Pro-Health Potential of Fruit Vinegars and Oxymels in Various Experimental Models
Abstract
:1. Introduction
2. Methodology for Literature Search
3. Phytochemical Characteristics of Fruit Vinegar and Oxymel
3.1. Fruit Vinegar
Phenolic Compounds and Organic Acids
Selected Chemical Ingredients | Fruit Vinegar | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pomagranate | Blackberry | Blueberry | Mulberry | Cherry | Apple | Plum | Kiwi | Grape | Persimmon | Pineapple | |
Amino acids | Aspartic acid, glutamic acid, serine, alanine, glycine, arginine, threonine, lysine, valine, isoleucine, methionine, leucine, phenylalanine, and GABA [48] | Aspartic acid, glutamic acid, serine, alanine, glycine, arginine, threonine, lysine, valine, isoleucine, methionine, leucine, phenylalanine, and GABA [48] | Aspartic acid, glutamic acid, serine, alanine, glycine, arginine, threonine, lysine, valine, isoleucine, methionine, leucine, phenylalanine, and GABA [48] | Aspartic acid, glutamic acid, serine, alanine, glycine, arginine, threonine, lysine, valine, isoleucine, methionine, leucine, phenylalanine, and GABA [48] | Aspartic acid, glutamic acid, serine, alanine, glycine, arginine, threonine, lysine, valine, isoleucine, methionine, leucine, phenylalanine, and GABA [48] | - | - | - | - | - | - |
Sugars | Fructose and glucose [48] | Fructose and glucose [48] | Fructose and glucose [48] | Fructose and glucose [48] | Fructose and glucose [48] | - | - | - | - | - | - |
Organic acid | Barbituric acid, shikimic acid, citric acid, succinic acid, and acetic acid [4] | Maleic acid, barbituric acid, shikimic acid, adipic acid, citric acid, succinic acid, lactic acid, acetic acid, and propionic acid [4] | Malonic acid, barbituric acid, quinic acid, shikimic acid, citric acid, tartaric acid, malic acid, succinic acid, lactic acid, and acetic acid [4] | - | Isobutyric acid, isovaleric acid, hexanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodacanoic acid, tetradecanoic acid, methyl acetate, ethyl acetate, ethyl propanoate, isobutyl acetate, isoamyl acetate, ethyl caproate, ethyl caprylate, ethyl decanoate, benzyl acetate, phenethyl acetate, ethanol, isobutyl alcohol, hexanol, nonanol, and benzyl alcohol [4,49] | Acetic acid, lactic acid, quinic acid, malonic acid, barbituric acid, oxalic acid-dihydrate, shikimic acid, adipic acid, oxalic acid, tartaric acid, propanedioic acid, malic acid, succinic acid, propionic acid, isobutyric acid, butryric acid, isovaleric acid, and citric acid [4,29,30,50] | Acetic acid, tartaric acid, and lactic acid [51] | Acetic acid, lactic acid, quinic acid, tartaric acid, propanedioic acid, malic acid, succinic acid, and citric acid [29] | Malonic acid, barbituric acid, shikimic acid, adipic acid, citric acid, tartaric acid, succinic acid, lactic acid, acetic acid, fumaric acid, and propionic acid [4] | - | Methyl ester, ethyl acetate, isobutyl acetate, iobutanol, acetoin, benzaldehyde, propanoic acid, butanoic acid, isobutyric acid, methylbutanoic acid, naphthalene, and phenylrthyl alcohol [52] |
Phenolic compounds | Gallic acid, galloylglucoside, protocatechuic acid, punicalagin, catechin, vanillic acid, syringic acid, ethyl acid, chlorogenic acid, caffeic acid, p-coumaric acid, ferulic acid, ferulic acid hexoside, tyrosol, and trans-p-coumaric derivate [53,54] | - | - | - | Gallic acid, chlorogenic acid, p-coumaric acid, caffeic acid, ferulic acid, catechin, protocatechuic acid, caftaric acid, furoic acid, protocatechualdehyde, tyrosol, catequin, vanillic acid, syringic acid, vanillin, syringaldehyde, coniferyl aldehyde, sinapaldehyde, and epicatechin [49,55] | Chlorogenic acid, 4-coumaroylqunic acid, isomer of chlorogenic acid, isomer of 4-coumaroylqunic acid, p-hydroxybenzoic acid, protocatechuic acid, gallic acid, vanillic acid, caffeic acid, p-coumaric acid, trans-ferulic acid, catechin, syringic acid, epicatechin, gallate, procyanidin B2, luteolin-3-O-rutinose; isorhamnetin-3-O-rutionse, isorhamnetin-3-O-glucoside, kaempferol-3-O-glucoside, quercetin-3-orhamnoside, quercetin, rutin, luteolin, apigenin, phloretin, phloridzin, and phloridzin [29,30,53,56,57,58] | Ellagic acid, caffeoylquainic acid derivatives, p-coumaric acid derivatives, cyjandidn 3-o-galactoside, cyjanidin 3-orobinobioside and pelargonidine 3-o-galactoside, pelargonidine 3-o-robinoside, aromadendrin 7-o-glucoside, quercetin 3-o-galactoside, quercetin 3-o-glucuronide, and kaempferol 3-o-galactoside [59] | Gallic acid, vanillic acid, caffeic acid, p-coumaric acid, trans-ferulic acid, epicatechin, gallate, chlorogenic acid, trans-ferulic cid, and phloridzin [29] | Gallic acid, p-hydroxybenzoic acid, catechin, epicatechin, caffeic acid, chlorogenic acid, syringic acid, p-coumaric acid, tyrosol, protocatechiuc acid, caftaric acid, coutaric acid, fertaric acid, vanilic acid, syringing acid, procyanidin B2, quercetin-3-O-galactoside, kaempferol-3-O-rutinoside, rutin isorhamnetib-3-O-glucoside, ferulic acid, and quercetin [41,42,57] | Gallic acid, catechin hydrate, chlorogenic acid, caffeic acid, p-coumaric acid, trans-ferulic acid, epicatechin gallate, and phloridzin [29] | Catechol, peonidin, catechin 3-O-gallate, m-coumaric acid, ferulic acid, mullein, genistein, 4-ethylcatechol, 6-prenylnaringenin, gallic acid, spinacetin, and malvidin 3-O-arabinoside [60] |
Mineral composition | - | - | - | - | K, Na, Ca, Zn, Mg, Fe, P, Ni, and Mg [61] | K, Na, Ca, Mg, Fe, P, Ni, Mn, and Zn [61,62] | - | - | - | - | - |
3.2. Oxymel
4. Biological Activity of Fruit Vinegars
4.1. Antihyperglycemic Effect
4.2. Antihyperlipidemic Effect
4.3. Antioxidative Effect
4.4. Anti-Inflammatory Effect
4.5. Other Biological Properties
5. Biological Activity of Oxymels
6. Conclusions
Funding
Conflicts of Interest
Abbreviations
References
- Guine, R.P.F.; Brroca, M.J.; Coldea, T.E.; Bartkiene, E.; Anjos, O. Apple fermented products: An overview of technology, properties and health effects. Processes 2021, 9, 223. [Google Scholar] [CrossRef]
- Ousaaid, D.; Mechchate, H.; Laaroussi, H.; Hano, C.; Bakour, M.; El Ghouizi, A.; Cnte, R.; Lyoussi, B.; El Arabi, I. Fruits vinegar: Quality characteristics, phytochemistry, and functionality. Molecules 2022, 27, 222. [Google Scholar] [CrossRef]
- Da Silva Monteiro Wanderley, B.R.; Ferreira, A.L.A.; Nunes, I.L.; de Mello Castanho Amboni, R.D.; de Sena Aquino, A.C.M.; Fritzen-Freire, C.B. The role of fruit vinegar in food science: Perspectives among consumers, the scientific community and patent holders. Biotechnol. Res. Innov. 2023, 7, e2023015. [Google Scholar]
- Yildiz, E. Characterization of fruit vinegars via bioactive and organic acid profile using chemometrics. Foods 2023, 12, 3769. [Google Scholar] [CrossRef] [PubMed]
- Kucukgoz, K.; Echave, J.; Garcia-Oliveira, P.; Seyyedi-Mansour, S.; Donn, P.; Xiao, J.; Trząskowska, M.; Prieto, M.A. Polyphenolic profile, processing impact, and bioaccessibility of apple fermented products. Crit. Rev. Food Sci. Nutr. 2023, 1, 1–15. [Google Scholar]
- Diez-Ozaeta, I.; Astiazaran, O.J. Recent advances in Kombucha tea: Microbial consortium, chemical parameters, health implications and biocellulose production. Inter. J. Food Microbiol. 2022, 377, 109783. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, T.; Sun, L.; Qiao, Z.; Pan, H.; Zhong, Y.; Zhuang, Y. Recent advances of fermented fruits: A review on strains, fermentation strategies, and functional activities. Food Chem. X 2024, 22, 101482. [Google Scholar] [CrossRef]
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.K.H.H.; Lim, S.J. Varieties, production, composition and health benefits of vinegars: A review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef]
- Luzon-Quintana, L.M.; Castro, R.; Duran-Guerrero, E. Biotechnological process in fruit vinegar production. Foods 2021, 10, 945. [Google Scholar] [CrossRef]
- Cavadaroglu, C.; Ozen, B. Autentication of vinegars with targeted and non-targeted methods. Food Rev. Inter. 2021, 1, 41–58. [Google Scholar]
- Ozturk, I.; Caliskan, O.; Tornuk, F.; Ozcan, N.; Yalcin, H.; Baslar, M.; Sagdic, O. Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT-Food Sci. Technol. 2015, 63, 144–151. [Google Scholar] [CrossRef]
- Chen, G.L.; Zheng, F.J.; Lin, B.; Yang, Y.X.; Fang, X.C.; Verma, K.K.; Yang, L.F. Vinegar: A potential source of healthy and functional food with special reference to sugarcane vinegar. Front. Nutr. 2023, 1, 1145862. [Google Scholar] [CrossRef] [PubMed]
- Gruszecki, R.; Kowalska, M.; Kaczmarczyk, M.; Pietrasik, D.; Walasek-Janusz, M. Fruit vinegars—Obtaining and health-promoting properties. Ann. Horticult. 2023, 32, 1–32. [Google Scholar]
- Khalifa, S.A.M.; El-Shabasy, R.M.; Tahir, H.E.; Abo-Atya, D.M.; Saeed, A.; Abolibda, T.Z.; Guo, Z.; Zou, X.; Du, D.Z.M.; Kai, G.; et al. Vinegar—A beneficial food additivie: Production, safety, possibilities, and applications from ancient to modern times. Food Fun. 2024, 15, 10262–10282. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Koysomboon, C.; Zhang, H.; Lu, Z.; Zhang, X.; Chen, F. Vinegar volatile organic compounds: Analytical methods, constituents, and formation process. Front. Microbiol. 2022, 1, 907883. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Zhang, M.; Wang, X.; Bai, X.; Yue, T.; Gao, Z. Cloudy apple juice fermented by lactobacillus prevents obesity via modulating gut microbiota and protecting intestinal tract health. Nutients 2021, 13, 971. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.A.; Park, G.G.; Jang, J.K.; Park, Y.S. Semi-continuous fermentation of onion vinegar and its functional properties. Molecules 2017, 22, 1313. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Ma, H.; Wali, A.; Ayim, I.; Rashid, M.T.; Younas, S. A double-blinded, randomized, placebo-controlled study evaluating the impact of dates vinegar consumption on blood biochemical and hematological parameters in patients with type 2 diabetes. Trop. J. Pharm. Res. 2019, 17, 2463–2469. [Google Scholar] [CrossRef]
- Ali, Z.; Ma, H.; Wali, A.; Ayim, I.; Sharif, M.N. Daily data vinegar consumption improves hyperlipidemia, β-carotenoid and inflammatory biomarkers in mildly hypercholesterolemic adults. J. Herb. Med. 2019, 1, 17–18. [Google Scholar]
- Ali, Z.; Li, J.; Zhang, Y.; Naeem, N.; Younas, S.; Javeed, F. Dates (Pheonix dactyliflora) and date vinegar: Preventive role against various diseases and related in vivo mechanism. Food Rev. Inter. 2022, 38, 480–507. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, Y.; Lan, Y.; Li, X.; Luo, L.; Duan, X.; Lei, M.; Liu, G.; Yang, Z.; Mai, X.; et al. Dietary vinegar prevents kidney stone recurrence via epigenetic regulations. EBioMed 2019, 45, 231–250. [Google Scholar] [CrossRef] [PubMed]
- Erdal, B.; Akalin, R.B.; Yilmaz, B.; Bozgeyik, E.; Yikmis, S. Application of ultrasound to the organic cornelian cherry (Cornus mas L.) vinegar: Changes in antibacterial, antidiabetic, antihypertensive, and anticancer activities. J. Food Proc. Prev. 2022, 46, e16952. [Google Scholar]
- Tang, M.; Wang, Z.; Luo, J.; Zhu, T.; Song, F.; Chen, H. Preparation, chemical profile, antioxidative activities, and angiotensin-converting enzyme 2 inhibitory effect of data fruit vinegar. J. Food Sci. 2024, 89, 684–700. [Google Scholar] [CrossRef]
- Wu, Q.; Kong, Y.; Liang, Y.; Niu, M.; Feng, N.; Zhang, C.; Qi, Y.; Guo, Z.; Xiao, J.; Zhou, M.; et al. Protective mechanism of fruit vinegar polyphenols against AGEs-induced Caco-2 cell damage. Food Chem. X 2023, 19, 100736. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Zhang, B.; Duan, W.; Zhang, J.; Wang, M. Nutrients and bioactive components from vinegar: A fermented and functional food. J. Funct. Foods 2020, 64, 103681. [Google Scholar] [CrossRef]
- Xia, T.; Kang, C.; Qiang, X.; Zhang, X.; Li, S.; Liang, K.; Wang, Y.; Wang, J.; Cao, H.; Wang, M. Beneficial effect of vinegar consumption associated with regulating gut microbiome and metabolome. Cur. Res. Food Sci. 2024, 8, 100566. [Google Scholar] [CrossRef]
- Darani, N.S.; Vaghasloo, M.A.; Kazemi, A.; Amri, H.; Rampp, T.; Hashempur, M.H. Oxymel: A systematic review of preclinical and clinical studies. Heliyon 2023, 9, e22649. [Google Scholar] [CrossRef] [PubMed]
- Ousaaid, D.; Ghouizi, A.E.; Laaroussi, H.; Bakour, M.; Mechchate, H.; Es-safi, I.; Al Kamaly, O.; Saleh, A.; Conte, R.; Lyoussi, B.; et al. Anti-anemic effect of antioxidant-rich apple vinegar against phenylhydrazine-induced hemolytic anemia in rats. Life 2022, 12, 239. [Google Scholar] [CrossRef]
- Ren, M.; Wang, X.; Tian, C.; Li, X.; Zhang, B.; Song, X.; Zhang, J. Characterization of organic acids and phenolic compounds of cereal vinegars and fruit vinegars in China. J. Food Proc. Preserv. 2017, 41, e12937. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, G.Y.; Zhao, C.N.; Gan, R.Y.; Li, H.B. Antioxidant activities, phenolic profiles, and organic acid content of fruit vinegars. Antioxidants 2019, 8, 78. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, M.K.; Yeo, S.H.; Kim, S. Short-term Cudrania tricuspidata fruit vinegar administration attenuates obesity in high-fat diet-fed mice by improving fat accumulation and metabolic parameters. Sci. Rep. 2020, 10, 21102. [Google Scholar] [CrossRef]
- Choi, J.H.; Park, S.E.; Yeo, S.H.; Kim, S. Anti-inflammatory and cytotoxicity effects of Cudrania tricuspidata fruits vinegar in a co-culture system with RAW264.7 macrophages and 3T3-L1 adipocytes. Food 2020, 9, 1232. [Google Scholar] [CrossRef]
- Zhu, D.; Ren, X.; Wei, L.; Cao, X.; Ge, Y.; Liu, H.; Li, J. Collaborative analysis on difference of apple fruits flavor using electronic nose and electronic tongue. Sci. Hortcult. 2020, 260, 108879. [Google Scholar] [CrossRef]
- Orozco-Flores, L.A.; Salas, E.; Rocha-Gutierrez, B.; Peralta-Pérez, M.D.R.; Gonzalez-Sanchez, G.; Ballinas-Casarrubias, L. Determination of polyphenolic profile of apple pomace (Malus domestica golden delicious variety) by HPLC-MS. ACS Omega 2024, 9, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Zhu, Y.; Wang, X.; Zhang, J.; Tian, C.; Liu, L.; Meng, Y.; Guo, Y. Phenolic composition of apple products and by-products based on cold pressing technology. J. Food Sci. Technol. 2019, 56, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Uram-Dudek, A.; Wajs, I.; Paradowska, K. The analysis of antioxidant properties of fermented active vinegar from fruits. Herbalism 2023, 1, 111. [Google Scholar] [CrossRef]
- Abdali, Y.E.; Saghrouchni, H.; Kara, M.; Mssillou, I.; Allali, A.; Bin Jardan, Y.A.; Kafkas, N.E.; El-Assri, E.M.; Nafidi, H.A.; Bourhia, M.; et al. Exploring the bioactive compounds in some apple vinegar samples and their biological activities. Plants 2023, 12, 3850. [Google Scholar] [CrossRef]
- Melkis, K.; Jakubczyk, K. The chemical profiles and antioxidant properties of live fruit or vegetable vinegars available on the Polish food market. Foods 2024, 13, 1488. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, N.; Pashazadeh, H.; Zannou, O.; Koca, I. Phytochemical content, and antioxidant activity, and volatile compounds associated with the aromatic property of the vinegar produced from rosehip fruit (Rosa canina). LWT 2022, 154, 112716. [Google Scholar] [CrossRef]
- Suksamran, N.; Anantawat, V.; Wattanaarsakit, P.; Wei, C.; Rahman, A.; Majima, H.J.; Tangpong, J. Mangosteen vinegar from Garcinia mangostana: Quality improvement and antioxidant properties. Heliyon 2022, 8, e11943. [Google Scholar] [CrossRef]
- Budak, H.N.; Guzel-Seydim, Z.B. Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. J. Sci. Food Agric. 2010, 90, 2021–2026. [Google Scholar] [CrossRef] [PubMed]
- Budak, N.H.; Ozdemir, N.; Gokirmakl, C. The changes of physicochemical properties, antioxidants, organic, and key volatile compounds associated with the flavor of peach (Prunus cerasus L. Batsch) vinegar during the fermentation process. J. Food Biochem. 2022, 46, e13978. [Google Scholar] [CrossRef]
- Bakir, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Capanoglu, E. Fruit antioxidants during vinegar processing: Changes in content and in vitro bio-accessibility. Int. J. Mol. Sci. 2016, 17, 1658. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, C.; Esteban-Diez, I.; Saez-Gonzalez, C.; Gonzalez-Saiz, J.M. Vinegar classification based on feture extraction and selection from headspace solid-phase microextraction/gas chromatography volatile analyses: A feasibility study. Anal. Chim. Acta 2008, 608, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Neffe-Skocińska, K.; Wójtowicz, M.; Dabrowski, M.; Jaworska, D. Acetic acid bacteria as potential next-generation probiotics. Żywność Nauk Technol. Jakość 2020, 27, 15–27. [Google Scholar]
- Antoniewicz, J.; Janda-Milczerek, K. Grape vinegars–characteristics, properties and safety of use. Med. Ogólna Nauk. Zdrowiu 2021, 27, 379–386. [Google Scholar] [CrossRef]
- Antoniewicz, J.; Kochman, J.; Jakubczyk, K.; Janda-Milczarek, K. The influence of time and storage conditions on the antioxidant potential and total content in homemade grape vinegars. Molecular 2021, 26, 7616. [Google Scholar] [CrossRef]
- Kim, S.H.; Cho, H.K.; Shin, H.S. Physicochemical properties and antioxidant activities of commercial vinegar drinks in Korea. Food Sci. Biotech. 2012, 21, 1729–1734. [Google Scholar] [CrossRef]
- Ozen, M.; Ozdemir, N.; Filiz, B.E.; Budak, N.H.; Kok-Tas, T. Souir cherry (Prunus cerasus L.) vinegars produced from Fresh fruit or juice concentrate: Bioactive compounds, volatile aroma compounds and antioxidant capacities. Food Chem. 2020, 309, 125664. [Google Scholar] [CrossRef]
- Mateos-Aparico, I.; de la Pena, R.J.; Perez-Cozar, M.L.; Ruperez, P.; Redondo-Cuenca, A.; Villanueva-Suarez, M.J. Apple by-product dietary fibre exhibits potential prebiotic and hypolipidemic effectsin high-fat fed Wistar rats. Bioact. Carbohydr. Diet. Fibre 2020, 23, 1016. [Google Scholar]
- Liu, F.; He, Y. Application of successive projections algorithm for variable selection to determine organic acids of plum vinegar. Food Chem. 2009, 115, 1430–1436. [Google Scholar] [CrossRef]
- Tanamool, V.; Chantarangsee, M.; Soemphol, W. Simultaneous vinegar fermentation from a pineapple by-product using the co-inoculation of yeast and thermotolerant acetic acid bacteria and their physiochemical properties. 3 Biotech 2020, 10, 115. [Google Scholar] [CrossRef]
- Aykin, E.; Budak, N.H.; Guzel-Seydim, Z.B. Bioactive components of mother vinegar. J. Am. Coll. Nutr. 2015, 34, 80–89. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Gomez, J.; Lasanta, C.; Castro, R.; Sainz, R.; Hamdi, M. Benchmarking laboratory-sacle pomegranate vinegar against commercial wine vinegars: Antioxidant activity and chemical composition. J. Sci. Food Agric. 2018, 98, 4749–4758. [Google Scholar] [CrossRef]
- Jimenez-Sanchez, M.; Duran-Guerrero, E.; Rodriguez-Dodero, M.C.; Barroso, C.G.; Castro, R. Use of ultrasound at a pilot scale to accelerate the ageing of sherry vinegar. Ultrason. Sonochem. 2020, 69, 105244. [Google Scholar] [CrossRef]
- Nakamura, K.; Ogasawara, Y.; Endou, K.; Fujimori, S.; Koyama, M.; Akano, H. Phenolic compounds responsible for the superoxide dismutase-like activity in high-brix apple vinegar. J. Agric. Food Chem. 2010, 58, 10124–10132. [Google Scholar] [CrossRef]
- Kelebek, H.; Kadiroglu, P.; Demircan, N.B.; Selli, S. Screening of bioactive components in grape and apple vinegars: Antioxidant and antimicrobial potential. J. Inst. Brew. 2017, 123, 407–416. [Google Scholar] [CrossRef]
- Bortolini, D.G.; Benvenutti, L.; Demiate, I.M.; Nogueira, A.; Alberti, A.; Zielinski, A.A.F. A new approach to the use of apple pomace in cider making for the recovery of phenolic compounds. LWT 2020, 126, 109316. [Google Scholar] [CrossRef]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Piorecki, N. Bioactive compounds in cornelian cherry vinegars. Molecules 2018, 379, 379. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Lucini, L.; Torchion, F.; Dordoni, R.; De Faveri, D.M.; Lambri, M. Metabolite profiling and volatiles of pineapple wine and vinegar obtained from pineapple waste. Food Chem. 2017, 229, 734–742. [Google Scholar] [CrossRef]
- Ousaaid, D.; Laaroussi, H.; Bakour, M.; ElGhouzi, A.; Aboulghazi, A.; Lyoussi, B.; ElArabi, I. Beneficial effects of apple vinegar on hyperglycemia and hyperlipidemia in hypercaloric-fed rats. J. Diabetes 2020, 1, 9284987. [Google Scholar] [CrossRef] [PubMed]
- Akpinar-Bayzit, A.; Turan, M.A.; Yilmaz-Ersan, L.; Taban, N. Inductively coupled plasma optical-emission spectroscopy determination of major and minbor elements in vinegar. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 64–68. [Google Scholar]
- Abolghasemi, J.; Jahromi, M.A.F.; Sharifi, M.H.; Mazloom, Z.; Hosseini, L.; Zamani, N.; Nimrouzi, M. Effects of Zataria oxymel on obesity, insulin resistance and lipid profile: A randomized, controlled, triple-blind trial. J. Integr. Med. 2020, 18, 401–408. [Google Scholar] [CrossRef]
- Mitrou, P.; Petsiou, E.; Papakonstantinou, E.; Maratou, E.; Lamadiari, V.; Dimitriadis, P.; Spanoudi, F.; Rapis, S.A.; Dimitriadis, G. Vinegar consumption increases insulin-stimulated glucose uptake by the forearm muscle in human with type 2 diabetes. J. Diabetes Res. 2015, 1, 175204. [Google Scholar] [CrossRef]
- Bahesheti, Z.; Chan, Y.H.; Nia, H.S.; Hajihosseini, F.; Nazari, R.; Shaabani, M. Influence of apple cider vinegar on blood lipids. Life Sci. 2012, 9, 2431–2440. [Google Scholar]
- Park, J.E.; Kim, J.Y.; Kim, J.; Kim, Y.J.; Kim, M.J.; Kwon, S.W.; Kwon, O. Pomegranate vinegar beverage reduces visceral fat accumulation in association with AMPK activation in overweight women: A double-blind, randomized, and placebo-controlled trial. J. Funct. Foods 2014, 8, 274–281. [Google Scholar] [CrossRef]
- Beh, B.K.; Mohamad, N.E.; Yeap, S.K.; Ky, H.; Boo, S.Y.; Chua, J.Y.H.; Tan, S.W.; Ho, W.Y.; Sharifuddin, S.A.; Long, K. Anti-obesity and anti-inflammation effects of synthetic acetic acid vinegar and nipa vinegar on high-fat-diet-induced obese mice. Sci. Rep. 2017, 7, 6664. [Google Scholar] [CrossRef]
- Bouazza, A.; Bitam, A.; Amiali, M.; Bounihi, A.; Yargui, L.; Koceir, E.A. Effect of fruit vinegars on liver damage and oxidative stress in high-fat-fed rats. Pharm. Biol. 2016, 54, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Halima, B.H.; Sonia, G.; Sarra, K.; Houda, B.J.; Fethi, B.S.; Abdallah, A. Apple cider vinegar attenuates oxidative stress and reduces the risk of obesity in high-fat-fed male Wistar rats. J. Med. Food 2018, 21, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Wakuda, T.; Azuma, K.; Saimoto, H.; Ifuku, S.; Morimoto, M.; Arifuku, I.; Asaka, M.; Tsuka, T.; Imagawa, T.; Okamoto, Y. Protective effects of galacturonic acid-rich vinegar brewed from Japanese pear in a dextran sodium sulfate-induced acute colitis model. J. Funct. Foods 2013, 5, 516–523. [Google Scholar] [CrossRef]
- Golzarand, M.; Ebrahimi-Mamaghani, M.; Arefhosseini, S.R.; Asgarzadeh, A.A. Effect of processed Berberis vulgairs in apple vinegar on blood pressure and inflammatory markers in type 2 diabetic patients. Iran. J. Diabetes Metab. Disord. 2008, 7, 15–20. [Google Scholar]
- Ousaaid, D.; Bakour, M.; Laaroussi, H.; ElGhouizi, A.; Lysussi, B.; ElArabi, I. Fruit vinegar as a promising source of natural anti-inflammatory agents: An up-to-date review. DARU J. Pharm. Sci. 2023, 1, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Seyidoglu, N.; Karakci, D.; Bakir, B.; Yikmis, S. Hawthorn vinegar in health with a Focus on immune responses. Nutrients 2024, 16, 1868. [Google Scholar] [CrossRef] [PubMed]
- Elango, C.; Devaraj, S. Immunomodulatory effect of hawthorn extract in an experimental stroke model. J. Neuroinflamm. 2010, 7, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.W.; Yu, J.C.; Fu, M.F.; Wang, X.F.; Chang, X.D. Regulatory effects of hawthorn polyphenols on hyperglycemic, inflammatory, insulin resistance responses, and alleviation of aortic injury in type 2 diabetic rats. Food Res. Int. 2021, 142, 110239. [Google Scholar] [CrossRef] [PubMed]
- Na, L.; Chu, X.; Jiang, S.; Li, C.; Li, G.; He, Y.; Liu, Y.; Li, Y.; Sun, C. Vinegar decreases blood pressure by down-regulating AT1R expression via the AMPK/PGC-1α/PPARγ pathway in spontaneously hypertensive rats. Eur. J. Nutr. 2016, 55, 1245–1253. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, C.; Dong, L.; Huan, Y.; Yoshimoto, M.; Zhu, Y.; Tada, I.; Wang, X.; Zhao, S.; Zhang, F.; et al. Comprehensive metabolomics comparison of five cereal vinegars using non-targeted and chemical isotope labeling LC-MS analysis. Metabolites 2022, 12, 427. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Mazumder, P.M. Neuroprotective efficacy of apple cider vinegar on zinc-high fat diet-induced mono amino oxidase alteration in murine model of AD. J. Am. Coll. Nutr. 2021, 41, 658–667. [Google Scholar]
- Ousaaid, D.; Laaroussi, H.; Bakour, M.; Ennaji, H.; Lyoussi, B.; ElArabi, I. Antifungal and antibacterial activities of apple vinegar of different cultivars. Int. J. Microbiol. 2021, 1, 6087671. [Google Scholar] [CrossRef] [PubMed]
- Yagnik, D.; Ward, M.; Skah, A.J. Antibacterial apple cider vinegar eradicates methicillin resistant Staphylococcus aureus and resistant Escherichia coli. Sci. Rep. 2021, 11, 1854. [Google Scholar] [CrossRef] [PubMed]
- Elbarbary, N.K.; Abdelmotilib, N.M.; Salem-Bekhit, M.M.; Salem, M.M.; Singh, S.; Dandrawy, M.K. Antibacterial efficiency of apple vinegar margination on beef-borne Salmonella. Open Veter. J. 2024, 14, 274–283. [Google Scholar] [CrossRef]
- Mota, A.C.L.G.; de Castro, R.D.; de Araujo Oliveira, J.; de Oliveira Lima, E. Antifungal activity of apple cider vinegar on Candida species involved in denture stomatitis. J. Prosthodont. 2015, 24, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Lim, N.R.; Treister, A.D.; Tesic, V.; Lee, K.C.; Lio, P.A. A split body trial comparing dilute bleach vs. dilute apple cider vinegar compresses for atopic dermatitis in Chicago: A pilot study. J. Dermatol. Cosmetol. 2019, 3, 22–24. [Google Scholar]
- Luu, L.A.; Flowers, R.H.; Kellams, A.L.; Zeichner, S.; Preston, D.C.; Zlotoff, B.J.; Wisniewski, J.A. Apple cider vinegar soaks [0.5%] as a treatment for atopic dermatitis do not improve skin barrier integrity. Pediatr. Dermatol. 2019, 36, 634–639. [Google Scholar] [CrossRef]
- Luu, L.A.; Flowers, R.H.; Gao, Y.; Wu, M.; Gaserino, S.; Kellams, A.L.; Preston, D.C.; Zlotoff, B.J.; Wisniewski, J.A.; Zeichner, S.L. Apple cider vinegar soaks do not alter the skin bacterial microbiome in atopic dermatitis. PLoS ONE 2021, 16, e0252272. [Google Scholar] [CrossRef]
- Yim, E.J.; Jo, S.W.; Kang, H.J.; Park, S.K.; Yu, K.Y.; Jeong, D.Y.; Park, S. Protection against osteoporosis by fermented mulberry vinegar supplementation via inhibiting osteoclastic activity in overiectomized rats and osteoclastic cells. Fermentation 2022, 8, 211. [Google Scholar] [CrossRef]
- Bang, S.I.; Kim, H.Y.; Seo, W.T.; Lee, A.Y.; Cho, E.J. Mulberry vinegar attenuates lipopolysaccharide and interferon gamma-induced inflammatory responses in C6 glial cells. J. Food Biochem. 2022, 46, e14197. [Google Scholar] [CrossRef]
- Shams, F.; Aghajani-Nasab, M.; Ramzezanpour, M.; Fatideh, R.H.; Mohammadghasemi, F. Effect of apple vinegar on folliculogenesis and ovarian kisspeptin in a high-fat diet-induced nonalcoholic fatty liver disease in rat. BMC Endocr. Disord. 2022, 22, 330. [Google Scholar] [CrossRef]
- Lucia, E.; Lidya, K.; Annisa, T. Efficacy of honey vinegar in hyperlipidemic rats (Rattus norvegicus). In Unity in Diversity and Standardization of Clinical Pharmacy Services; CRC Press: Boca Raton, FL, USA, 2017; Volume 1, pp. 139–141. [Google Scholar]
- Faryabi, R.; Vaghaloo, M.A.; Athari, S.S.; Boskabady, M.H.; Zangii, B.M.; Kaveh, S.; Kabiri, M. Immunomodulatory effect of SINA 1.2 therapy protocol in asthmatic mice model: A combination of oxymel and sauna. Iran. J. Allergy Asthma Immunol. 2022, 1, 128–140. [Google Scholar] [CrossRef]
- Sarbaz Hoseini, Z.; Alizadeh Vaghasloo, M.; Ababzadeh, S.; Heidari, H.; Mohammadbeigi, A.; Khalaj, A.; Asghari, M. The effect of combination therapy (thermal therapy and oxymel) on insulin resistance and Langerhans islands in diabetic rats. IRCMJ 2019, 21, 90752. [Google Scholar] [CrossRef]
- Abolmaali, M.; Motevalian, M.; Mehrzadi, S.; Shojaii, A. Anticonvulsant effects of squill oxymel (a traditional formulation) in mice. Physiol. Pharm. 2022, 26, 1–6. [Google Scholar] [CrossRef]
- Nimrouzi, M.; Abolghasemi, J.; Sharifi, M.H.; Nasiri, K.; Akbari, A. Thyme oxymel by improving of inflammation, oxidative stress, dyslipidemia and homeostasis of some trace elements ameliorates obesity induced by high-fructose/fat diet in male rat. Biomed. Pharmacother. 2020, 126, 110079. [Google Scholar] [CrossRef] [PubMed]
- Derakhshandeh Rishehri, S.M.; Heidaribeni, M.; Feizi, A.; Ramezani, H.; Jamali, Z.; Entezari, M.H. The effect of honey vinegar syrup on anthropometric indices and blood pressure in healthy subjects: A randomized clinical trial. Qom Univ. Med. Sci. J. 2015, 9, 21–31. [Google Scholar]
- Derakhshandeh Rishehri, S.M.; Heidari-Beni, M.; Feizi, A.; Askari, G.R.; Entezari, M.H. Effect of honey vinegar syrup on blood sugar and lipid profile in healthy subjects. Int. J. Prev. Med. 2014, 5, 1608–1614. [Google Scholar] [PubMed]
- Yikmis, S.; Ozpancar, N.; Bozkir, C.; Gol, B.G. Functional sirkencubin syrup with purple basil; bioactive properties, organoleptic acceptability, and possible effects on blood pressure. Food Sci. Technol. 2020, 40, 550–557. [Google Scholar] [CrossRef]
- Mahdavi-Roshan, M.; Salari, A.; Emaminejad, S.; Parvinroo, S.; Ashouri, A.; Alizadeh, I. The effect of oxymel syrup on some cardiovascular risk factors in overweight and obese people: A randomized controlled trial study. Trad. Integr. Med. 2021, 1, 204–215. [Google Scholar] [CrossRef]
- Firoozabadi, M.D.; Navabzadeh, M.; Roudsari, M.K.; Zahmatkash, M. Comparative efficacy trial of cupping and serkangabin versus conventional therapy of migraine headaches: A randomized, open-label, comparative efficacy trial. J. Res. Med. Sci. 2014, 1, 1134–1139. [Google Scholar]
- Naghibi, Z.; Rakhshandeh, H.; Jarahi, L.; Hosseini, S.M.; Yousefi, M. Evaluation of the effects of additional therapy with Berberies vulgaris oxymel in patients with refractory primary sclerosing cholangitis and primary biliary cholangitis: A quasi-experimental study. AJP 2021, 11, 154–164. [Google Scholar]
- Vahid, H.; Bonakdaran, S.; Khorasani, Z.M.; Jarahi, L.; Rakhshandeh, H.; Ghorbani, A.; Zarghi, N.; Yonsefi, H. Effect of Cappris spinose extract on metabolic parameters in patients with type-2 diabetes: Arandomized controlled trial. Endocr. Metab. Immune Disord.—Drug Targets 2019, 19, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Taheri, M.; Riah, S.M.; Meybodi, M.K.E.; Ahmadian-Attari, M.M.; Esmaeili, S.; Mokaberinejad, R. Effect of squill oxymel on knee osteoarthritis: A triple-blind, randomized, controlled clinical trial. Tradit. Integr. Med. 2023, 1, 119–129. [Google Scholar] [CrossRef]
- Nejatbaskhsh, F.; Karegar-Borzi, H.; Amin, G.; Eslaminejad, A.; Hosseini, M.; Bozorgi, M.; Gharabaghi, M.A. Squill oxymel, a traditional formulation from Drima maritima (L.) stearn, a s an add-on treatment in patients with moderate to severe persistant asthma: A pilot, triple-blind, randomized clinical trial. J. Ethnopharmacol. 2017, 196, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi-Araghi, M.; Eslaminejad, A.; Karegar-Bozi, H.; Mazloomzadeh, S.; Najatbakhsh, F. An add-on treatment for moderate COPD with squill-oxymel (a traditional formulation from Drimia martitima (L.) stearn): A pilot randomized triple-blinded placebo-controlled clinical trial. Evid.-Based Complement. Altern. Med. 2022, 1, 5024792. [Google Scholar]
- Prham, H.I.; Yilmaz, I.; Tekiner, I.H. Maulana and sekanjabin (oxymel): A ceremonial relationship with gastronomic and health perspectives. J. Ethn. Food 2022, 9, 12. [Google Scholar]
- Ozturk, M.; Yalcin, O.; Tekgunduz, C.; Tekgunduz, E. Origin of the effects of optical spectrum and flow behavior in determining the quality of dry fig, jujube, pomegranate, date palm and concentrated grape vinegars. Spectrochim. Acta 2022, 270, 120792. [Google Scholar] [CrossRef]
Fruit Vinegar/Oxymel | Dosage | Experimental Model | Biological Activity and Side Effects | References |
---|---|---|---|---|
Animal Model | ||||
Apple vinegar | 2 mL daily of apple vinegar, for five weeks | Fed rats with hypercaloric diet | Antihyperglycemic effect; - | [61] |
Apple vinegar | 0.7% daily, for three months | Murine model of Alzheimer disease | Neuroprotective effect; - | [78] |
Apple vinegar | 1 mL/kg/day, for five weeks | Wistar rats treated with phenylhydrazine | Anti-anemic effect (ameliorating changes in blood platelets and hemoglobin concentration); - | [28] |
Apple vinegar | 5 g vinegar powder/100 g standard diet, for 8 weeks | Rats treated for high-fat diet-induced nonalcoholic fatty liver diseases | Anti-glycemic and anti-lipidemic effect; - | [88] |
Apple vinegar | 10 mL/kg | Wistar rats | Anti-inflammatory, antidepressant, anti-bacterial, and anti-fungal effects; - | [37] |
Mulberry vinegar | 1 mg/kg bw, for 12 weeks | Ovariectomized rats | Anti-osteoporosis effect (inhibiting osteclastic activity); - | [86] |
Pear vinegar | 4.5% daily, for six days | Dextract sodium sulfate-induced acute colitis mouse model | Anti-inflammatory effect (reducing the levels of inflammatory cytokines); - | [70] |
Pomegranate, prickly pear, and apple vinegars | 7 mL/kg of fruit vinegars once daily for 28 weeks | High-fat-fed rats (80 cal/day) | Antioxidant effect (stimulating the activity of various antioxidant enzymes, increasing total antioxidnat status, inhibiting lipid peroxidation); - | [68] |
Hawthorn vinegar | Traditional production of vinegar (0.5 mL/kg bw), thermal pasteurization of vinegar (0.5 and 1 mL/kg bw), and ultrasound treatment of vinegar (0.5 and 1 mL/kg bw) for 45 days | Wistar albino rats | Positive action on intestinal health and boosting immunity; - | [73] |
Human model | ||||
Apple vinegar | 30 mL/day | Humans with type 2 diabetes | Antihyperglycemic effect (stimulatimg glukose uptake, enhancing inslulin activity in skeleton muscle); - | [64] |
Apple vinegar | 30 mL twice a day | Patients with hyperlipidemia | Antihyperlipidemic effect (improving lipid profile: triglyceride, LDL, and total cholesterol); - | [65] |
Animal model | ||||
Oxymel | 10 mL/kg BW, orally, for 14 days | Wistar rats with hyperlipidemia | Changing lipid profile; no side effect | [89] |
Oxymel | 0.1 mL of warm oxymel/day, for 10 days | Mice with asthma | Decreasing IL-4 gene expression, perivascular and peribronchial inflammation, and hypersecretion; no side effect | [90] |
Oxymel | 1 mL/day, for 8 weeks | Wistar rats with type 2 diabetes | Anti-diabetic effect (reducing insulin resistance); no side effect | [91] |
Squill oxymel | 100, 200, and 400 mg/kg | Mice (penty-lenetetrazole-induced seizure) | Decreasing the denation of seizure in mice (penty-lenetetrazole-induced seizure), and oxymel reduced the mortality rate of animals in a dose-dependent manner; no side effect | [92] |
Thyme oxymel | 300 or 500 mg/kg BW/day, for 12 weeks | Sprague–Dawley rats with obesity | Decreasing obesity (improving lipid metabolism, inflammation, and oxidative stress); no side effect | [93] |
Human model | ||||
Oxymel | 2 tablespoons with 250 mL water, daily, for four weeks | Healthy volunteers | No significant effect on blood pressure; - | [94,95] |
Oxymel | 400 mL/day, for 30 days | Healthy volunteers | No significant effect on blood pressure; no side effect | [96] |
Oxymel | 2 tablespoons with 250 mL water, daily, for four weeks | Healthy volunteers | No significant effect on lipid profile; - | [94,95] |
Oxymel | 30 mL/day, for 30 days | Overweight and obese patients | A significant positive action on serum cholesterol and body weight; no side effect | [97] |
Oxymel | 0.75 g or 1.5 g of Z. multiflora Boiss. in 10 mL oxymel, 10 mL twice daily, for 12 weeks | Overweight patients | Improved metabolic parameters, for example, insulin resistance; - | [92] |
Oxymel | 200 mL/day, for 60 days | Patients with migraine with or without aura | No significant effect on frequency and duration of headaches; - | [98] |
B. vulgaris oxymel | 0.5 mL/kg/day, twice daily, for three months | Patients with refractory primary sclerosing cholangitis and primary biliary cholangitis | A significant attenuation of aspartate transaminase, alanine transaminase, alkaline phosphatase, gamma-glutamyl transferase, and direct and total bilirubin; no side effect | [99] |
C. spinosa oxymel | 10 mL/day, for three months | Patients with type 2 diabetic and metabolic syndrome | A significant decrease in weight and BMI; no side effect | [100] |
Squill oxymel | 10 mL/day, for eight weeks | Patients with knee osteoarthritis | A significant positive action on treatment of patients; no side effect | [101] |
Squill oxymel | 10 mL twice daily, for six weeks | Patients with moderate to severe asthma | A significant positive action on treatment of patients; - | [102] |
Squill oxymel | 10 mL twice daily, for four weeks | Patients with chronic obstructive pulmonary disease | A significant positive action on O2 saturation; no side effect | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olas, B. Pro-Health Potential of Fruit Vinegars and Oxymels in Various Experimental Models. Int. J. Mol. Sci. 2025, 26, 7. https://doi.org/10.3390/ijms26010007
Olas B. Pro-Health Potential of Fruit Vinegars and Oxymels in Various Experimental Models. International Journal of Molecular Sciences. 2025; 26(1):7. https://doi.org/10.3390/ijms26010007
Chicago/Turabian StyleOlas, Beata. 2025. "Pro-Health Potential of Fruit Vinegars and Oxymels in Various Experimental Models" International Journal of Molecular Sciences 26, no. 1: 7. https://doi.org/10.3390/ijms26010007
APA StyleOlas, B. (2025). Pro-Health Potential of Fruit Vinegars and Oxymels in Various Experimental Models. International Journal of Molecular Sciences, 26(1), 7. https://doi.org/10.3390/ijms26010007