclin-dependent kinase 1 (CDK1) genes is related to the pathogenesis of rheumatoid arthritis. Arch. Physiol. Biochem. 2022, 128, 688–693. [Google Scholar] [CrossRef]
  217. Zhao, G.-F.; Huang, L.-B. Zinc finger E-box binding homebox 2 alleviated experimental osteoarthritis in rats. Connect. Tissue Res. 2023, 64, 323–336. [Google Scholar] [CrossRef]
  218. Hu, J.-Q.; Zheng, D.-C.; Huang, L.; Yang, X.; Ning, C.-Q.; Zhou, J.; Yu, L.-L.; Zhou, H.; Xie, Y. Suppression of ZEB1 by Ethyl caffeate attenuates renal fibrosis via switching glycolytic reprogramming. Pharmacol. Res. 2024, 209, 107407. [Google Scholar] [CrossRef]
  219. Zhang, Y.; Tang, X.; Wang, C.; Wang, M.; Li, M.; Li, X.; Yao, L.; Xu, Y. Zinc finger protein 593 promotes breast cancer development by ensuring DNA damage repair and cell-cycle progression. iScience 2024, 27, 111513. [Google Scholar] [CrossRef]
  220. Xie, C.; Zhou, X.; Wu, J.; Chen, W.; Ren, D.; Zhong, C.; Meng, Z.; Shi, Y.; Zhu, J. ZNF652 exerts a tumor suppressor role in lung cancer by transcriptionally downregulating cyclin D3. Cell Death Dis. 2024, 15, 792. [Google Scholar] [CrossRef]
  221. Wei, X.; Liu, J.; Cheng, J.; Cai, W.; Xie, W.; Wang, K.; Lin, L.; Hou, J.; Cai, J.; Zhuo, H. Super-enhancer-driven ZFP36L1 promotes PD-L1 expression in infiltrative gastric cancer. eLife 2024, 13, RP96445. [Google Scholar] [CrossRef] [PubMed]
  222. Zhen, J.; Ke, Y.; Pan, J.; Zhou, M.; Zeng, H.; Song, G.; Yu, Z.; Fu, B.; Liu, Y.; Huang, D.; et al. ZNF320 is a hypomethylated prognostic biomarker involved in immune infiltration of hepatocellular carcinoma and associated with cell cycle. Aging 2022, 14, 8411–8436. [Google Scholar] [CrossRef] [PubMed]
  223. Wen, T.; Zhang, X.; Gao, Y.; Tian, H.; Fan, L.; Yang, P. SOX4-BMI1 axis promotes non-small cell lung cancer progression and facilitates angiogenesis by suppressing ZNF24. Cell Death Dis. 2024, 15, 698. [Google Scholar] [CrossRef]
  224. Zhang, J.; Chen, C.; Geng, Q.; Li, H.; Wu, M.; Chan, B.; Wang, S.; Sheng, W. ZNF263 cooperates with ZNF31 to promote the drug resistance and EMT of pancreatic cancer through transactivating RNF126. J. Cell. Physiol. 2024, 239, e31259. [Google Scholar] [CrossRef] [PubMed]
  225. He, Z.; Zhong, Y.; Hu, H.; Li, F. ZFP64 Promotes Gallbladder Cancer Progression through Recruiting HDAC1 to Activate NOTCH1 Signaling Pathway. Cancers 2023, 15, 4508. [Google Scholar] [CrossRef]
  226. Zhang, H.; Han, B.; Tian, S.; Gong, Y.; Liu, L. ZNF740 facilitates the malignant progression of hepatocellular carcinoma via the METTL3/HIF-1A signaling axis. Int. J. Oncol. 2024, 65, 105. [Google Scholar] [CrossRef]
  227. Zhang, L.; Wang, J.; Gui, F.; Peng, F.; Deng, W.; Zhu, Q. METTL3-mediated m6A modification of ZNF384 promotes hepatocellular carcinoma progression by transcriptionally activating ACSM1. Clin. Transl. Oncol. 2025, 27, 2256–2268. [Google Scholar] [CrossRef]
  228. Fan, M.; Liu, Q.; Ma, X.; Jiang, Y.; Wang, Y.; Jia, S.; Nie, Y.; Deng, R.; Zhou, P.; Zhang, S.; et al. ZNF131-BACH1 transcriptionally accelerates RAD51-dependent homologous recombination repair and therapy-resistance of non-small-lung cancer cells by preventing their degradation from CUL3. Theranostics 2024, 14, 7241–7264. [Google Scholar] [CrossRef]
  229. Ma, X.; Jiang, Y.; Zhao, H.; Qiu, Y.; Liu, Z.; Zhang, X.; Fan, M.; Zhang, Y.; Zhang, Y. ZNF480 Accelerates Chemotherapy Resistance in Breast Cancer by Competing With TRIM28 and Stabilizing LSD1 to Upregulate the AKT-GSK3β-Snail Pathway. Mol. Carcinog. 2025, 64, 192–208. [Google Scholar] [CrossRef]
  230. Zhang, K.; Guo, L.; Li, X.; Hu, Y.; Luo, N. Cancer-associated fibroblasts promote doxorubicin resistance in triple-negative breast cancer through enhancing ZFP64 histone lactylation to regulate ferroptosis. J. Transl. Med. 2025, 23, 247. [Google Scholar] [CrossRef]
  231. Wang, Z.; Chen, X.; Zhou, L.; Zhao, X.; Ge, C.; Zhao, F.; Xie, H.; Chen, T.; Tian, H.; Li, H.; et al. FBXO9 Mediates the Cancer-Promoting Effects of ZNF143 by Degrading FBXW7 and Facilitates Drug Resistance in Hepatocellular Carcinoma. Front. Oncol. 2022, 12, 930220. [Google Scholar] [CrossRef] [PubMed]
  232. Du, Y.; Chen, Y.; Yan, Z.; Yang, J.; Da, M. Zinc finger protein 263 promotes colorectal cancer cell progression by activating STAT3 and enhancing chemoradiotherapy resistance. Sci. Rep. 2024, 14, 21827. [Google Scholar] [CrossRef] [PubMed]
  233. Zhu, M.; Zhang, P.; Yu, S.; Tang, C.; Wang, Y.; Shen, Z.; Chen, W.; Liu, T.; Cui, Y. Targeting ZFP64/GAL-1 axis promotes therapeutic effect of nab-paclitaxel and reverses immunosuppressive microenvironment in gastric cancer. J. Exp. Clin. Cancer Res. CR 2022, 41, 14. [Google Scholar] [CrossRef] [PubMed]
  234. Zhu, W.; Sun, J.; Jing, F.; Xing, Y.; Luan, M.; Feng, Z.; Ma, X.; Wang, Y.; Jia, Y. GLI2 inhibits cisplatin sensitivity in gastric cancer through DEC1/ZEB1 mediated EMT. Cell Death Dis. 2025, 16, 204. [Google Scholar] [CrossRef]
  235. Yamanaka, S. Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges. Cell Stem Cell 2020, 27, 523–531. [Google Scholar] [CrossRef]
  236. Moreno, A.M.; Alemán, F.; Catroli, G.F.; Hunt, M.; Hu, M.; Dailamy, A.; Pla, A.; Woller, S.A.; Palmer, N.; Parekh, U.; et al. Long-lasting analgesia via targeted in situ repression of NaV1.7 in mice. Sci. Transl. Med. 2021, 13, eaay9056. [Google Scholar] [CrossRef]
Figure 1. An overview of the roles of ZFPs in transcriptional regulatory networks. ZFPs collaborate with key transcription factors (TFs) of the core transcriptional network, acting as either transcriptional activators or suppressors, thus regulating the self-renewal capacity of PSCs or triggering the exit of pluripotency and PSC differentiation.
Figure 1. An overview of the roles of ZFPs in transcriptional regulatory networks. ZFPs collaborate with key transcription factors (TFs) of the core transcriptional network, acting as either transcriptional activators or suppressors, thus regulating the self-renewal capacity of PSCs or triggering the exit of pluripotency and PSC differentiation.
Ijms 26 05106 g001
Figure 2. (A): ZFPs inhibit or promote gene transcription by recruiting different chromosome modifiers and interacting with different partner proteins. (B): ZFPs control the molecular function of m6A deposition in ESCs.
Figure 2. (A): ZFPs inhibit or promote gene transcription by recruiting different chromosome modifiers and interacting with different partner proteins. (B): ZFPs control the molecular function of m6A deposition in ESCs.
Ijms 26 05106 g002
Figure 3. ZFPs are involved in ES cell signaling pathways to affect the pluripotency regulatory network.
Figure 3. ZFPs are involved in ES cell signaling pathways to affect the pluripotency regulatory network.
Ijms 26 05106 g003
Figure 4. ZFPs play regulatory roles in differentiation of PSCs.
Figure 4. ZFPs play regulatory roles in differentiation of PSCs.
Ijms 26 05106 g004
Figure 5. The regulatory role of ZFPs in reprogramming.
Figure 5. The regulatory role of ZFPs in reprogramming.
Ijms 26 05106 g005
Table 1. Summary of pluripotency-associated zinc finger proteins.
Table 1. Summary of pluripotency-associated zinc finger proteins.
NameAliasesRoleSpeciesTarget GenesMechanismReferences
Zfp281Znf281(mouse)
ZBP-99 (human)
mESCMouseNanog
Nanog
Regulate pluripotency by activation and repression of target genes[7,8]
Patz18430401L15Rik, Mazr, Patz, Zfp278 (mouse)
MAZR, PATZ, RIAZ, ZBTB19, ZNF278, ZSG, dJ400N23 (human)
mESCMouseOct4, NanogMaintain pluripotency[12]
Zfp5532600009K23Rik, C330013F15Rik, Znf48 (mouse)mESCMouseOct4, NanogMaintain pluripotency[13]
Zfp143D7Ertd805e, KRAB14, SBF, Staf, Zfp79, Zfp80-rs1, Znf143, pHZ-1 (mouse)mESCMouseOct4, NanogMaintain pluripotency[14]
Sall45730441M18Rik, C330011P20Rik, Tex20 (mouse)
DRRS, HSAL4, IVIC, ZNF797 (human)
mESCMouseOct4, Nanog, Sox2Maintain pluripotency[28,29,30]
Zfp8194930427I11Rik, 4933405K07Rik (mouse)mESCMouseOct4, Nanog, Sox2Downregulation of pluripotency marker genes[59]
Zscan10Zfp206, Zkscan10, Znf206 (mouse)
OFNS, ZFP206, ZNF206 (human)
mESCMouseOct4, Nanog, Sox21, Pluripotency factor
2, No impact on self-renewal
[104,105,106,125]
klf2Lklf (mouse)
LKLF (human)
mESCMouseNanogSustain self-renewal[107]
klf4EZF, Gklf, Zie (mouse)
EZF, GKLF (human)
mESC
hESC
Mouse
Human
NanogSustain self-renewal[107,108]
Klf54930520J07Rik, Bteb2, CKLF, IKLF (mouse)
BTEB2, CKLF, IKLF (human)
mESCMouseNanogSustain self-renewal[109,110]
Sp5-mESCMouseNanogSustain self-renewal[111]
Zfp57G19, Zfp-57 (mouse)
C6orf40, TNDM1, ZNF698, bA145L22, bA145L22.2 (human)
mESCMouseNanogDownstream target of Nanog[112]
ZNF2078430401D15Rik, BuGZ, Zep, Znf207 (mouse)
BuGZ, hBuGZ (human)
hESCHumanOCT4Required for self-renewal and pluripotency [113]
Zic3Bn, Ka (mouse)
HTX, HTX1, VACTERLX, ZNF203 (human)
mESCMouseOct4, Nanog, Sox2Maintain pluripotency[114,115]
Sall1Msal-3 (mouse)
HEL-S-89, HSAL1, Sal-1, TBS, ZNF794 (human)
mESCMouseNanog, Sox2Regulate pluripotency[116]
Zfp4626030417H05, 9430078C22Rik, Gt4-2, Zfpip, Znf462 (mouse)
WSKA, ZFPIP, Zfp462 (human)
P19 MouseOct4, Nanog, Sox2Maintain pluripotency[117,118]
Zscan4cGm397, XM_142517, Zscan4d (mouse)mESCMouse-Regulator of pluripotency [119]
YY2ZNF631 (human)mESCMouseZscan4
Oct4
Required for self-renewal[120,130]
ZFXZfx55,6, Zfx6, Zfx (mouse)
MRXS37, ZNF926 (human)
mESC hESCMouse
Human
Tbx3, Tcl1Promote self-renewal[121,122]
Zfp42Rex-1, Rex1, Zfp-42 (mouse)
REX-1, REX1, ZNF754, zfp-42 (human)
mESC hESCF9Mouse
Human
-Pluripotency marker[123,124,127,128,129]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Qian, Y.; Wu, Q. The Multifaceted Roles of Zinc Finger Proteins in Pluripotency and Reprogramming. Int. J. Mol. Sci. 2025, 26, 5106. https://doi.org/10.3390/ijms26115106

AMA Style

Qian Y, Wu Q. The Multifaceted Roles of Zinc Finger Proteins in Pluripotency and Reprogramming. International Journal of Molecular Sciences. 2025; 26(11):5106. https://doi.org/10.3390/ijms26115106

Chicago/Turabian Style

Qian, Yiwei, and Qiang Wu. 2025. "The Multifaceted Roles of Zinc Finger Proteins in Pluripotency and Reprogramming" International Journal of Molecular Sciences 26, no. 11: 5106. https://doi.org/10.3390/ijms26115106

APA Style

Qian, Y., & Wu, Q. (2025). The Multifaceted Roles of Zinc Finger Proteins in Pluripotency and Reprogramming. International Journal of Molecular Sciences, 26(11), 5106. https://doi.org/10.3390/ijms26115106

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop