Antiseptic, Hemostatic, and Wound Activity of Poly(vinylpyrrolidone)-Iodine Gel with Trimethyl Chitosan
Abstract
:1. Introduction
2. Results
2.1. Antiseptic Activity
2.2. In Vivo Hemostasis
2.3. In Vivo Wound Healing
2.3.1. Tissue Blood Vessel Count
2.3.2. Fibrous Tissue Thickness
2.3.3. Re-Epithelialization
3. Discussion
4. Materials and Methods
4.1. In Vitro Antimicrobial Activity
4.2. In Vivo Hemostasis
4.3. In Vivo Wound Healing
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cialdai, F.; Risaliti, C.; Monici, M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front. Bioeng. Biotechnol. 2022, 10, 958381. [Google Scholar] [CrossRef] [PubMed]
- Kolte, D.; McClung, J.A.; Aronow, W.S. Chapter 6—Vasculogenesis and Angiogenesis. In Translational Research in Coronary Artery Disease; Aronow, W.S., McClung, J.A., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 49–65. [Google Scholar] [CrossRef]
- Bryant, R. An Introduction to Acute and Chronic Wound Care: Nursing Management. J. ET Nurs. 1992, 19, 38–39. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R. Wound management. J. ET Nurs. 1992, 19, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Kramer, S.A. Effect of povidone-iodine on wound healing: A review. J. Vasc. Nurs. 1999, 17, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Raggett, L. Operation clean-up. Management of infected wounds. Nurs. Stand. 1992, 6, 29–30. [Google Scholar] [CrossRef] [PubMed]
- Frykberg, R.G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care 2015, 4, 560–582. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Kim, H.Y.; Jung, Y.G.; Baek, C.-H.; Chung, M.K.; Hong, S.D. Endoscopic Debridement of Post-Radiation Nasopharyngeal Necrosis: The Effects of Resurfacing With a Vascularized Flap. Clin. Exp. Otorhinolaryngol. 2022, 15, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Laurano, R.; Boffito, M.; Ciardelli, G.; Chiono, V. Wound dressing products: A translational investigation from the bench to the market. Eng. Regen. 2022, 3, 182–200. [Google Scholar] [CrossRef]
- Barr, J.E. Principles of wound cleansing. Ostomy Wound Manag. 1995, 41, 15S–21S, discussion 22S. [Google Scholar]
- Naumann, R.W.; Hauth, J.C.; Owen, J.; Hodgkins, P.M.; Lincoln, T. Subcutaneous tissue approximation in relation to wound disruption after cesarean delivery in obese women. Obstet. Gynecol. 1995, 85, 412–416. [Google Scholar] [CrossRef]
- Eriksson, E.; Liu, P.Y.; Schultz, G.S.; Martins-Green, M.M.; Tanaka, R.; Weir, D.; Gould, L.J.; Armstrong, D.G.; Gibbons, G.W.; Wolcott, R.; et al. Chronic wounds: Treatment consensus. Wound Repair. Regen. 2022, 30, 156–171. [Google Scholar] [CrossRef]
- Janke, T.M.; Kozon, V.; Barysch, M.; Valiukeviciene, S.; Rackauskaite, L.; Reich, A.; Stępień, K.; Jankechova, M.; van Montfrans, C.; Amesz, S.; et al. How does a chronic wound change a patient’s social life? A European survey on social support and social participation. Int. Wound J. 2023, 20, 4138–4150. [Google Scholar] [CrossRef]
- Jia, B.; Li, G.; Cao, E.; Luo, J.; Zhao, X.; Huang, H. Recent progress of antibacterial hydrogels in wound dressings. Mater. Today Bio 2023, 19, 100582. [Google Scholar] [CrossRef]
- Huang, C.; Dong, L.; Zhao, B.; Lu, Y.; Huang, S.; Yuan, Z.; Luo, G.; Xu, Y.; Qian, W. Anti-inflammatory hydrogel dressings and skin wound healing. Clin. Transl. Med. 2022, 12, e1094. [Google Scholar] [CrossRef]
- Qi, X.; Pan, W.; Tong, X.; Gao, T.; Xiang, Y.; You, S.; Mao, R.; Chi, J.; Hu, R.; Zhang, W.; et al. ε-Polylysine-stabilized agarose/polydopamine hydrogel dressings with robust photothermal property for wound healing. Carbohydr. Polym. 2021, 264, 118046. [Google Scholar] [CrossRef]
- Abbas, O.L.; Borman, H.; Bahar, T.; Ertaş, N.M.; Haberal, M. An in vivo comparison of commonly used topical antimicrobials on skin graft healing after full-thickness burn injury. J. Burn Care Res. 2015, 36, e47–e54. [Google Scholar] [CrossRef] [PubMed]
- Barreto, R.; Barrois, B.; Lambert, J.; Malhotra-Kumar, S.; Santos-Fernandes, V.; Monstrey, S. Addressing the challenges in antisepsis: Focus on povidone iodine. Int. J. Antimicrob. Agents 2020, 56, 106064. [Google Scholar] [CrossRef] [PubMed]
- Bigliardi, P.; Langer, S.; Cruz, J.J.; Kim, S.W.; Nair, H.; Srisawasdi, G. An Asian Perspective on Povidone Iodine in Wound Healing. Dermatology 2017, 233, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Bigliardi, P.L.; Alsagoff, S.A.L.; El-Kafrawi, H.Y.; Pyon, J.K.; Wa, C.T.C.; Villa, M.A. Povidone iodine in wound healing: A review of current concepts and practices. Int. J. Surg. 2017, 44, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Burks, R.I. Povidone-iodine solution in wound treatment. Phys. Ther. 1998, 78, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Lepelletier, D.; Maillard, J.Y.; Pozzetto, B.; Simon, A. Povidone Iodine: Properties, Mechanisms of Action, and Role in Infection Control and Staphylococcus aureus Decolonization. Antimicrob. Agents Chemother. 2020, 64, e00682-20. [Google Scholar] [CrossRef] [PubMed]
- Mitani, O.; Nishikawa, A.; Kurokawa, I.; Gabazza, E.C.; Ikeda, M.; Mizutani, H. Enhanced wound healing by topical application of ointment containing a low concentration of povidone-iodine. J. Wound Care 2016, 25, 521–529. [Google Scholar] [CrossRef]
- Wang, L.; Qin, W.; Zhou, Y.; Chen, B.; Zhao, X.; Zhao, H.; Mi, E.; Mi, E.; Wang, Q.; Ning, J. Transforming growth factor β plays an important role in enhancing wound healing by topical application of Povidone-iodine. Sci. Rep. 2017, 7, 991. [Google Scholar] [CrossRef]
- Durani, P.; Leaper, D. Povidone-iodine: Use in hand disinfection, skin preparation and antiseptic irrigation. Int. Wound J. 2008, 5, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri, H.B.; Zare, M.; Bazrafshan, A.; Abazarian, N.; Ramim, T. Randomized, controlled trial of povidone-iodine to reduce simple traumatic wound infections in the emergency department. Injury 2016, 47, 1913–1918. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri, H.B.; Zavareh, M.; Jalili, F.; Cheraghi, S. Is 1% povidone-iodine solution superior to normal saline for simple traumatic wound irrigation? Wound Med. 2016, 15, 1–5. [Google Scholar] [CrossRef]
- Gözüküçük, A.; Çakıroğlu, B. Comparison of hypochlorous acid and Povidone Iodine as a disinfectant in neonatal circumcision. J. Pediatr. Urol. 2022, 18, 341.e341–341.e345. [Google Scholar] [CrossRef]
- Wang, D.; Huang, X.; Lv, W.; Zhou, J. The Toxicity and Antibacterial Effects of Povidone-Iodine Irrigation in Fracture Surgery. Orthop. Surg. 2022, 14, 2286–2297. [Google Scholar] [CrossRef]
- Pietsch, J.; Meakins, J.L. Complications of povidone-iodine absorption in topically treated burn patients. Lancet 1976, 1, 280–282. [Google Scholar] [CrossRef]
- Balin, A.K.; Pratt, L. Dilute povidone-iodine solutions inhibit human skin fibroblast growth. Dermatol. Surg. 2002, 28, 210–214. [Google Scholar] [CrossRef]
- Tatnall, F.; Leigh, I.; Gibson, J. (2) Comparative toxicity of antimicrobial agents on transformed human keratinocytes. Br. J. Dermatol. 1987, 117, 31–32. [Google Scholar] [CrossRef]
- Van den Broek, P.J.; Buys, L.F.; Van Furth, R. Interaction of povidone-iodine compounds, phagocytic cells, and microorganisms. Antimicrob. Agents Chemother. 1982, 22, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Lineaweaver, W.; Howard, R.; Soucy, D.; McMorris, S.; Freeman, J.; Crain, C.; Robertson, J.; Rumley, T. Topical antimicrobial toxicity. Arch. Surg. 1985, 120, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Kesavan, S.k.; Selvaraj, D.; Perumal, S.; Arunachalakasi, A.; Ganesan, N.; Chinnaiyan, S.K.; Balaraman, M. Fabrication of hybrid povidone-iodine impregnated collagen-hydroxypropyl methylcellulose composite scaffolds for wound-healing application. J. Drug Deliv. Sci. Technol. 2022, 70, 103247. [Google Scholar] [CrossRef]
- Emam, H.E.; Mohamed, A.L. Controllable Release of Povidone-Iodine from Networked Pectin@Carboxymethyl Pullulan Hydrogel. Polymers 2021, 13, 3118. [Google Scholar] [CrossRef]
- Gao, T.; Borjihan, Q.; Yang, J.; Qu, H.; Liu, W.; Li, Q.; Wang, Y.-J.; Dong, A. Antibacterial Povidone-Iodine-Conjugated Cross-Linked Polystyrene Resin for Water Bacterial Decontamination. ACS Appl. Bio Mater. 2019, 2, 1310–1321. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Mathur, N.K.; Narang, C.K. Chitin and chitosan, versatile polysaccharides from marine animals. J. Chem. Educ. 1990, 67, 938. [Google Scholar] [CrossRef]
- Kubota, N.; Eguchi, Y. Facile Preparation of Water-Soluble N-Acetylated Chitosan and Molecular Weight Dependence of Its Water-Solubility. Polym. J. 1997, 29, 123–127. [Google Scholar] [CrossRef]
- Abueva, C.; Ryu, H.S.; Min, J.W.; Chung, P.S.; You, H.S.; Yang, M.S.; Woo, S.H. Quaternary ammonium N,N,N-trimethyl chitosan derivative and povidone-iodine complex as a potent antiseptic with enhanced wound healing property. Int. J. Biol. Macromol. 2021, 182, 1713–1723. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, L.; Ling, J.; Yang, L.-Y.; Ouyang, X.-k. A quaternized chitosan and carboxylated cellulose nanofiber-based sponge with a microchannel structure for rapid hemostasis and wound healing. Int. J. Biol. Macromol. 2023, 233, 123631. [Google Scholar] [CrossRef]
- Du, Y.; Chen, X.; Li, L.; Zheng, H.; Yang, A.; Li, H.; Lv, G. Benzeneboronic–alginate/quaternized chitosan–catechol powder with rapid self-gelation, wet adhesion, biodegradation and antibacterial activity for non-compressible hemorrhage control. Carbohydr. Polym. 2023, 2023, 121049. [Google Scholar] [CrossRef]
- Pathak, K.; Misra, S.K.; Sehgal, A.; Singh, S.; Bungau, S.; Najda, A.; Gruszecki, R.; Behl, T. Biomedical Applications of Quaternized Chitosan. Polymers 2021, 13, 2514. [Google Scholar] [CrossRef]
- Wei, X.; Cai, J.; Wang, C.; Yang, K.; Ding, S.; Tian, F.; Lin, S. Quaternized chitosan/cellulose composites as enhanced hemostatic and antibacterial sponges for wound healing. Int. J. Biol. Macromol. 2022, 210, 271–281. [Google Scholar] [CrossRef]
- Sun, L.; Du, Y.; Fan, L.; Chen, X.; Yang, J. Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap. Polymer 2006, 47, 1796–1804. [Google Scholar] [CrossRef]
- Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 2001, 14, 244–269. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.-J.; An, S.-Y.; Yeon, J.-Y.; Shim, W.S.; Mo, J.-H. Effect of a Chitosan Gel on Hemostasis and Prevention of Adhesion After Endoscopic Sinus Surgery. Clin. Exp. Otorhinolaryngol. 2016, 9, 143–149. [Google Scholar] [CrossRef]
- Krumkamp, R.; Oppong, K.; Hogan, B.; Strauss, R.; Frickmann, H.; Wiafe-Akenten, C.; Boahen, K.G.; Rickerts, V.; McCormick Smith, I.; Groß, U.; et al. Spectrum of antibiotic resistant bacteria and fungi isolated from chronically infected wounds in a rural district hospital in Ghana. PLoS ONE 2020, 15, e0237263. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, M.J.; Westgate, S.J.; Mueller, S. Povidone-iodine ointment demonstrates in vitro efficacy against biofilm formation. Int. Wound J. 2017, 14, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Vogt, P.M.; Hauser, J.; Mueller, S.; Bosse, B.; Hopp, M. Efficacy of Conventional and Liposomal Povidone-Iodine in Infected Mesh Skin Grafts: An Exploratory Study. Infect. Dis. Ther. 2017, 6, 545–555. [Google Scholar] [CrossRef]
- Lachapelle, J.-M.; Castel, O.; Casado, A.; Leroy, B.; Micali, G.; Tennstedt, D.; Lambert, J. Antiseptics in the era of bacterial resistance: A focus on povidone iodine. Clin. Pract. 2013, 10, 579–592. [Google Scholar] [CrossRef]
- Berkelman, R.L.; Holland, B.W.; Anderson, R.L. Increased bactericidal activity of dilute preparations of povidone-iodine solutions. J. Clin. Microbiol. 1982, 15, 635–639. [Google Scholar] [CrossRef]
- Ardean, C.; Davidescu, C.M.; Nemeş, N.S.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Duda-Seiman, D.; Musta, V. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int. J. Mol. Sci. 2021, 22, 7449. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J. 2020, 138, 109984. [Google Scholar] [CrossRef]
- Anderson, M.J.; Horn, M.E.; Lin, Y.-C.; Parks, P.J.; Peterson, M.L. Efficacy of concurrent application of chlorhexidine gluconate and povidone iodine against six nosocomial pathogens. Am. J. Infect. Control 2010, 38, 826–831. [Google Scholar] [CrossRef]
- Koburger, T.; Hübner, N.-O.; Braun, M.; Siebert, J.; Kramer, A. Standardized comparison of antiseptic efficacy of triclosan, PVP–iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J. Antimicrob. Chemother. 2010, 65, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Jin, J.; Liu, Y.; Ben, C.; Li, H.; Cheng, D.; Sun, Y.; Guang-Yi, W.; Zhu, S. Analysis of povidone iodine, chlorhexidine acetate and polyhexamethylene biguanide as wound disinfectants: In vitro cytotoxicity and antibacterial activity. BMJ Nutr. Prev. Health 2023, 2023, e000431. [Google Scholar] [CrossRef] [PubMed]
- Larson, E.; Morton, H. Alcohols. In Disinfection, Sterilization, and Preservation; Block, S., Ed.; Lea and Febiger: Philadelphia, PA, USA, 1991; p. 91. [Google Scholar]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef]
- Kaiser, N.; Klein, D.; Karanja, P.; Greten, Z.; Newman, J. Inactivation of chlorhexidine gluconate on skin by incompatible alcohol hand sanitizing gels. Am. J. Infect. Control 2009, 37, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Zamany, A.; Spångberg, L.S.W. An effective method of inactivating chlorhexidine. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2002, 93, 617–620. [Google Scholar] [CrossRef]
- Yilmaz Atay, H. Antibacterial Activity of Chitosan-Based Systems. In Functional Chitosan; Springer: Berlin/Heidelberg, Germany, 2020; Volume 6, pp. 457–489. [Google Scholar] [CrossRef]
- Patrulea, V.; Ostafe, V.; Borchard, G.; Jordan, O. Chitosan as a starting material for wound healing applications. Eur. J. Pharm. Biopharm. 2015, 97, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Chester, D.; Marrow, E.A.; Daniele, M.A.; Brown, A.C. Wound Healing and the Host Response in Regenerative Engineering. In Encyclopedia of Biomedical Engineering; Narayan, R., Ed.; Elsevier: Oxford, UK, 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Werner, S.; Ben-Yehuda Greenwald, M. Wound Healing: An Orchestrated Process of Cell Cycle, Adhesion and Signaling. In Encyclopedia of Cell Biology, 2nd ed.; Bradshaw, R.A., Hart, G.W., Stahl, P.D., Eds.; Academic Press: Oxford, UK, 2023; pp. 739–747. [Google Scholar] [CrossRef]
- Werner, S.; Antsiferova, M.; Smola, H. Skin Wound Healing. In Pathobiology of Human Disease; McManus, L.M., Mitchell, R.N., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 550–557. [Google Scholar] [CrossRef]
- Koçak, İ.; Yücepur, C.; Gökler, O. Is Ginger Effective in Reducing Post-tonsillectomy Morbidity? A Prospective Randomised Clinical Trial. Clin. Exp. Otorhinolaryngol. 2018, 11, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Lee, B.J.; Kim, S.W.; Cha, Y.W.; Choi, Y.S.; Park, Y.H.; Lee, K.D. Patterns of Post-thyroidectomy Hemorrhage. Clin. Exp. Otorhinolaryngol. 2009, 2, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Bracho, D.O.; Barsan, L.; Arekapudi, S.R.; Thompson, J.A.; Hen, J.; Stern, S.A.; Younger, J.G. Antibacterial Properties of an Iron-based Hemostatic Agent In Vitro and in a Rat Wound Model. Acad. Emerg. Med. 2009, 16, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Wang, S. Advances in Hemostatic Hydrogels That Can Adhere to Wet Surfaces. Gels 2023, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Kear, T.M. Does the direct application of povidone-iodine hasten hemostasis of the cannulation site after the removal of hemodialysis needles? Nephrol. Nurs. J. 2012, 39, 409. [Google Scholar] [PubMed]
- Kumar, B.P.; Maddi, A.; Ramesh, K.V.; Baliga, M.J.; Rao, S.N. Is povidone-iodine a hemostyptic? A clinical study. Int. J. Oral Maxillofac. Surg. 2006, 35, 765–766. [Google Scholar] [CrossRef] [PubMed]
- Brånemark, P.I.; Albrektsson, B.; Lindström, J.; Lundborg, G. Local tissue effects of wound disinfectants. Acta Chir. Scand. Suppl. 1966, 357, 166–176. [Google Scholar]
- Brennan, S.S.; Leaper, D.J. The effect of antiseptics on the healing wound: A study using the rabbit ear chamber. Br. J. Surg. 1985, 72, 780–782. [Google Scholar] [CrossRef]
- Moreira, H.R.; Marques, A.P. Vascularization in skin wound healing: Where do we stand and where do we go? Curr. Opin. Biotechnol. 2022, 73, 253–262. [Google Scholar] [CrossRef]
- Hackl, F.; Kiwanuka, E.; Philip, J.; Gerner, P.; Aflaki, P.; Diaz-Siso, J.R.; Sisk, G.; Caterson, E.J.; Junker, J.P.; Eriksson, E. Moist dressing coverage supports proliferation and migration of transplanted skin micrografts in full-thickness porcine wounds. Burns 2014, 40, 274–280. [Google Scholar] [CrossRef]
- Vogt, P.M.; Andree, C.; Breuing, K.; Liu, P.Y.; Slama, J.; Helo, G.; Eriksson, E. Dry, Moist, and Wet Skin Wound Repair. Ann. Plast. Surg. 1995, 34, 493–500. [Google Scholar] [CrossRef]
- Pardeshi, C.V.; Belgamwar, V.S. N,N,N-trimethyl chitosan modified flaxseed oil based mucoadhesive neuronanoemulsions for direct nose to brain drug delivery. Int. J. Biol. Macromol. 2018, 120, 2560–2571. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, C.; Yang, S.; Ni, R.; Peng, T.; Zhang, J. Synthesis of N, N, N-trimethyl chitosan-based nanospheres for the prolonged release of curcumin. Food Hydrocoll. Health 2022, 2, 100092. [Google Scholar] [CrossRef]
- dos Santos, D.M.; Leite, I.S.; Bukzem, A.d.L.; de Oliveira Santos, R.P.; Frollini, E.; Inada, N.M.; Campana-Filho, S.P. Nanostructured electrospun nonwovens of poly(ε-caprolactone)/quaternized chitosan for potential biomedical applications. Carbohydr. Polym. 2018, 186, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yan, D.; Cheng, X.; Kong, M.; Liu, Y.; Feng, C.; Chen, X. Biomaterials based on N,N,N-trimethyl chitosan fibers in wound dressing applications. Int. J. Biol. Macromol. 2016, 89, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Xu, S.; Ma, L.; Huang, A.; Gao, C. The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen–chitosan dermal equivalents. Biomaterials 2011, 32, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Thanou, M.; Florea, B.I.; Geldof, M.; Junginger, H.E.; Borchard, G. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 2002, 23, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Xu, S.; Ma, L.; Huang, A.; Gao, C. Enhanced angiogenesis of gene-activated dermal equivalent for treatment of full thickness incisional wounds in a porcine model. Biomaterials 2010, 31, 7308–7320. [Google Scholar] [CrossRef]
- Howling, G.I.; Dettmar, P.W.; Goddard, P.A.; Hampson, F.C.; Dornish, M.; Wood, E.J. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials 2001, 22, 2959–2966. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Yamada, H.; Tanaka, I.; Kaba, N.; Matsuura, M.; Okumura, M.; Kadosawa, T.; Fujinaga, T. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 1999, 20, 1407–1414. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Malekinejad, H.; Bazargani-Gilani, B.; Tukmechi, A.; Ebrahimi, H. A cytotoxicity and comparative antibacterial study on the effect of Zataria multiflora Boiss, Trachyspermum copticum essential oils, and Enrofloxacin on Aeromonas hydrophila. Avicenna J. Phytomed. 2012, 2, 188–195. [Google Scholar] [PubMed]
- Cao, J.; Xiao, L.; Shi, X. Injectable drug-loaded polysaccharide hybrid hydrogels for hemostasis. RSC Adv. 2019, 9, 36858–36866. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.E.; Prakash, V.S.; Vercammen, J.M.; Pritts, T.; Kibbe, M.R. Development and Validation of 4 Different Rat Models of Uncontrolled Hemorrhage. JAMA Surg. 2015, 150, 316–324. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padalhin, A.; Ryu, H.S.; Yoo, S.H.; Abueva, C.; Seo, H.H.; Park, S.Y.; Chung, P.-S.; Woo, S.H. Antiseptic, Hemostatic, and Wound Activity of Poly(vinylpyrrolidone)-Iodine Gel with Trimethyl Chitosan. Int. J. Mol. Sci. 2024, 25, 2106. https://doi.org/10.3390/ijms25042106
Padalhin A, Ryu HS, Yoo SH, Abueva C, Seo HH, Park SY, Chung P-S, Woo SH. Antiseptic, Hemostatic, and Wound Activity of Poly(vinylpyrrolidone)-Iodine Gel with Trimethyl Chitosan. International Journal of Molecular Sciences. 2024; 25(4):2106. https://doi.org/10.3390/ijms25042106
Chicago/Turabian StylePadalhin, Andrew, Hyun Seok Ryu, Seung Hyeon Yoo, Celine Abueva, Hwee Hyon Seo, So Young Park, Phil-Sang Chung, and Seung Hoon Woo. 2024. "Antiseptic, Hemostatic, and Wound Activity of Poly(vinylpyrrolidone)-Iodine Gel with Trimethyl Chitosan" International Journal of Molecular Sciences 25, no. 4: 2106. https://doi.org/10.3390/ijms25042106
APA StylePadalhin, A., Ryu, H. S., Yoo, S. H., Abueva, C., Seo, H. H., Park, S. Y., Chung, P.-S., & Woo, S. H. (2024). Antiseptic, Hemostatic, and Wound Activity of Poly(vinylpyrrolidone)-Iodine Gel with Trimethyl Chitosan. International Journal of Molecular Sciences, 25(4), 2106. https://doi.org/10.3390/ijms25042106