Janus Faced HMGB1 and Post-Aneurysmal Subarachnoid Hemorrhage (aSAH) Inflammation
Abstract
1. Introduction
2. HMGB1 and Neurological Disorders
3. HMGB1 and Ischemic Stroke
4. HMGB1 and Subarachnoid Hemorrhage
5. HMGB1 and Experimental Subarachnoid Hemorrhage
6. Anti-HMGB1 Therapies and Subarachnoid Hemorrhage
7. Pro-Resolving and Protective Effects of HMGB1 and Subarachnoid Hemorrhage
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Macdonald, R.L. Delayed neurological deterioration after subarachnoid haemorrhage. Nat. Rev. Neurol. 2014, 10, 44–58. Available online: http://www.nature.com/nrneurol/journal/v10/n1/abs/nrneurol.2013.246.html#supplementary-information (accessed on 18 September 2022). [CrossRef] [PubMed]
- Macdonald, R.L.; Schweizer, T.A. Spontaneous subarachnoid haemorrhage. Lancet 2017, 389, 655–666. [Google Scholar] [CrossRef]
- van Gijn, J.; Kerr, R.S.; Rinkel, G.J.E. Subarachnoid haemorrhage. Lancet 2007, 369, 306–318. [Google Scholar] [CrossRef]
- Lawton, M.T.; Vates, G.E. Subarachnoid Hemorrhage. N. Engl. J. Med. 2017, 377, 257–266. [Google Scholar] [CrossRef]
- Etminan, N.; Rinkel, G.J. Unruptured intracranial aneurysms: Development, rupture and preventive management. Nat. Rev. Neurol. 2016, 12, 699–713. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, S.R.; Frede, S.; Seifert, G.; Kinfe, T.M.; Niemelä, M.; Lamprecht, A.; Muhammad, S. Temporal profile of serum mitochondrial DNA (mtDNA) in patients with aneurysmal subarachnoid hemorrhage (aSAH). Mitochondrion 2019, 47, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, S.R.; Hafez, A.; Rezai Jahromi, B.; Kinfe, T.M.; Lamprecht, A.; Niemela, M.; Muhammad, S. Role of damage associated molecular pattern molecules (DAMPs) in aneurysmal subarachnoid hemorrhage (aSAH). Int. J. Mol. Sci. 2018, 19, 2035. [Google Scholar] [CrossRef]
- Suarez, J.I.; Tarr, R.W.; Selman, W.R. Aneurysmal Subarachnoid Hemorrhage. N. Engl. J. Med. 2006, 354, 387–396. [Google Scholar] [CrossRef]
- He, S.-J.; Cheng, J.; Feng, X.; Yu, Y.; Tian, L.; Huang, Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 2017, 8, 64534–64550. [Google Scholar] [CrossRef]
- Musumeci, D.; Roviello, G.N.; Montesarchio, D. An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol. Ther. 2014, 141, 347–357. [Google Scholar] [CrossRef]
- Lotze, M.T.; Tracey, K.J. High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 2005, 5, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Kang, R.; Chen, R.; Zhang, Q.; Hou, W.; Wu, S.; Cao, L.; Huang, J.; Yu, Y.; Fan, X.-G.; Yan, Z.; et al. HMGB1 in health and disease. Mol. Asp. Med. 2014, 40, 1–116. [Google Scholar] [CrossRef]
- Lei, C.; Geng, J.; Zhong, L. The association between plasma HMGB1 and sRAGE and clinical outcome in intracerebral hemorrhage. J. Neuroimmunol. 2020, 345, 577266. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Barakat, W.; Stoyanov, S.; Murikinati, S.; Yang, H.; Tracey, K.J.; Bendszus, M.; Rossetti, G.; Nawroth, P.P.; Bierhaus, A.; et al. The HMGB1 receptor RAGE mediates ischemic brain damage. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 12023–12031. [Google Scholar] [CrossRef] [PubMed]
- Jassam, Y.N.; Izzy, S.; Whalen, M.; McGavern, D.B.; El Khoury, J. Neuroimmunology of traumatic brain injury: Time for a paradigm shift. Neuron 2017, 95, 1246–1265. [Google Scholar] [CrossRef] [PubMed]
- Enokido, Y.; Yoshitake, A.; Ito, H.; Okazawa, H. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem. Biophys. Res. Commun. 2008, 376, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zeng, Z.; Jin, T.; Zhang, H.; Xiong, X.; Gu, L. The role of high mobility group box 1 in ischemic stroke. Front. Cell Neurosci. 2019, 13, 127. [Google Scholar] [CrossRef]
- Huang, J.M.; Hu, J.; Chen, N.; Hu, M.L. Relationship between plasma high-mobility group box-1 levels and clinical outcomes of ischemic stroke. J. Crit. Care 2013, 28, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Roth, S.; Veltkamp, R.; Liesz, A. HMGB1 as a key mediator of immune mechanisms in ischemic stroke. Antioxid. Redox Signal. 2016, 24, 635–651. [Google Scholar] [CrossRef]
- Liesz, A.; Dalpke, A.; Mracsko, E.; Antoine, D.J.; Roth, S.; Zhou, W.; Yang, H.; Na, S.Y.; Akhisaroglu, M.; Fleming, T.; et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. J. Neurosci. Off. J. Soc. Neurosci. 2015, 35, 583–598. [Google Scholar] [CrossRef]
- Kim, J.B.; Lim, C.M.; Yu, Y.M.; Lee, J.K. Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain. J. Neurosci. Res. 2008, 86, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Schulze, J.; Zierath, D.; Tanzi, P.; Cain, K.; Shibata, D.; Dressel, A.; Becker, K. Severe stroke induces long-lasting alterations of high-mobility group box 1. Stroke 2013, 44, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Le, K.; Mo, S.; Lu, X.; Idriss Ali, A.; Yu, D.; Guo, Y. Association of circulating blood HMGB1 levels with ischemic stroke: A systematic review and meta-analysis. Neurol. Res. 2018, 40, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K.; Pham, L.D.; Katusic, Z.S.; Arai, K.; Lo, E.H. Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proc. Natl. Acad. Sci. USA 2012, 109, 7505–7510. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, T.; Tsuruta, R.; Kaneko, T.; Yamashita, S.; Fujita, M.; Kasaoka, S.; Hashiguchi, T.; Suzuki, M.; Maruyama, I.; Maekawa, T. High-mobility group box 1 protein in CSF of patients with subarachnoid hemorrhage. Neurocrit. Care 2009, 11, 362–368. [Google Scholar] [CrossRef]
- King, M.D.; Laird, M.D.; Sangeetha, S.R.; Youssef, P.; Shakir, B.; Vender, J.R.; Alleyne, C.H.; Dhandapani, K.M. Elucidating novel mechanisms of brain injury following subarachnoid hemorrhage: An emerging role for neuroproteomics. Neurosurg. Focus 2010, 28, E10. [Google Scholar] [CrossRef]
- Sokol, B.; Wozniak, A.; Jankowski, R.; Jurga, S.; Wasik, N.; Shahid, H.; Grzeskowiak, B. HMGB1 level in cerebrospinal fluid as a marker of treatment outcome in patients with acute hydrocephalus following aneurysmal subarachnoid hemorrhage. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2015, 24, 1897–1904. [Google Scholar] [CrossRef]
- Zhu, X.-D.; Chen, J.-S.; Zhou, F.; Liu, Q.-C.; Chen, G.; Zhang, J.-M. Relationship between plasma high mobility group box-1 protein levels and clinical outcomes of aneurysmal subarachnoid hemorrhage. J. Neuroinflamm. 2012, 9, 1–12. [Google Scholar] [CrossRef]
- Chaudhry, S.R.; Guresir, A.; Stoffel-Wagner, B.; Fimmers, R.; Kinfe, T.M.; Dietrich, D.; Lamprecht, A.; Vatter, H.; Guresir, E.; Muhammad, S. Systemic high-mobility group box-1: A novel predictive biomarker for cerebral vasospasm in aneurysmal subarachnoid hemorrhage. Crit. Care Med. 2018, 46, e1023–e1028. [Google Scholar] [CrossRef]
- Hendrix, P.; Foreman, P.M.; Harrigan, M.R.; Fisher, W.S.R.; Vyas, N.A.; Lipsky, R.H.; Lin, M.; Walters, B.C.; Tubbs, R.S.; Shoja, M.M.; et al. Impact of high-mobility group box 1 polymorphism on delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2017, 101, 325–330. [Google Scholar] [CrossRef]
- Hemmer, S.; Senger, S.; Griessenauer, C.J.; Simgen, A.; Oertel, J.; Geisel, J.; Hendrix, P. Admission serum high mobility group box 1 (HMGB1) protein predicts delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage. Neurosurg. Rev. 2022, 45, 807–817. [Google Scholar] [CrossRef]
- Murakami, K.; Koide, M.; Dumont, T.M.; Russell, S.R.; Tranmer, B.I.; Wellman, G.C. Subarachnoid hemorrhage induces gliosis and increased expression of the pro-inflammatory cytokine high mobility group box 1 protein. Transl. Stroke Res. 2011, 2, 72–79. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, W.; Hu, Y.C.; Li, H.; Zhang, D.; Li, S.; Li, W.; Li, W.D.; Ma, B.; Zhu, J.H.; et al. Early release of high-mobility group box 1 (HMGB1) from neurons in experimental subarachnoid hemorrhage in vivo and in vitro. J. Neuroinflamm. 2014, 11, 106. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Chaudhry, S.R.; Kahlert, U.D.; Lehecka, M.; Korja, M.; Niemelä, M.; Hänggi, D. Targeting high mobility group box 1 in subarachnoid hemorrhage: A systematic review. Int. J. Mol. Sci. 2020, 21, 2709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-H.; Peng, L.; Zhang, J.; Dong, Y.-P.; Wang, C.-J.; Liu, C.; Xia, D.-Y.; Zhang, X.-S. Berberine ameliorates subarachnoid hemorrhage injury via induction of sirtuin 1 and inhibiting HMGB1/Nf-κB pathway. Front. Pharmacol. 2020, 11, 1073. [Google Scholar] [CrossRef] [PubMed]
- Haruma, J.; Teshigawara, K.; Hishikawa, T.; Wang, D.; Liu, K.; Wake, H.; Mori, S.; Takahashi, H.K.; Sugiu, K.; Nishibori, M. Anti-high mobility group box-1 (HMGB1) antibody attenuates delayed cerebral vasospasm and brain injury after subarachnoid hemorrhage in rats. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Chen, T.; Pan, H.; Li, J.; Xu, H.; Jin, H.; Qian, C.; Yan, F.; Chen, J.; Wang, C.; Chen, J. Inhibiting of RIPK3 attenuates early brain injury following subarachnoid hemorrhage: Possibly through alleviating necroptosis. Biomed. Pharmacother. 2018, 107, 563–570. [Google Scholar] [CrossRef]
- Xiong, L.; Sun, L.; Zhang, Y.; Peng, J.; Yan, J.; Liu, X. Exosomes from bone marrow mesenchymal stem cells can alleviate early brain injury after subarachnoid hemorrhage through miRNA129-5p-HMGB1 pathway. Stem Cells Dev. 2020, 29, 212–221. [Google Scholar] [CrossRef]
- Wang, K.-C.; Tang, S.-C.; Lee, J.-E.; Li, Y.-I.; Huang, Y.-S.; Yang, W.-S.; Jeng, J.-S.; Arumugam, T.V.; Tu, Y.-K. Cerebrospinal fluid high mobility group box 1 is associated with neuronal death in subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 2017, 37, 435–443. [Google Scholar] [CrossRef]
- Xing, C.; Hayakawa, K.; Lok, J.; Arai, K.; Lo, E.H. Injury and repair in the neurovascular unit. Neurol. Res. 2012, 34, 325–330. [Google Scholar] [CrossRef]
- Mocchetti, I.; Wrathall, J.R. Neurotrophic factors in central nervous system trauma. J. Neurotrauma 1995, 12, 853–870. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Sun, L.; Feng, D.; Sun, Q.; Dou, Y.; Liu, C.; Zhou, F.; Li, H.; Shen, H.; Wang, Z.; et al. HMGB1 promotes neurovascular remodeling via rage in the late phase of subarachnoid hemorrhage. Brain Res. 2017, 1670, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Schlueter, C.; Weber, H.; Meyer, B.; Rogalla, P.; Röser, K.; Hauke, S.; Bullerdiek, J. Angiogenetic signaling through hypoxia: HMGB1: An angiogenetic switch molecule. Am. J. Pathol. 2005, 166, 1259–1263. [Google Scholar] [CrossRef]
- Lei, C.; Wu, B.; Cao, T.; Zhang, S.; Liu, M. Activation of the high-mobility group box 1 protein-receptor for advanced glycation end-products signaling pathway in rats during neurogenesis after intracerebral hemorrhage. Stroke 2015, 46, 500–506. [Google Scholar] [CrossRef]
- Jarocka-Karpowicz, I.; Syta-Krzyżanowska, A.; Kochanowicz, J.; Mariak, Z.D. Clinical prognosis for SAH consistent with redox imbalance and lipid peroxidation. Molecules 2020, 25, 1921. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Liu, Z.; Li, G.; Zhou, L.; Huang, K.; Wu, Z.; Zhan, R.; Shen, J. Inflammation and oxidative stress: Potential targets for improving prognosis after subarachnoid hemorrhage. Front. Cell Neurosci. 2021, 15, 739506. [Google Scholar] [CrossRef]
- Zheng, Z.V.; Lyu, H.; Lam, S.Y.E.; Lam, P.K.; Poon, W.S.; Wong, G.K.C. The dynamics of microglial polarization reveal the resident neuroinflammatory responses after subarachnoid hemorrhage. Transl. Stroke Res. 2020, 11, 433–449. [Google Scholar] [CrossRef]
- Rojo, A.I.; McBean, G.; Cindric, M.; Egea, J.; López, M.G.; Rada, P.; Zarkovic, N.; Cuadrado, A. Redox control of microglial function: Molecular mechanisms and functional significance. Antioxid. Redox Signal. 2014, 21, 1766–1801. [Google Scholar] [CrossRef]
- Janko, C.; Filipović, M.; Munoz, L.E.; Schorn, C.; Schett, G.; Ivanović-Burmazović, I.; Herrmann, M. Redox modulation of HMGB1-related signaling. Antioxid. Redox Signal. 2014, 20, 1075–1085. [Google Scholar] [CrossRef]
- Frank, M.G.; Weber, M.D.; Fonken, L.K.; Hershman, S.A.; Watkins, L.R.; Maier, S.F. The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: A role for the NLRP3 inflammasome. Brain Behav. Immunol. 2016, 55, 215–224. [Google Scholar] [CrossRef]
- Ved, R.; Sharouf, F.; Harari, B.; Muzaffar, M.; Manivannan, S.; Ormonde, C.; Gray, W.P.; Zaben, M. Disulfide HMGB1 acts via TLR2/4 receptors to reduce the numbers of oligodendrocyte progenitor cells after traumatic injury in vitro. Sci. Rep. 2021, 11, 6181. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; Im, Y.; Ko, R.-E.; Lee, J.Y.; Park, J.; Jeon, K. Association of plasma level of high-mobility group box-1 with necroptosis and sepsis outcomes. Sci. Rep. 2021, 11, 9512. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.C.; Zhao, A.P.; Han, Q.F.; Wu, L.; Yao, D.K.; Wang, L.X. Correlation between serum high-mobility group box-1 levels and high-sensitivity C-reactive protein and troponin I in patients with coronary artery disease. Exp. Ther. Med. 2013, 6, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.V.; Pedersen, S.; Møgelvang, R.; Skov-Jensen, J.; Flyvbjerg, A. Plasma high-mobility group box 1 levels predict mortality after ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 2011, 4, 281–286. [Google Scholar] [CrossRef]
- Angus, D.C.; Yang, L.; Kong, L.; Kellum, J.A.; Delude, R.L.; Tracey, K.J.; Weissfeld, L. Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis. Crit. Care Med. 2007, 35, 1061–1067. [Google Scholar] [CrossRef]
- Bruchfeld, A.; Qureshi, A.R.; Lindholm, B.; Barany, P.; Yang, L.; Stenvinkel, P.; Tracey, K.J. High mobility group box protein-1 correlates with renal function in chronic kidney disease (CKD). Mol. Med. 2008, 14, 109–115. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Y.; Zhang, Z.-Y.; Tang, X.-M. Association between high mobility group box 1 protein and juvenile idiopathic arthritis: A prospective longitudinal study. Pediatric Rheumatol. 2021, 19, 112. [Google Scholar] [CrossRef]
- Abdulahad, D.A.; Westra, J.; Bijzet, J.; Limburg, P.C.; Kallenberg, C.G.M.; Bijl, M. High mobility group box 1 (HMGB1) and anti-HMGB1 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Arthritis Res. Ther. 2011, 13, R71. [Google Scholar] [CrossRef]
- Marjanac, I.; Lovrić, R.; Barbić, J. Serum levels of the high-mobility group box 1 protein (HMGB1) in children with type 1 diabetes mellitus: Case-control study. Cent.-Eur. J. Immunol. 2019, 44, 33–37. [Google Scholar] [CrossRef]
- Wang, H.; Qu, H.; Deng, H. Plasma HMGB-1 levels in subjects with obesity and type 2 diabetes: A cross-sectional study in China. PLoS ONE 2015, 10, e0136564. [Google Scholar] [CrossRef]
- Kan, M.; Song, L.; Zhang, X.; Zhang, J.; Fang, P. Circulating high mobility group box-1 and toll-like receptor 4 expressions increase the risk and severity of epilepsy. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Med. Biol. 2019, 52, e7374. [Google Scholar] [CrossRef] [PubMed]
- Festoff, B.W.; Sajja, R.K.; van Dreden, P.; Cucullo, L. HMGB1 and thrombin mediate the blood-brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer’s disease. J. Neuroinflamm. 2016, 13, 194. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Han, C.; Guo, L.; Guan, Q. High expression of the HMGB1-TLR4 axis and its downstream signaling factors in patients with Parkinson’s disease and the relationship of pathological staging. Brain Behav. 2018, 8, e00948. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, Z.; Sternberg, D.; Chichelli, T.; Drake, A.; Patel, N.; Kolb, C.; Chadha, K.; Yu, J.; Hojnacki, D. High-mobility group box 1 in multiple sclerosis. Immunol. Res. 2016, 64, 385–391. [Google Scholar] [CrossRef]
- Tsukagawa, T.; Katsumata, R.; Fujita, M.; Yasui, K.; Akhoon, C.; Ono, K.; Dohi, K.; Aruga, T. Elevated serum high-mobility group box-1 protein level is associated with poor functional outcome in ischemic stroke. J. Stroke Cerebrovasc. Dis. 2017, 26, 2404–2411. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiong, K.L.; Lin, S.; Zhong, Q.; Lu, F.L.; Liang, H.; Li, J.C.; Wang, J.Z.; Yang, Q.W. Elevation of high-mobility group protein box-1 in serum correlates with severity of acute intracerebral hemorrhage. Mediat. Inflamm. 2010, 2010. [Google Scholar] [CrossRef]
Sr. No. | Disease Condition | Study Type | No. of Patients | Sample Measured | Time Duration of Measurement | HMGB1 Status | Other Biomarkers | Reference |
---|---|---|---|---|---|---|---|---|
1. | Sepsis and septic shock | Observational cohort study | Derivation cohort: controls = 46, sepsis = 58, septic shock = 84 validation cohort: sepsis = 24, septic shock = 53 | Plasma | One time within 48 h | ↑sed | RIPK3, MLKL | [52] |
2. | Coronary artery disease (CAD) | Observational study | CAD = 98, controls = 30 | Serum | Day after admission | ↑sed | High sensitivity (hs) CRP, cardiac troponin I | [53] |
3. | ST segment elevation myocardial infarction (STEMI) and mortality | Observational study | STEMI patients = 141, healthy controls (HCS) = 42 | Plasma | At admission | ↑sed after STEMI and doubled in patients who died | Troponin I, creatine kinase myocardium | [54] |
4. | Community-acquired pneumonia (CAP) | Subjects drawn from larger genetic and inflammatory markers of sepsis (GenIMS) study | CAP patients = 122, healthy controls = 38 | Plasma | After enrolment, daily for 1st week, then weekly until discharge | ↑sed | IL-6, IL-10, TNF-α | [55] |
5. | Chronic kidney disease (CKD) | Cross-sectional study | CKD = 177, healthy controls = 48 | Serum | After overnight fast | ↑sed | hs-CRP, TNF-α, IL-6, Hb, HbA1c | [56] |
6. | Juvenile idiopathic arthritis (JIA) | Prospective longitudinal study | JIA children = 64, reactive arthritis = 9, HC = 15 | Serum | 1st visit and at 1st, 3rd, and 6th month follow-up | ↑sed | CRP, neutrophils, ferritin, ESR | [57] |
7. | Systemic lupus erythematosus (SLE) | Observational study | SLE patients = 70, HC = 35 | Serum | At outpatient clinic visit | ↑sed in quiescent patients, ↓sed in patients with active SLE | CRP, C3, C4, creatinine, anti-HMGB1, anti-dsDNA | [58] |
8. | Type 1 diabetes mellitus (DM) | Case control observational study | Type 1 DM patients = 96, HC = 40 | Serum | Within 24 h of diagnosis of type 1 DM | ↑sed | CRP, WBCs, glucose, HBA1C, β cell autoantibodies | [59] |
9. | Type 2 diabetes mellitus (T2DM) | Cross-sectional study | T2DM = 76, normal glucose tolerant (NGT) = 79 | Plasma | At outpatient visit | ↑sed | IL-6, glucose, insulin, HBA1C | [60] |
10. | Epilepsy | Case control study | Epilepsy patients = 105, HC = 100 | Serum | Within 12 h after seizure | ↑sed | TLR-4 | [61] |
11. | Alzheimer’s disease (AD) | Case control study | AD patients = 24, controls = 12 | Serum | Upon recruitment and diagnosis | ↑sed | s100β, Aβ, sRAGE, sThrombomodulin antigen | [62] |
12. | Parkinson’s disease (PD) | Observational study | PD patients = 120, HC = 100 | Serum | After 12 h of fasting after admission | ↑sed | TLR-4, MyD88, NFκB, TNF-α | [63] |
13. | Multiple sclerosis (MS) | Cross-sectional study | MS patients = 96, HC = 34 | Serum | On recruitment | ↑sed | - | [64] |
14. | Ischemic stroke (IS) | Observational study | IS patients = 183, HC = 16 | Serum | On admission and on day 7 | ↑sed | hs-CRP | [65] |
15. | Intracerebral hemorrhage (ICH) | Prospective observational study | ICH patients = 65, HC = 41 | Serum | On admission | ↑sed | TNF-α, IL-6 | [66] |
16. | Aneurysmal subarachnoid hemorrhage (aSAH) | Observational study | aSAH patients = 39, Controls = 13 | Cerebrospinal fluid (CSF) | Day 3, 7, and 14 | ↑sed | TNF-α, IL-8, IL-6 | [25] |
17. | Aneurysmal subarachnoid hemorrhage (aSAH) | Observational study | aSAH patients = 9, Controls = 7 | CSF | After admission | ↑sed | - | [26] |
18. | Aneurysmal subarachnoid hemorrhage (aSAH) | Observational study | aSAH patients = 10, Controls = 8 | CSF | Day 1, 5, and 10 | ↑sed | CRP, fibrinogen, WBCs | [27] |
19. | Aneurysmal subarachnoid hemorrhage (aSAH) | Observational study | aSAH patients = 40, Controls = 5 | CSF | Post hemorrhage day 7 | ↑sed | Glucose, lactic acid, protein, WBCs | [39] |
20. | Aneurysmal subarachnoid hemorrhage (aSAH) | Observational study | aSAH patients = 303, HC = 150 | Plasma | On admission within 48 h | ↑sed | - | [28] |
21. | Aneurysmal subarachnoid hemorrhage (aSAH) | Retrospective observational study | aSAH patients = 53, controls = 28 | Serum | Day 1, 3, 5, 7, 9, 11, and 13 | ↑sed | IL-6, WBCs | [29] |
22. | Aneurysmal subarachnoid hemorrhage (aSAH) | Prospective single-blinded observational study | aSAH patients = 83 | Serum | Day 0, 4, 8, and 12 | ↑sed on admission in aSAH patients with Delayed cerebral ischemia | CRP, WBCs, platelets | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhry, S.R.; Shafique, S.; Sajjad, S.; Hänggi, D.; Muhammad, S. Janus Faced HMGB1 and Post-Aneurysmal Subarachnoid Hemorrhage (aSAH) Inflammation. Int. J. Mol. Sci. 2022, 23, 11216. https://doi.org/10.3390/ijms231911216
Chaudhry SR, Shafique S, Sajjad S, Hänggi D, Muhammad S. Janus Faced HMGB1 and Post-Aneurysmal Subarachnoid Hemorrhage (aSAH) Inflammation. International Journal of Molecular Sciences. 2022; 23(19):11216. https://doi.org/10.3390/ijms231911216
Chicago/Turabian StyleChaudhry, Shafqat Rasul, Sumaira Shafique, Saba Sajjad, Daniel Hänggi, and Sajjad Muhammad. 2022. "Janus Faced HMGB1 and Post-Aneurysmal Subarachnoid Hemorrhage (aSAH) Inflammation" International Journal of Molecular Sciences 23, no. 19: 11216. https://doi.org/10.3390/ijms231911216
APA StyleChaudhry, S. R., Shafique, S., Sajjad, S., Hänggi, D., & Muhammad, S. (2022). Janus Faced HMGB1 and Post-Aneurysmal Subarachnoid Hemorrhage (aSAH) Inflammation. International Journal of Molecular Sciences, 23(19), 11216. https://doi.org/10.3390/ijms231911216