Research on the Molecular Mechanisms and Key Gene Discovery in Quercus variabilis Root Pruning Based on Transcriptomics and Hormone Profiling
Abstract
:1. Introduction
2. Results
2.1. Dynamic Changes in Root Morphology of Q. variabilis Saplings After Root Pruning
2.2. Effects of Root Pruning on the Root Morphological and Physiological Indicators of Q. variabilis Saplings
2.3. Transcriptome Sequencing Data Analysis
2.3.1. Analysis of Transcriptome Output Data and Assembly of Transcripts
2.3.2. Alignment and Reproducibility Test of Transcript
2.3.3. Identification and Analysis of DEGs
2.3.4. GO Enrichment Analysis of DEGs
2.3.5. KEGG Enrichment Analysis of DEGs
2.4. Hormone Data Analysis
2.4.1. Quality Control and Sample-Clustering Analysis of Hormone Profiling
2.4.2. Differential Hormones Screening and Counting
2.4.3. KEGG Enrichment Analysis of Differential Hormones
2.5. Plant-Hormone-Signaling Pathway Was Affected by Root Pruning
2.6. Weighted Gene Co-Expression Network Analysis
2.6.1. Selection of Soft Threshold, Module Hierarchical Clustering, and Key Module Selection
2.6.2. Selection and Functional Analysis of Hub Genes
2.7. RT-qPCR Validation
3. Discussion
4. Materials and Methods
4.1. Selection of Experimental Materials
4.2. Root Morphological Characteristics Measurement
4.3. RNA Extraction, Library Construction, and Library Validation
4.4. Sequencing-Data Processing
4.5. Gene Function Annotation and Gene Expression Quantification
4.6. Detection of Root Plant Hormone Profiling
4.7. WGCNA
4.8. Validation of DEGs with Real-Time Fluorescence Quantitative PCR (RT-qPCR)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, B.Z.; Zhang, S.G.; Fu, M.Y. The origin, development and application of Minirhizotron, a new technology for plant root research. Chin. J. Ecol. 2007, 2, 253–260. [Google Scholar] [CrossRef]
- Fanello, D.D.; Kelly, S.J.; Bartoli, C.G.; Cano, M.G.; Martínez Alonso, S.; Guiamet, J.J. Plasticity of root growth and respiratory activity: Root responses to above-ground senescence, fruit removal or partial root pruning in soybean. Plant Sci. 2020, 290, 110296. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Guo, D.L. Root ecology. Chin. J. Plant Ecol. 2008, 6, 1213–1216. [Google Scholar] [CrossRef]
- Arndal, M.F.; Merrild, M.P.; Michelsen, A.; Schmidt, I.K.; Mikkelsen, T.N.; Beier, C. Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species. Plant Soil 2013, 369, 615–629. [Google Scholar] [CrossRef]
- Cao, X.D.; Luo, F.P.; Qian, G.Q. Study on the cultivation of Pinus massoniana seedlings in containers by transplanting mycorrhizal roots. J. For. Environ. 1994, 2, 128–132. [Google Scholar] [CrossRef]
- Li, J.G.; Qiu, W.S. Study on root cutting and transplanting technique of Pinus massoniana seedlings. Hunan Fore Sci. Tech. 2001, 3, 36–37. [Google Scholar]
- Du, Y.W.; Deng, X.Z.; Cheng, J.Y. Effect of root cutting on quality of thin shelled hickory stock. J. West China Fore Sci. 2021, 50, 92–98. [Google Scholar] [CrossRef]
- Zhang, R.; Peng, F.R.; Yan, P.; Cao, F.; Tan, P.P. Effects of root pruning on germinated pecan seedlings. Hortscience 2015, 50, 1549–1552. [Google Scholar] [CrossRef]
- Ertaş, A.; Naydenova, T.; Raev, I.; Alexandrov, A.H.; Rossnev, B.; Marinov, I.T.; Vassilev, V.D.; Tsakov, H.; Petrova, R.; Grozeva, M.; et al. Effect of radicle clipping onsessile oak (Quercus petraea Lieb.) seedling’s rootsurface area and number of taproots. In Study, Conservation and Utilisation of Forest Resources. Proceedings of the Third Balkan Scientific Conference, Sofia, Bulgaria, 2–6 October 2001; Forest Research Institute: Dehradun, India, 2002; Available online: https://api.semanticscholar.org/CorpusID:83386502 (accessed on 5 February 2023).
- Yang, X.T.; Wang, G.L.; Zhao, N.; Fan, Z.W. Effects of different root cutting treatments on lateral root growth of tree seedlings. J. Henan Agri. Univ. 2010, 44, 155–159. [Google Scholar] [CrossRef]
- Lin, W.H. Effects of root cutting on the growth of Masson pine seedlings and the initial stage of forestation. Fujian For. 2019, 1, 46–48. [Google Scholar]
- Luo, S.J. Comparative experiment of seedling cultivation and afforestation by cutting roots of Pinus prunus. Prot. For. Sci. Tech. 2006, 4, 22–23+37. [Google Scholar] [CrossRef]
- Wang, W. Analysis on effect of cutting root and raising seedlings of Castanopsis Kawakamii. For. Prospect. Des. 2021, 41, 60–62. [Google Scholar]
- Liu, Y.J.; Wang, Y.M.; Yang, H.M. Study on the influence of root-controlling seedling method on the growth of cork oak seedlings. For. Inventory Plan. 2010, 35, 137–139. [Google Scholar] [CrossRef]
- Lakehal, A.; Bellini, C. Control of adventitious root formation: Insights into synergistic and antagonistic hormonal interactions. Physiol. Plantarum. 2019, 165, 90–100. [Google Scholar] [CrossRef]
- Huang, S.H.; Liu, Y. Reaction of camphor tree cuttings to different concentrations of bovine serum albumin. North Horti. 2015, 22, 64–68. [Google Scholar] [CrossRef]
- Lu, X.Z. Study on Physiological Changes and Regulation of Exogenous Hormones in Cuttings of Wild Apple in Xinjiang. Master’s Thesis, Xinjiang Agricultural University, Xinjiang, China, 2020. [Google Scholar]
- Qiao, X.L.; Bo, X.T.; Xu, X.H.; Xu, Z.B.; Li, S.X. Physiological changes in the rooting process of cuttings of oak natta. J. Cent. South. Univ. Fore Tech. 2021, 41, 86–92. [Google Scholar] [CrossRef]
- Bishopp, A.; Benková, E.; Helariutta, Y. Sending mixed messages: Auxin-cytokinin crosstalk in roots. Curr. Opin. Plant Biol. 2011, 14, 10–16. [Google Scholar] [CrossRef]
- Fukaki, H.; Tasaka, M. Hormone interactions during lateral root formation. Plant Mol. Biol. 2009, 69, 437–449. [Google Scholar] [CrossRef]
- Xing, G.F.; Feng, W.J.; Niu, X.L.; Zhang, C.L.; Ma, J.H.; Guo, P.Y. Physiological Mechanisms in Phytohormone Regulation of Plant Lateral Root Development. Plant Physiol. J. 2015, 51, 2101–2108. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhao, Z.; Gao, Z. Effects of Plug Soil Temperature on Physiological and Biochemical in Hardwood Cuttings Rooting of Tetraploid Robinia pseudoacacia. Plant Physiol. J. 2012, 48, 699–704. [Google Scholar] [CrossRef]
- Kapulnik, Y.; Delaux, P.M.; Resnick, N.; Mayzlish-Gati, E.; Wininger, S.; Bhattacharya, C.; Séjalon-Delmas, N.; Combier, J.P.; Bécard, G.; Belausov, E.; et al. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 2011, 233, 209–216. [Google Scholar] [CrossRef]
- Arias-Baldrich, C.; Silva, M.C.; Bergeretti, F.; Chaves, I.; Miguel, C.; Saibo, N.J.M.; Sobral, D.; Faria, D.; Barros, P.M. CorkOakDB-The Cork Oak Genome Database Portal. Database 2020, 2020, baaa114. [Google Scholar] [CrossRef]
- Ramos, A.M.; Usié, A.; Barbosa, P.; Barros, P.M.; Capote, T.; Chaves, I.; Simões, F.; Abreu, I.; Carrasquinho, I.; Faro, C.; et al. The draft genome sequence of cork oak. Sci. Data 2018, 5, 180069. [Google Scholar] [CrossRef]
- Costa, D.; Ramos, V.; Tavares, R.M.; Baptista, P.; Lino-Neto, T. Phylogenetic analysis and genetic diversity of the xylariaceous ascomycete Biscogniauxia mediterranea from cork oak forests in different bioclimates. Sci. Rep. 2022, 12, 2646. [Google Scholar] [CrossRef]
- Alvarez, R.; Toribio, M.; Cortizo, M.; Ordás Fernández, R.J. Cork Oak Trees (Quercus suber L.). Methods Mol. Biol. 2006, 344, 113–123. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Miguel, C.; Chaves, I.; António, C. Mass spectrometry-based forest tree metabolomics. Mass. Spectrom. Rev. 2021, 40, 126–157. [Google Scholar] [CrossRef]
- Woodward, A.W.; Bartel, B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707–735. [Google Scholar] [CrossRef]
- Lucas, M.; Godin, C.; Jay-Allemand, C.; Laplaze, L. Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J. Exp. Bot. 2008, 59, 55–66. [Google Scholar] [CrossRef]
- De Rybel, B.; Vassileva, V.; Parizot, B.; Demeulenaere, M.; Grunewald, W.; Audenaert, D.; Van Campenhout, J.; Overvoorde, P.; Jansen, L.; Vanneste, S.; et al. A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr. Biol. 2010, 20, 1697–1706. [Google Scholar] [CrossRef]
- Ni, R.; Dou, H.; Bi, S.; Wang, T.; Quan, J.; Yang, X. Effects of root cutting on morphological characteristics and endogenous hormone levels of Quercus variabilis seedlings. Phyton 2023, 92, 2907–2920. [Google Scholar] [CrossRef]
- Feng, Z.; Kong, D.; Kong, Y.; Zhang, B.; Yang, X. Coordination of root growth with root morphology, physiology and defense functions in response to root pruning in Platycladus orientalis. J. Adv. Res. 2021, 36, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Marchant, A.; Bhalerao, R.; Casimiro, I.; Eklöf, J.; Casero, P.J.; Bennett, M.; Sandberg, G. AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 2002, 14, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Dietrich, D.; Ng, C.H.; Chan, P.M.; Bhalerao, R.; Bennett, M.J.; Dinneny, J.R. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 2013, 25, 324–341. [Google Scholar] [CrossRef] [PubMed]
- Busov, V.; Meilan, R.; Pearce, D.W.; Rood, S.B.; Ma, C.; Tschaplinski, T.J.; Strauss, S.H. Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta 2006, 224, 288–299. [Google Scholar] [CrossRef]
- Agusti, J.; Herold, S.; Schwarz, M.; Sanchez, P.; Ljung, K.; Dun, E.A.; Brewer, P.B.; Beveridge, C.A.; Sieberer, T.; Sehr, E.M.; et al. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc. Natl. Acad. Sci. USA 2011, 108, 20242–20247. [Google Scholar] [CrossRef]
- Tang, Y.H. Study on the Cloning, Expression and Functional of Boehmeria nivea 4CL and CCR Gene Family Members. Ph.D. Thesis, Hunan Agricultural University, Changsha, China, 2018. [Google Scholar]
- Rajam, M.V.; Chandola, N.; Goud, P.S.; Singh, D.; Kashyap, V.; Choudhary, M.; Sihachakr, D. Thaumatin gene confers resistance to fungal pathogens as well as tolerance to abiotic stresses in transgenic tobacco plants. Biol. Plantarum. 2007, 51, 135–141. [Google Scholar] [CrossRef]
- Fils-Lycaon, B.R.; Wiersma, P.A.; Eastwell, K.C.; Sautiere, P. A cherry protein and its gene, abundantly expressed in ripening fruit, have been identified as thaumatin-like. Plant Physiol. 1996, 111, 269–273. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, J.R.; Kim, S.R. Molecular Characterization of a Fruit-Preferential Thaumatin-Like Gene from Apple (Malus domestica cv. Fuji). Plant Biol. 2003, 46, 52–58. [Google Scholar] [CrossRef]
- Ho, V.; Wong, J.H.; Ng, T.B. A thaumatin-like antifungal protein from the emperor banana. Peptides 2007, 28, 760–766. [Google Scholar] [CrossRef]
- Zheng, L. Cloning and Characterization of rd22 Gene in Polygonum sibiricum. Master’s Thesis, Northeast Forestry University, Harbin, China, 2007. [Google Scholar]
- Li, H.Y.; Lin, S.J.; Wang, S.; Liu, F.F.; Jiang, J. Sequence analysis and salt tolerance of rd22 gene from Tamarix androssowii. J. Northwest A&F Univ. (Nat. Sci. Ed.) 2010, 38, 95–101. [Google Scholar] [CrossRef]
- Huang, X.X.; Hou, P.C.; Ding, M.Q.; Wang, M.J.; Deng, S.R.; Li, N.Y.; Zhou, X.Y.; Shen, X.; Chen, S.L. Cloning and Functional Analysis of KcRD22 Gene of Kandelia candel. Genom. Appl. Biol. 2011, 30, 273–280. [Google Scholar] [CrossRef]
- Phillips, K.; Ludidi, N. Drought and exogenous abscisic acid alter hydrogen peroxide accumulation and differentially regulate the expression of two maize RD22-like genes. Sci. Rep. 2017, 7, 8821. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Liu, G.J.; Yang, C.P. Cloning and Sequence Analysis of rd22 Gene from Polygonum sibricum. Bull. Bot. Res. 2007, 12, 7. [Google Scholar] [CrossRef]
- Iwasaki, T.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol. Gen. Genet. 1995, 247, 391–398. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Davidson, N.M.; Oshlack, A. Corset: Enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014, 15, 410. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, H.; Sun, J.; Feng, X.; Lyu, H.; Qin, Z.; Ni, R.; Wang, Y.; Sun, H.; Zhou, X.; Tang, W.; et al. Research on the Molecular Mechanisms and Key Gene Discovery in Quercus variabilis Root Pruning Based on Transcriptomics and Hormone Profiling. Int. J. Mol. Sci. 2024, 25, 11541. https://doi.org/10.3390/ijms252111541
Dou H, Sun J, Feng X, Lyu H, Qin Z, Ni R, Wang Y, Sun H, Zhou X, Tang W, et al. Research on the Molecular Mechanisms and Key Gene Discovery in Quercus variabilis Root Pruning Based on Transcriptomics and Hormone Profiling. International Journal of Molecular Sciences. 2024; 25(21):11541. https://doi.org/10.3390/ijms252111541
Chicago/Turabian StyleDou, Hao, Jiajia Sun, Xi Feng, Huyang Lyu, Zhen Qin, Ruoyi Ni, Yilin Wang, Huijuan Sun, Xin Zhou, Wu Tang, and et al. 2024. "Research on the Molecular Mechanisms and Key Gene Discovery in Quercus variabilis Root Pruning Based on Transcriptomics and Hormone Profiling" International Journal of Molecular Sciences 25, no. 21: 11541. https://doi.org/10.3390/ijms252111541
APA StyleDou, H., Sun, J., Feng, X., Lyu, H., Qin, Z., Ni, R., Wang, Y., Sun, H., Zhou, X., Tang, W., Quan, J., & Yang, X. (2024). Research on the Molecular Mechanisms and Key Gene Discovery in Quercus variabilis Root Pruning Based on Transcriptomics and Hormone Profiling. International Journal of Molecular Sciences, 25(21), 11541. https://doi.org/10.3390/ijms252111541