The Impact of Antenatal Corticosteroids on the Metabolome of Preterm Newborns: An Untargeted Approach
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Sample Collection
4.3. Metabolomic Analysis
4.4. Statistical Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Räikkönen, K.; Gissler, M.; Kajantie, E.; Tapiainen, T. Antenatal corticosteroid treatment and infectious diseases in children: A nationwide observational study. Lancet Reg. Health Eur. 2023, 35, 100750. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists. Management of preterm labor. Practice bulletin No. 171. Obstet. Gynecol. 2016, 128, e155–e164. [Google Scholar] [CrossRef]
- Committee on Obstetric Practice. Committee Opinion No. 713: Antenatal Corticosteroid Therapy for Fetal Maturation. Obstet. Gynecol. 2017, 130, e102–e109. [Google Scholar] [CrossRef]
- World Health Organization. Recommendations on Interventions to Improve Preterm Birth Outcomes; World Health Organization: Geneva, Switzerland, 2015; Available online: https://apps.who.int/iris/bitstream/handle/10665/183037/9789241508988_eng.pdf (accessed on 1 March 2015).
- Jobe, A.H.; Goldenberg, R.L. Antenatal corticosteroids: An assessment of anticipated benefits and potential risks. Am. J. Obstet. Gynecol. 2018, 219, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Battarbee, A.N.; Ros, S.T.; Esplin, M.S.; Biggio, J.; Bukowski, R.; Parry, S.; Zhang, H.; Huang, H.; Andrews, W.; Saade, G.; et al. Optimal timing of antenatal corticosteroid administration and preterm neonatal and early childhood outcomes. Am. J. Obstet. Gynecol. MFM 2020, 2, 100077. [Google Scholar] [CrossRef] [PubMed]
- Kemp, M.W.; Schmidt, A.F.; Jobe, A.H. Optimizing antenatal corticosteroid therapy. Semin. Fetal Neonatal Med. 2019, 24, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Brownfoot, F.C.; Gagliardi, D.I.; Bain, E.; Middleton, P.; Crowther, C.A. Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2013, 8, CD006764. [Google Scholar] [CrossRef] [PubMed]
- Bjerkhaug, A.U.; Granslo, H.N.; Klingenberg, C. Metabolic responses in neonatal sepsis—A systematic review of human metabolomic studies. Acta Paediatr. 2021, 110, 2316–2325. [Google Scholar] [CrossRef] [PubMed]
- Dessì, A.; Pintus, R.; Marras, S.; Cesare Marincola, F.; De Magistris, A.; Fanos, V. Metabolomics in necrotizing enterocolitis: The state of the art. Expert Rev. Mol. Diagn. 2016, 16, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Denihan, N.M.; Kirwan, J.A.; Walsh, B.H.; Dunn, W.B.; Broadhurst, D.I.; Boylan, G.B.; Murray, D.M. Untargeted metabolomic analysis and pathway discovery in perinatal asphyxia and hypoxic-ischaemic encephalopathy. J. Cereb. Blood Flow. Metab. 2019, 39, 147–162. [Google Scholar] [CrossRef]
- Valerio, E.; Stocchero, M.; Pirillo, P.; D’Errico, I.; Bonadies, L.; Galderisi, A.; Giordano, G.; Baraldi, E. Neurosteroid pathway derangement in asphyctic infants treated with hypothermia: An untargeted metabolomic approach. eBioMedicine 2023, 92, 104636. [Google Scholar] [CrossRef] [PubMed]
- Lal, C.V.; Bhandari, V.; Ambalavanan, N. Genomics, microbiomics, proteomics, and metabolomics in bronchopulmonary dysplasia. Semin. Perinatol. 2018, 42, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.; Brown, J.; Medley, N.; Dalziel, S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2017, 3, CD004454. [Google Scholar] [PubMed]
- Fanos, V.; Atzori, L.; Makarenko, K.; Melis, G.B.; Ferrazzi, E. Metabolomics application in maternal-fetal medicine. BioMed Res. Int. 2013, 2013, 720514. [Google Scholar] [CrossRef] [PubMed]
- Bertozzi, S.; Corradetti, B.; Fruscalzo, A.; Londero, A.P. Editorial: Precision Medicine in Obstetrics: Pregnancy Complication. J. Pers. Med. 2023, 13, 305. [Google Scholar] [CrossRef] [PubMed]
- Rehman, T.; Shabbir, M.A.; Inam-Ur-Raheem, M.; Manzoor, M.F.; Ahmad, N.; Liu, Z.W.; Ahmad, M.H.; Siddeeg, A.; Abid, M.; Aadil, R.M. Cysteine and homocysteine as biomarker of various diseases. Food Sci. Nutr. 2020, 8, 4696–4707. [Google Scholar] [CrossRef] [PubMed]
- Muthuraman, A.; Ramesh, M.; Shaikh, S.A.; Aswinprakash, S.; Jagadeesh, D. Physiological and Pathophysiological Role of Cysteine Metabolism in Human Metabolic Syndrome. Drug Metab. Lett. 2021, 14, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Pavão, M.L.; Ferin, R.; Lima, A.; Baptista, J. Cysteine and related aminothiols in cardiovascular disease, obesity and insulin resistance. Adv. Clin. Chem. 2022, 109, 75–127. [Google Scholar]
- Saugstad, O.D. Oxidative stress in the newborn—A 30-year perspective. Biol. Neonate 2005, 88, 228–236. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Adams-Chapman, I.; Fanaroff, A.A.; Hintz, S.R.; Vohr, B.; Higgins, R.D.; National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 2004, 292, 2357–2365. [Google Scholar] [CrossRef]
- Carlo, W.A.; McDonald, S.A.; Tyson, J.E.; Stoll, B.J.; Ehrenkranz, R.A.; Shankaran, S.; Goldberg, R.N.; Das, A.; Schendel, D.; Thorsen, P.; et al. Cytokines and neurodevelopmental outcomes in extremely low birth weight infants. J. Pediatr. 2011, 159, 919–925.e3. [Google Scholar] [CrossRef]
- Procianoy, R.S.; Silveira, R.C. Association between high cytokine levels with white matter injury in preterm infants with sepsis. Pediatr. Crit. Care Med. 2012, 13, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Capasso, L.; Vento, G.; Loddo, C.; Tirone, C.; Iavarone, F.; Raimondi, F.; Dani, C.; Fanos, V. Oxidative Stress and Bronchopulmonary Dysplasia: Evidences from Microbiomics, Metabolomics, and Proteomics. Front. Pediatr. 2019, 7, 30. [Google Scholar] [CrossRef]
- Plazyo, O.; Romero, R.; Unkel, R.; Balancio, A.; Mial, T.N.; Xu, Y.; Dong, Z.; Hassan, S.S.; Gomez-Lopez, N. HMGB1 induces an inflammatory response in the chorioamniotic membranes that is partially mediated by the inflammasome. Biol. Reprod. 2016, 95, 130. [Google Scholar] [CrossRef] [PubMed]
- Gomez, R.; Romero, R.; Edwin, S.S.; David, C. Pathogenesis of preterm labor and preterm premature rupture of membranes associated with intraamniotic infection. Infect. Dis. Clin. N. Am. 1997, 11, 135–176. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Kanneganti, T.D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J. Cell Biol. 2016, 213, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Miao, E.A.; Rajan, J.V.; Aderem, A. Caspase-1-induced pyroptotic cell death. Immunol. Rev. 2011, 243, 206–214. [Google Scholar] [CrossRef]
- Romero, R.; Gotsch, F.; Pineles, B.; Kusanovic, J.P. Inflammation in pregnancy: Its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr. Rev. 2007, 65 Pt 2, S194–S202. [Google Scholar] [CrossRef] [PubMed]
- Sutterwala, F.S.; Haasken, S.; Cassel, S.L. Mechanism of NLRP3 inflammasome activation. Ann. N. Y. Acad. Sci. 2014, 1319, 82–95. [Google Scholar] [CrossRef]
- Liao, J.; Kapadia, V.S.; Brown, L.S.; Cheong, N.; Longoria, C.; Mija, D.; Ramgopal, M.; Mirpuri, J.; McCurnin, D.C.; Savani, R.C. The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia. Nat. Commun. 2015, 6, 8977. [Google Scholar] [CrossRef]
- Gomez-Lopez, N.; Romero, R.; Garcia-Flores, V.; Leng, Y.; Miller, D.; Hassan, S.S.; Hsu, C.D.; Panaitescu, B. Inhibition of the NLRP3 inflammasome can prevent sterile intra-amniotic inflammation, preterm labor/birth, and adverse neonatal outcomes. Biol. Reprod. 2019, 100, 1306–1318.e39. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 2019, 140, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Curi, R.; Lagranha, C.J.; Doi, S.Q.; Sellitt, D.F.; Procopio, J.; Pithon-Curi, T.C.; Corless, M.; Newsholme, P. Molecular mechanisms of glutamine action. J. Cell Physiol. 2005, 204, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Cruzat, V.F.; Pantaleão, L.C.; Donato, J., Jr.; de Bittencourt, P.I., Jr.; Tirapegui, J. Oral supplementations with free and dipeptide forms of L-glutamine in endotoxemic mice: Effects on muscle glutamine-glutathione axis and heat shock proteins. J. Nutr. Biochem. 2014, 25, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef] [PubMed]
- Heggermont, W.A.; Papageorgiou, A.P.; Heymans, S.; van Bilsen, M. Metabolic support for the heart: Complementary therapy for heart failure? Eur. J. Heart Fail. 2016, 18, 1420–1429. [Google Scholar] [CrossRef] [PubMed]
- Dambrova, M.; Makrecka-Kuka, M.; Kuka, J.; Vilskersts, R.; Nordberg, D.; Attwood, M.M.; Smesny, S.; Sen, Z.D.; Guo, A.C.; Oler, E.; et al. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol. Rev. 2022, 74, 506–551. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, B.; Sarkans, U.; Schumann, G.; Persico, A.M. Biomarkers in autism spectrum disorder: The old and the new. Psychopharmacology 2014, 231, 1201–1216. [Google Scholar] [CrossRef]
- Papamichael, M.M.; Katsardis, C.; Erbas, B.; Itsiopoulos, C.; Tsoukalas, D. Urinary organic acids as biomarkers in the assessment of pulmonary function in children with asthma. Nutr. Res. 2019, 61, 31–40. [Google Scholar] [CrossRef]
- Chang, Y.F. Lysine metabolism in the human and the monkey: Demonstration of pipecolic acid formation in the brain and other organs. Neurochem. Res. 1982, 7, 577–588. [Google Scholar] [CrossRef]
- Kondoh, T.; Kameishi, M.; Mallick, H.N.; Ono, T.; Torii, K. Lysine and arginine reduce the effects of cerebral ischemic insults and inhibit glutamate-induced neuronal activity in rats. Front. Integr. Neurosci. 2010, 4, 18. [Google Scholar] [CrossRef] [PubMed]
- Severyanova, L.A.; Lazarenko, V.A.; Plotnikov, D.V.; Dolgintsev, M.E.; Kriukov, A.A. L-lysine as the molecule influencing selective brain activity in pain-induced behavior of rats. Int. J. Mol. Sci. 2019, 20, 1899. [Google Scholar] [CrossRef] [PubMed]
- Heckmann, M.; Runkel, A.S.; Sunny, D.E.; Hartmann, M.F.; Ittermann, T.; Wudy, S.A. Steroid Metabolomic Signature in Term and Preterm Infants. Biomolecules 2024, 14, 235. [Google Scholar] [CrossRef] [PubMed]
- Mardegan, V.; Giordano, G.; Stocchero, M.; Pirillo, P.; Poloniato, G.; Donadel, E.; Salvadori, S.; Giaquinto, C.; Priante, E.; Baraldi, E. Untargeted and targeted metabolomic profiling of preterm newborns with early onset sepsis: A case-control study. Metabolites 2021, 11, 115. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, F.; Montella, S.; Stocchero, M.; Pirillo, P.; Bozzetto, S.; Giordano, G.; Poeta, M.; Baraldi, E. Effects of pidotimod and bifidobacteria mixture on clinical symptoms and urinary metabolomic profile of children with recurrent respiratory infections: A randomized placebo-controlled trial. Pulm. Pharmacol. Ther. 2019, 58, 101818. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Urbanczyk-Wochniak, E.; Broeckling, C.D. Metabolomics data analysis, visualization, and integration. Methods Mol. Biol. 2007, 406, 409–436. [Google Scholar] [PubMed]
- Stocchero, M.; De Nardi, M.; Scarpa, B. PLS for classification. Chemom. Intell. Lab. Syst. 2021, 216, 104374. [Google Scholar] [CrossRef]
- Stocchero, M.; Riccadonna, S.; Franceschi, P. Projection to latent structures with orthogonal constraints for metabolomics data. J. Chemometr. 2018, 32, e2987. [Google Scholar] [CrossRef]
- Stocchero, M. Relevant and irrelevant predictors in PLS2. J. Chemometr. 2020, 34, e3237. [Google Scholar] [CrossRef]
Characteristics | Group O n = 17 | Group I n = 11 | Group C n = 10 | p |
---|---|---|---|---|
Sex, male (female) | 6 (11) | 5 (6) | 4 (6) | 0.87 |
Gestational age [weeks.days], median (IQR) | 29.1 (4.1) | 27.1 (5.1) | 28.2 (4.6) | 0.95 |
Birth weight [g], median (IQR) | 1050 (545) | 1075 (558) | 1285 (736) | 0.58 |
Delivery mode, vaginal (caesarean section) | 1 (16) | 2 (9) | 1 (9) | 0.58 |
Apgar 1 min, median (IQR) | 6 (3) | 4 (2) | 6 (2) | 0.18 |
Apgar 5 min, median (IQR) | 8 (1) | 7 (2) | 7 (0.8) | 0.13 |
Apgar 10 min, median (IQR) | 8 (1) | 8 (0.5) | 8 (1.8) | 0.22 |
Ventilatory support, non-invasive (invasive) | 14 (3) | 4 (7) | 5 (5) | 0.04 |
Chorioamnionitis, yes (no) | 7 (10) | 2 (9) | 6 (4) | 0.14 |
Intrauterine growth restriction, yes (no) | 4 (13) | 1 (10) | 0 (10) | 0.19 |
Sepsis, EOS (LOS) [no] | 3 (5) [9] | 3 (4) [4] | 2 (3) [5] | 0.94 |
Necrotizing enterocolitis, yes (no) | 0 (17) | 1 (10) | 3 (7) | 0.05 |
Intraventricular hemorrhage, yes (no) | 0 (17) | 2 (9) | 1 (9) | 0.21 |
Respiratory distress syndrome, yes (no) | 8 (9) | 9 (2) | 6 (4) | 0.19 |
Bronchopulmonary dysplasia 28 days, yes (no) | 7 (10) | 6 (5) | 4 (6) | 0.74 |
Bronchopulmonary dysplasia 36 weeks, yes (no) | 5 (12) | 3 (8) | 3 (7) | 0.99 |
Retinopathy of prematurity, yes (no) | 5 (12) | 4 (7) | 3 (7) | 0.92 |
Death, yes (no) | 0 (17) | 0 (11) | 0 (10) | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valerio, E.; Meneghelli, M.; Stocchero, M.; Galderisi, A.; Visentin, S.; Bonadies, L.; Pirillo, P.; Poloniato, G.; Giordano, G.; Baraldi, E. The Impact of Antenatal Corticosteroids on the Metabolome of Preterm Newborns: An Untargeted Approach. Int. J. Mol. Sci. 2024, 25, 5860. https://doi.org/10.3390/ijms25115860
Valerio E, Meneghelli M, Stocchero M, Galderisi A, Visentin S, Bonadies L, Pirillo P, Poloniato G, Giordano G, Baraldi E. The Impact of Antenatal Corticosteroids on the Metabolome of Preterm Newborns: An Untargeted Approach. International Journal of Molecular Sciences. 2024; 25(11):5860. https://doi.org/10.3390/ijms25115860
Chicago/Turabian StyleValerio, Enrico, Marta Meneghelli, Matteo Stocchero, Alfonso Galderisi, Silvia Visentin, Luca Bonadies, Paola Pirillo, Gabriele Poloniato, Giuseppe Giordano, and Eugenio Baraldi. 2024. "The Impact of Antenatal Corticosteroids on the Metabolome of Preterm Newborns: An Untargeted Approach" International Journal of Molecular Sciences 25, no. 11: 5860. https://doi.org/10.3390/ijms25115860
APA StyleValerio, E., Meneghelli, M., Stocchero, M., Galderisi, A., Visentin, S., Bonadies, L., Pirillo, P., Poloniato, G., Giordano, G., & Baraldi, E. (2024). The Impact of Antenatal Corticosteroids on the Metabolome of Preterm Newborns: An Untargeted Approach. International Journal of Molecular Sciences, 25(11), 5860. https://doi.org/10.3390/ijms25115860