Comprehensive Overview of Gene Rearrangements in Childhood T-Cell Acute Lymphoblastic Leukaemia
Abstract
1. Introduction
2. Genetic Profile of T-ALL
2.1. Transcription Factor
2.2. Signalling Pathway Regulators
2.2.1. NOTCH1 Pathway
2.2.2. PI3-AKT-mTOR Pathway
2.2.3. JAK-STAT Pathway
2.2.4. RAS Pathway
2.3. Cell Cycle Regulators
2.4. Kinase Signalling
2.5. T-ALL Rearrangements
2.6. Epigenetic Regulators
2.7. Tumour Suppressors
2.8. Translation and RNA Stability
3. Genetic Aberrations Involved in Relapse
4. Chromothripsis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| AKT1 | the serine-threonine protein kinase |
| ALL | acute lymphoblastic leukemia |
| BCP-ALL | B-cell precursor acute lymphoblastic leukemia |
| BSAP | B-cell-specific protein activator factor |
| CIR | cumulative incidence of relapse |
| CNAs | copy number alterations |
| DFR | disease free of recurrence |
| DIC | disseminated intravascular coagulation |
| DR | Downregulation |
| EGIL | The European Group for the Immunologic Classification |
| ESF | event-free survival |
| ETP-ALL | Early T-cell precursor ALL |
| GSI | γ-secretase inhibitors |
| HD | heterodimerization domain |
| JAK 1 | janus kinase 1 |
| LBL | acute lymphoblastic lymphoma |
| LDH | lactate dehydrogenase |
| MRD | minimal residual disease |
| NGS | new generation sequencing |
| OE | Overexpression |
| OS | overall survival |
| PDGFRb | platelet dderived growth factor b |
| PEST | (-Pro-Gln-Ser-Thr-) domain. |
| PIP2 | phosphatidylinositol (4,5) P2 |
| PIP3 | phosphatidylinositol (3,4,5) P3 |
| PRC | polycomb group complex |
| RFS | relapse-free survival |
| SNV | single nucleotide variants |
| STAT5B | signal transducer and activator of transcription 5B |
| T-ALL | T-cell acute lymphoblastic leukemia |
| TCR | T cell antigen receptor |
| TKI | tyrosine kinase inhibitor |
| WBC | white blood cell |
References
- Follini, E.; Marchesini, M.; Roti, G. Strategies to Overcome Resistance Mechanisms in T-Cell Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2019, 20, 3021. [Google Scholar] [CrossRef] [PubMed]
- Raetz, E.A.; Teachey, D.T. T-cell acute lymphoblastic leukemia. Hematology 2016, 2016, 580–588. [Google Scholar] [CrossRef]
- Allen, A.; Sireci, A.; Colovai, A.; Pinkney, K.; Sulis, M.; Bhagat, G.; Alobeid, B. Early T-cell precursor leukemia/lymphoma in adults and children. Leuk. Res. 2013, 37, 1027–1034. [Google Scholar] [CrossRef]
- Belver, L.; Ferrando, A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 2016, 16, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Hefazi, M.; Litzow, M.R. Recent Advances in the Biology and Treatment of T Cell Acute Lymphoblastic Leukemia. Curr. Hematol. Malig. Rep. 2018, 13, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, S.; Zini, G.; Bassan, R. Diagnosis and Subclassification of Acute Lymphoblastic Leukemia. Mediterr. J. Hematol. Infect. Dis. 2014, 6, e2014073. [Google Scholar] [CrossRef] [PubMed]
- Szczepański, T.; van der Velden, V.H.J.; van Dongen, J.J.M. Classification systems for acute and chronic leukemias. Best Pract. Res. Clin. Haematol. 2003, 16, 561–582. [Google Scholar] [CrossRef]
- Ohki, K.; Takahashi, H.; Fukushima, T.; Nanmoku, T.; Kusano, S.; Mori, M.; Nakazawa, Y.; Yuza, Y.; Migita, M.; Okuno, H.; et al. Impact of immunophenotypic characteristics on genetic subgrouping in childhood acute lymphoblastic leukemia: Tokyo Children’s Cancer Study Group ( TCCSG ) study L04-16. Genes Chromosom. Cancer 2020, 59, 551–561. [Google Scholar] [CrossRef]
- Iacobucci, I.; Mullighan, C.G. Genetic Basis of Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2017, 35, 975–983. [Google Scholar] [CrossRef]
- Hömig-Hölzel, C.; Savola, S. Multiplex Ligation-dependent Probe Amplification (MLPA) in Tumor Diagnostics and Prognostics. Diagn. Mol. Pathol. 2012, 21, 189–206. [Google Scholar] [CrossRef]
- Richter-Pechańska, P.; Kunz, J.B.; Hof, J.; Zimmermann, M.; Rausch, T.; Bandapalli, O.R.; Orlova, E.; Scapinello, G.; Sagi, J.C.; Stanulla, M.; et al. Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia. Blood Cancer J. 2017, 7, e523. [Google Scholar] [CrossRef] [PubMed]
- Pastorczak, A.; Młynarski, W.; Szczepański, T. Prognostic and therapeutic implications of genetic aberrationsin childhood acute lymphoblastic leukemia. Hematologia 2011, 2, 43–50. [Google Scholar]
- Colomer-Lahiguera, S.; Pisecker, M.; König, M.; Nebral, K.; Pickl, W.F.; Kauer, M.O.; Haas, O.A.; Ullmann, R.; Attarbaschi, A.; Dworzak, M.N.; et al. MEF2C-dysregulated pediatric T-cell acute lymphoblastic leukemia is associated with CDKN1B deletions and a poor response to glucocorticoid therapy. Leuk. Lymphoma 2017, 58, 2895–2904. [Google Scholar] [CrossRef] [PubMed]
- Ghodousi, E.S.; Aberuyi, N.; Rahgozar, S. Simultaneous changes in expression levels of BAALC and miR-326: A novel prognostic biomarker for childhood ALL. Jpn. J. Clin. Oncol. 2020, 50, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019, 2, 141–160. [Google Scholar] [CrossRef]
- Drobna, M.; Szarzyńska-Zawadzka, B.; Dawidowska, M. T-cell acute lymphoblastic leukemia from miRNA perspective: Basic concepts, experimental approaches, and potential biomarkers. Blood Rev. 2018, 32, 457–472. [Google Scholar] [CrossRef]
- Jang, W.; Park, J.; Kwon, A.; Choi, H.; Kim, J.; Lee, G.D.; Han, E.; Jekarl, D.W.; Chae, H.; Han, K.; et al. CDKN2B downregulation and other genetic characteristics in T-acute lymphoblastic leukemia. Exp. Mol. Med. 2019, 51, 1–15. [Google Scholar] [CrossRef]
- Kraszewska, M.D.; Dawidowska, M.; Szczepański, T.; Witt, M. T-cell acute lymphoblastic leukaemia: Recent molecular biology findings. Br. J. Haematol. 2012, 156, 303–315. [Google Scholar] [CrossRef]
- Kawashima-Goto, S.; Imamura, T.; Tomoyasu, C.; Yano, M.; Yoshida, H.; Fujiki, A.; Tamura, S.; Osone, S.; Ishida, H.; Morimoto, A.; et al. BCL2 Inhibitor (ABT-737): A Restorer of Prednisolone Sensitivity in Early T-Cell Precursor-Acute Lymphoblastic Leukemia with High MEF2C Expression? PLoS ONE 2015, 10, e0132926. [Google Scholar] [CrossRef]
- Iqbal, N.; Sharma, A.; Raina, V.; Kumar, L.; Bakhshi, S.; Kumar, R.; Gajendra, S. Poor Response to Standard Chemotherapy in Early T-precursor (ETP)-ALL: A Subtype of T-ALL Associated with Unfavourable Outcome: A Brief Report. Indian J. Hematol. Blood Transfus. 2014, 30, 215–218. [Google Scholar] [CrossRef][Green Version]
- Tran, T.; Krause, J. Early T-cell precursor acute lymphoblastic leukemia with KRAS and DNMT3A mutations and unexpected monosomy 7. Bayl. Univ. Med. Cent. Proc. 2018, 31, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qian, J.-J.; Zhou, Y.-L.; Huang, X.; Li, J.-H.; Li, X.-Y.; Li, C.-Y.; Wang, H.-P.; Lou, Y.-J.; Meng, H.-T.; et al. Comparison of Early T-Cell Precursor and Non-ETP Subtypes Among 122 Chinese Adults With Acute Lymphoblastic Leukemia. Front. Oncol. 2020, 10, 10. [Google Scholar] [CrossRef]
- Zuurbier, L.; Gutierrez, A.; Mullighan, C.G.; Canté-Barrett, K.; Gevaert, A.O.; De Rooi, J.; Li, Y.; Smits, W.K.; Buijs-Gladdines, J.G.; Sonneveld, E.; et al. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors. Haematologica 2013, 99, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Noronha, E.P.; Marques, L.V.C.; Andrade, F.G.; Thuler, L.C.S.; Terra-Granado, E.; Pombo-De-Oliveira, M. The Profile of Immunophenotype and Genotype Aberrations in Subsets of Pediatric T-Cell Acute Lymphoblastic Leukemia. Front. Oncol. 2019, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Lamb, A.V.; O’Brien, S.; Ravandi, F.; Konopleva, M.; Jabbour, E.; Zuo, Z.; Jorgensen, J.; Lin, P.; Pierce, S.; et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: A high-risk subtype. Blood 2016, 127, 1863–1869. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Drusbosky, L.M.; Meacham, A.; Turcotte, M.; Bhargav, P.; Vasista, S.; Usmani, S.; Pampana, A.; Basu, K.; Tyagi, A.; et al. Computational modeling of early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) to identify personalized therapy using genomics. Leuk. Res. 2019, 78, 3–11. [Google Scholar] [CrossRef]
- Vicente, C.; Schwab, C.; Broux, M.; Geerdens, E.; Degryse, S.; Demeyer, S.; Lahortiga, I.; Elliott, A.; Chilton, L.; La Starza, R.; et al. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia. Haematologica 2015, 100, 1301–1310. [Google Scholar] [CrossRef]
- Kowalczyk, J.; Sandberg, A.A. A possible subgroup of ALL with 9p−. Cancer Genet. Cytogenet. 1983, 9, 383–385. [Google Scholar] [CrossRef]
- La Starza, R.; Lettieri, A.; Pierini, V.; Nofrini, V.; Gorello, P.; Songia, S.; Crescenzi, B.; Kronnie, G.T.; Giordan, M.; Leszl, A.; et al. Linking genomic lesions with minimal residual disease improves prognostic stratification in children with T-cell acute lymphoblastic leukaemia. Leuk. Res. 2013, 37, 928–935. [Google Scholar] [CrossRef]
- Haider, Z.; Larsson, P.; Landfors, M.; Köhn, L.; Schmiegelow, K.; Flægstad, T.; Kanerva, J.; Heyman, M.; Hultdin, M.; Degerman, S. An integrated transcriptome analysis in T-cell acute lymphoblastic leukemia links DNA methylation subgroups to dysregulated TAL1 and ANTP homeobox gene expression. Cancer Med. 2019, 8, 311–324. [Google Scholar] [CrossRef]
- Alcantara, M.; Simonin, M.; Lhermitte, L.; Touzart, A.; Dourthe, M.E.; Latiri, M.; Grardel, N.; Cayuela, J.M.; Chalandon, Y.; Graux, C.; et al. Clinical and biological features of PTPN2-deleted adult and pediatric T-cell acute lymphoblastic leukemia. Blood Adv. 2019, 3, 1981–1988. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, S.; Foà, R. T-cell acute lymphoblastic leukemia. Haematologica 2009, 94, 160–162. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, D.; Saccomani, V.; Piovan, E. Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2017, 18, 1904. [Google Scholar] [CrossRef] [PubMed]
- Kees, U.R.; Heerema, N.A.; Kumar, R.; Watt, P.M.; Baker, D.L.; La, M.K.; Uckun, F.M.; Sather, H.N. Expression of HOX11 in childhood T-lineage acute lymphoblastic leukaemia can occur in the absence of cytogenetic aberration at 10q24: A study from the Children’s Cancer Group (CCG). Leukemia 2003, 17, 887–893. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pombo-De-Oliveira, M.S.; Andrade, F.G.; Carvalho, E.G.; Da Silva, A.M.M.; Agareno, J.M.D.A.; Dorea, M.D.; Araujo, F.N.S.; Burlachini, L.M.; Curvello, C.; Cardoso, T.C.; et al. Early-age Acute Leukemia: Revisiting Two Decades of the Brazilian Collaborative Study Group. Arch. Med. Res. 2016, 47, 593–606. [Google Scholar] [CrossRef]
- Peterson, J.F.; Baughn, L.B.; Pearce, K.E.; Williamson, C.M.; Demasi, J.C.B.; Olson, R.M.; Goble, T.A.; Meyer, R.G.; Greipp, P.T.; Ketterling, R.P. KMT2A (MLL) rearrangements observed in pediatric/young adult T-lymphoblastic leukemia/lymphoma: A 10-year review from a single cytogenetic laboratory. Genes Chromosom. Cancer 2018, 57, 541–546. [Google Scholar] [CrossRef]
- Mansur, M.B.; Emerenciano, M.; Splendore, A.; Brewer, L.; Hassan, R.; Pombo-De-Oliveira, M.S.; Pombo-De-Oliveira, M.S. T-cell lymphoblastic leukemia in early childhood presents NOTCH1 mutations and MLL rearrangements. Leuk. Res. 2010, 34, 483–486. [Google Scholar] [CrossRef]
- Matlawska-Wasowska, K.; Kang, H.; Devidas, M.; Wen, J.; Harvey, R.C.; Nickl, C.K.; Ness, S.A.; Rusch, M.; Li, Y.; Onozawa, M.; et al. MLL rearrangements impact outcome in HOXA-deregulated T-lineage acute lymphoblastic leukemia: A Children’s Oncology Group Study. Leukemia 2016, 30, 1909–1912. [Google Scholar] [CrossRef][Green Version]
- Forgione, M.O.; McClure, B.J.; Eadie, L.N.; Yeung, D.T.; White, D.L. KMT2A rearranged acute lymphoblastic leukaemia: Unravelling the genomic complexity and heterogeneity of this high-risk disease. Cancer Lett. 2019, 469, 410–418. [Google Scholar] [CrossRef]
- Kang, H.; Sharma, N.D.; Nickl, C.K.; Devidas, M.; Loh, M.L.; Hunger, S.P.; Dunsmore, K.P.; Winter, S.S.; Matlawska-Wasowska, K. Dysregulated transcriptional networks in KMT2A- and MLLT10-rearranged T-ALL. Biomark. Res. 2018, 6, 27. [Google Scholar] [CrossRef]
- Liu, Y.; Easton, J.; Shao, Y.; Maciaszek, J.; Wang, Z.; Wilkinson, M.R.; McCastlain, K.; Edmonson, M.; Pounds, S.; Meenakshi, D.; et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 2017, 49, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Lejman, M.; Włodarczyk, M.; Styka, B.; Pastorczak, A.; Zawitkowska, J.; Taha, J.; Sędek, Ł.; Skonieczka, K.; Braun, M.; Haus, O.; et al. Advantages and Limitations of SNP Array in the Molecular Characterization of Pediatric T-Cell Acute Lymphoblastic Leukemia. Front. Oncol. 2020, 10, 1184. [Google Scholar] [CrossRef] [PubMed]
- Thakral, D.; Kaur, G.; Gupta, R.; Benard-Slagter, A.; Savola, S.; Kumar, I.; Anand, R.; Rani, L.; Verma, P.; Joshi, S.; et al. Rapid Identification of Key Copy Number Alterations in B- and T-Cell Acute Lymphoblastic Leukemia by Digital Multiplex Ligation-Dependent Probe Amplification. Front. Oncol. 2019, 9, 871. [Google Scholar] [CrossRef] [PubMed]
- La Starza, R.; Borga, C.; Barba, G.; Pierini, V.; Schwab, C.; Matteucci, C.; Fernandez, A.G.L.; Leszl, A.; Cazzaniga, G.; Chiaretti, S.; et al. Genetic profile of T-cell acute lymphoblastic leukemias with MYC translocations. Blood 2014, 124, 3577–3582. [Google Scholar] [CrossRef]
- Dorfman, D.M.; Morgan, E.A.; Pelton, A.; Unitt, C. T-cell transcription factor GATA-3 is an immunophenotypic marker of acute leukemias with T-cell differentiation. Hum. Pathol. 2017, 65, 166–174. [Google Scholar] [CrossRef]
- Fattizzo, B.; Rosa, J.; Giannotta, J.A.; Baldini, L.; Fracchiolla, N. The Physiopathology of T- Cell Acute Lymphoblastic Leukemia: Focus on Molecular Aspects. Front. Oncol. 2020, 10, 273. [Google Scholar] [CrossRef]
- Kraszewska, M.D.; Dawidowska, M.; Kosmalska, M.; Sedek, Ł.; Grzeszczak, W.; Kowalczyk, J.R.; Szczepański, T.; Witt, M.; Lejman, M.; Jacek Wachowiak, K.D.; et al. BCL11B, FLT3, NOTCH1 and FBXW7 mutation status in T-cell acute lymphoblastic leukemia patients. Blood Cells Mol. Dis. 2013, 50, 33–38. [Google Scholar] [CrossRef]
- Gutierrez, A.; Kentsis, A.; Sanda, T.; Holmfeldt, L.; Chen, S.-C.; Zhang, J.; Protopopov, A.; Chin, L.; Dahlberg, S.E.; Neuberg, D.S.; et al. The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood 2011, 118, 4169–4173. [Google Scholar] [CrossRef]
- Olsson, L.; Lundin-Ström, K.B.; Castor, A.; Behrendtz, M.; Biloglav, A.; Norén-Nyström, U.; Paulsson, K.; Johansson, B. Improved cytogenetic characterization and risk stratification of pediatric acute lymphoblastic leukemia using single nucleotide polymorphism array analysis: A single center experience of 296 cases. Genes Chromosom. Cancer 2018, 57, 604–607. [Google Scholar] [CrossRef]
- Cavé, H.; Cacheux, V.; Raynaud, S.; Brunie, G.; Bakkus, M.; Cochaux, P.; Preudhomme, C.; Laï, J.L.; Vilmer, E.; Grandchamp, B. ETV6 is the target of chromosome 12p deletions in t(12;21) childhood acute lymphocytic leukemia. Leukemia 1997, 11, 1459–1464. [Google Scholar] [CrossRef][Green Version]
- Ho, I.-C.; Tai, T.-S.; Pai, S.-Y. GATA3 and the T-cell lineage: Essential functions before and after T-helper-2-cell differentiation. Nat. Rev. Immunol. 2009, 9, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Fransecky, L.; Neumann, M.; Heesch, S.; Schlee, C.; Ortiz-Tanchez, J.; Heller, S.; Mössner, M.; Schwartz, S.; Mochmann, L.H.; Isaakidis, K.; et al. Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL. J. Hematol. Oncol. 2016, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, A.P.Y.; Devidas, M.; Lee, S.H.R.; Cao, X.; Pei, D.; Borowitz, M.; Wood, B.; Gastier-Foster, J.M.; Dai, Y.; et al. Association of GATA3 Polymorphisms With Minimal Residual Disease and Relapse Risk in Childhood Acute Lymphoblastic Leukemia. J. Natl. Cancer Inst. 2020. [Google Scholar] [CrossRef] [PubMed]
- Van Genderen, C.; Okamura, R.M.; Farinas, I.; Quo, R.G.; Parslow, T.G.; Bruhn, L.; Grosschedl, R. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 1994, 8, 2691–2703. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, A.; Sanda, T.; Ma, W.; Zhang, J.; Grebliunaite, R.; Dahlberg, S.E.; Neuberg, N.; Protopopov, A.; Winter, S.S.; Larson, R.S.; et al. Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. Blood 2010, 115, 2845–2851. [Google Scholar] [CrossRef]
- Montaño, A.; Forero-Castro, M.; Marchena-Mendoza, D.; Benito, R.; Hernández-Rivas, J.M. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update. Cancers 2018, 10, 110. [Google Scholar] [CrossRef]
- Yeh, T.; Liang, D.-C.; Liu, H.-C.; Jaing, T.-H.; Chen, S.; Hou, J.-Y.; Yang, C.-P.; Huang, Y.-J.; Yao, H.-W.; Huang, T.-Y.; et al. Clinical and biological relevance of genetic alterations in pediatric T-cell acute lymphoblastic leukemia in Taiwan. Pediatr. Blood Cancer 2019, 66, e27496. [Google Scholar] [CrossRef]
- Tosello, V.; Mansour, M.R.; Barnes, K.; Paganin, M.; Sulis, M.L.; Jenkinson, S.; Allen, C.; Gale, R.E.; Linch, D.C.; Palomero, T.; et al. WT1 mutations in T-ALL. Blood 2009, 114, 1038–1045. [Google Scholar] [CrossRef]
- Trovó-Marqui, A.B.; Tajara, E.H. Neurofibromin: A general outlook. Clin. Genet. 2006, 70, 1–13. [Google Scholar] [CrossRef]
- Squazzo, S.L.; O’Geen, H.; Komashko, V.M.; Krig, S.R.; Jin, V.X.; Jang, S.W.; Margueron, R.; Reinberg, D.; Green, R.; Farnham, P.J. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 2006, 16, 890–900. [Google Scholar] [CrossRef]
- Yoshida, N.; Sakaguchi, H.; Muramatsu, H.; Okuno, Y.; Song, C.; Dovat, S.; Shimada, A.; Ozeki, M.; Ohnishi, H.; Teramoto, T.; et al. Germline IKAROS mutation associated with primary immunodeficiency that progressed to T-cell acute lymphoblastic leukemia. Leukemia 2017, 31, 1221–1223. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, B.; Payne, J.L.; Song, C.; Ge, Z.; Gowda, C.; Iyer, S.; Dhanyamraju, P.K.; Dorsam, G.; Reeves, M.E.; et al. Ikaros tumor suppressor function includes induction of active enhancers and super-enhancers along with pioneering activity. Leukemia 2019, 33, 2720–2731. [Google Scholar] [CrossRef] [PubMed]
- Narita, A.; Muramatsu, H.; Yoshida, N.; Sakaguchi, H.; Doisaki, S.; Hama, A.; Nakanishi, K.; Takahashi, Y.; Miyajima, Y.; Matsumoto, K.; et al. Genetic Events in Ikaros Gene Family (IKZF1 and IKZF2) in Pediatric T-Cell Lymphoblastic Leukemia/Lymphoma. Blood 2012, 120, 4622. [Google Scholar] [CrossRef]
- Krzanowski, J.; Madzio, J.; Pastorczak, A.; Tracz, A.; Braun, M.; Tabarkiewicz, J.; Pluta, A.; Młynarski, W.; Zawlik, I. Selected miRNA levels are associated with IKZF1 microdeletions in pediatric acute lymphoblastic leukemia. Oncol. Lett. 2017, 14, 3853–3861. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Pan, Q.; Stow, P.; Behm, F.G.; Goorha, R.; Pui, C.-H.; Neale, G. Quantification of minimal residual disease in T-lineage acute lymphoblastic leukemia with the TAL-1 deletion using a standardized real-time PCR assay. Leukemia 2001, 15, 166–170. [Google Scholar] [CrossRef][Green Version]
- Wang, L.; Zhang, L.-P.; Li, Z.-G.; Cheng, Y.-F.; Tian, K.-G.; Lu, A.-D. A tal-1 deletion as real-time quantitative polymerase chain reaction target for detection of minimal residual disease in T-lineage acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi = Chin. J. Pediatr. 2005, 43, 170–173. [Google Scholar]
- Sudhakar, N.; Nirmala, K.; Rajalekshmy, K.R.; Rajkumar, T. Does TAL-1 deletion contribute to the high incidence of T-cell acute lymphoblastic leukemia in South Indian patients? Asian Pac. J. Cancer Prev. 2008, 9, 127–130. [Google Scholar]
- Liu, R.-B.; Guo, J.-G.; Liu, T.-Z.; Guo, C.-C.; Fan, X.; Zhang, X.; Hu, W.-H.; Cai, X.-Y. Meta-analysis of the clinical characteristics and prognostic relevance of NOTCH1 and FBXW7 mutation in T-cell acute lymphoblastic leukemia. Oncotarget 2017, 8, 66360–66370. [Google Scholar] [CrossRef][Green Version]
- Kimura, S.; Seki, M.; Yoshida, K.; Shiraishi, Y.; Akiyama, M.; Koh, K.; Imamura, T.; Manabe, A.; Hayashi, Y.; Kobayashi, M.; et al. NOTCH 1 pathway activating mutations and clonal evolution in pediatric T-cell acute lymphoblastic leukemia. Cancer Sci. 2019, 110, 784–794. [Google Scholar] [CrossRef]
- Milano, J.; McKay, J.; Dagenais, C.; Foster-Brown, L.; Pognan, F.; Gadient, R.; Jacobs, R.T.; Zacco, A.; Greenberg, B.D.; Ciaccio, P.J. Modulation of Notch Processing by γ-Secretase Inhibitors Causes Intestinal Goblet Cell Metaplasia and Induction of Genes Known to Specify Gut Secretory Lineage Differentiation. Toxicol. Sci. 2004, 82, 341–358. [Google Scholar] [CrossRef]
- Hounjet, J.; Habets, R.; Schaaf, M.B.; Hendrickx, T.C.; Barbeau, L.M.O.; Yahyanejad, S.; Rouschop, K.M.; Groot, A.J.; Vooijs, M.A.G.G. The anti-malarial drug chloroquine sensitizes oncogenic NOTCH1 driven human T-ALL to γ-secretase inhibition. Oncogene 2019, 38, 5457–5468. [Google Scholar] [CrossRef] [PubMed]
- Szarzyńska-Zawadzka, B.; Kunz, J.B.; Sędek, Ł.; Kosmalska, M.; Zdon, K.; Biecek, P.; Bandapalli, O.R.; Kraszewska-Hamilton, M.; Jaksik, R.; Drobna, M.; et al. PTEN abnormalities predict poor outcome in children with T-cell acute lymphoblastic leukemia treated according to ALL IC-BFM protocols. Am. J. Hematol. 2019, 94, E93–E96. [Google Scholar] [CrossRef] [PubMed]
- Martelli, A.M.; Paganelli, F.; Fazio, A.; Bazzichetto, C.; Conciatori, F.; McCubrey, J.A. The Key Roles of PTEN in T-Cell Acute Lymphoblastic Leukemia Development, Progression, and Therapeutic Response. Cancers 2019, 11, 629. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, A.; Sanda, T.; Grebliunaite, R.; Carracedo, A.; Salmena, L.; Ahn, Y.; Dahlberg, S.; Neuberg, D.; Moreau, L.A.; Winter, S.S.; et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 2009, 114, 647–650. [Google Scholar] [CrossRef]
- Schmäh, J.; Fedders, B.; Panzer-Grümayer, R.; Fischer, S.; Zimmermann, M.; Dagdan, E.; Bens, S.; Schewe, D.; Moericke, A.; Alten, J.; et al. Molecular characterization of acute lymphoblastic leukemia with high CRLF2 gene expression in childhood. Pediatr. Blood Cancer 2017, 64, e26539. [Google Scholar] [CrossRef]
- Evangelisti, C.; Chiarini, F.; McCubrey, J.A.; Martelli, A.M. Therapeutic Targeting of mTOR in T-Cell Acute Lymphoblastic Leukemia: An Update. Int. J. Mol. Sci. 2018, 19, 1878. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Qian, X.; Gao, S.; Xia, J.; Liu, J.; Cheng, Y.; Man, J.; Zhai, X. Genetic mutational analysis of pediatric acute lymphoblastic leukemia from a single center in China using exon sequencing. BMC Cancer 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Zhang, H.-H.; Wang, H.-S.; Qian, X.-W.; Fan, C.-Q.; Li, J.; Miao, H.; Zhu, X.-H.; Yu, Y.; Meng, J.-H.; Cao, P.; et al. Genetic variants and clinical significance of pediatric acute lymphoblastic leukemia. Ann. Transl. Med. 2019, 7, 296. [Google Scholar] [CrossRef]
- Agarwal, M.; Bakhshi, S.; Dwivedi, S.N.; Kabra, M.; Shukla, R.; Seth, R. Cyclin dependent kinase inhibitor 2A/B gene deletions are markers of poor prognosis in Indian children with acute lymphoblastic leukemia. Pediatr. Blood Cancer 2018, 65, e27001. [Google Scholar] [CrossRef]
- Genesca, E.; Lazarenkov, A.; Morgades, M.; Berbis, G.; Ruíz-Xivillé, N.; Gómez-Marzo, P.; Ribera, J.; Juncà, J.; Gonzalez-Perez, A.; Mercadal, S.; et al. Frequency and clinical impact of CDKN2A/ARF/CDKN2B gene deletions as assessed by in-depth genetic analyses in adult T cell acute lymphoblastic leukemia. J. Hematol. Oncol. 2018, 11, 1–4. [Google Scholar] [CrossRef]
- Marinoni, I.; Pellegata, N.S. p27kip1: A New Multiple Endocrine Neoplasia Gene? Neuroendocrinology 2011, 93, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-S.; Wang, S.-C.; Yen, Y.-T.; Lee, T.-H.; Wen, W.-C.; Lin, R.-K. Hypermethylation of CCND2 in Lung and Breast Cancer Is a Potential Biomarker and Drug Target. Int. J. Mol. Sci. 2018, 19, 3096. [Google Scholar] [CrossRef] [PubMed]
- Clappier, E.; Cuccuini, W.; Cayuela, J.-M.; Vecchione, D.; Baruchel, A.; Dombret, H.; Sigaux, F.; Soulier, J. Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias. Leukemia 2005, 20, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Zabriskie, M.S.; Antelope, O.; Verma, A.R.; Draper, L.R.; Eide, C.A.; Pomicter, A.D.; Tran, T.H.; Druker, B.J.; Tyner, J.W.; Miles, R.R.; et al. A novel AGGF1-PDGFRβ fusion in pediatric T-cell acute lymphoblastic leukemia. Haematologica 2018, 103, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, A.M.; Schrock, A.B.; He, J.; Nahas, M.; Curran, K.; Shukla, N.; Cramer, S.; Draper, L.; Verma, A.; Erlich, R.; et al. Novel PDGFRB fusions in childhood B- and T-acute lymphoblastic leukemia. Leukemia 2017, 31, 1989–1992. [Google Scholar] [CrossRef]
- Bielorai, B.; Leitner, M.; Goldstein, G.; Mehrian-Shai, R.; Trakhtenbrot, L.; Fisher, T.; Marcu, V.; Yalon, M.; Schiby, G.; Barel, O.; et al. Sustained Response to Imatinib in a Pediatric Patient with Concurrent Myeloproliferative Disease and Lymphoblastic Lymphoma Associated with a CCDC88C-PDGFRB Fusion Gene. Acta Haematol. 2019, 141, 119–127. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Zhang, H.; Zhang, J.; He, F.; Hnízda, A.; Qian, M.; Liu, X.; Gocho, Y.; Pui, C.-H.; et al. PDGFRB mutation and tyrosine kinase inhibitor resistance in Ph-like acute lymphoblastic leukemia. Blood 2018, 131, 2256–2261. [Google Scholar] [CrossRef]
- Hagemeijer, A.; Graux, C. ABLI rearrangements in T-cell acute lymphoblastic leukemia. Genes Chromosom. Cancer 2010, 49, 299–308. [Google Scholar]
- Chen, B.; Jiang, L.; Zhong, M.-L.; Li, J.-F.; Li, B.-S.; Peng, L.-J.; Dai, Y.-T.; Cui, B.-W.; Yan, T.-Q.; Zhang, W.-N.; et al. Identification of fusion genes and characterization of transcriptome features in T-cell acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 2017, 115, 373–378. [Google Scholar] [CrossRef]
- Zhao, X.; Hong, Y.; Qin, Y.; Xu, Y.; Chang, Y.-J.; Wang, Y.; Zhang, X.; Xu, L.; Xiao-Jun, H. The clinical significance of monitoring the expression of theSIL-TAL1fusion gene in T-cell acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Int. J. Lab. Hematol. 2017, 39, 613–619. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, L.-L.; Dai, H.; Ping, N.-N.; Wu, C.-X.; Pan, J.; Cen, J.-N.; Qiu, H.; Chen, S. Correlation between expression of SIL-TAL1 fusion gene and deletion of 6q in T-cell acute lymphoblastic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2014, 22, 1508–1513. [Google Scholar] [PubMed]
- Liu, X.; Li, W.-J.; Zhao, X.-X.; Gao, C.; Zhao, W.; Jiang, J.; Zhang, R.-D.; Xie, J.; Shi, H.-W.; Wang, B.; et al. Clinical Characteristics and Treatment Efficacy of Children with SIL/TAL1 Positive T-Cell Acute Lymphoblastic Leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2016, 24, 681–686. [Google Scholar] [PubMed]
- Nigro, L.L.; Mirabile, E.; Tumino, M.; Caserta, C.; Cazzaniga, G.; Rizzari, C.; Silvestri, D.; Buldini, B.; Barisone, E.; Casale, F.; et al. Detection of PICALM-MLLT10 (CALM-AF10) and outcome in children with T-lineage acute lymphoblastic leukemia. Leukemia 2013, 27, 2419–2421. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Caudell, D.; Aplan, P.D. The role of CALM–AF10 gene fusion in acute leukemia. Leukemia 2007, 22, 678–685. [Google Scholar] [CrossRef]
- Van Vlierberghe, P.; Van Grotel, M.; Tchinda, J.; Lee, C.; Beverloo, H.B.; Van Der Spek, P.J.; Stubbs, A.; Cools, J.; Nagata, K.; Fornerod, M.; et al. The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood 2008, 111, 4668–4680. [Google Scholar] [CrossRef]
- Zhou, M.-H.; Yang, Q.-M. NUP214 fusion genes in acute leukemia (Review). Oncol. Lett. 2014, 8, 959–962. [Google Scholar] [CrossRef]
- Papenhausen, P.; Kelly, C.A.; Zhang, Z.; Tepperberg, J.; Burnside, R.D.; Schwartz, S. Multidisciplinary analysis of pediatric T-ALL: 9q34 gene fusions. Cancer Genet. 2018, 1–13. [Google Scholar] [CrossRef]
- Ariës, I.M.; Bodaar, K.; Karim, S.A.; Chonghaile, T.n.; Hinze, L.; Burns, M.A.; Pfirrmann, M.; Degar, J.; Landrigan, J.T.; Balbach, S.; et al. PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia. J. Exp. Med. 2018, 215, 3094–3114. [Google Scholar] [CrossRef]
- Schäfer, V.; Ernst, J.; Rinke, J.; Winkelmann, N.; Beck, J.F.; Hochhaus, A.; Gruhn, B.; Ernst, T. EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia. J. Cancer Res. Clin. Oncol. 2016, 142, 1641–1650. [Google Scholar] [CrossRef]
- D’Angelo, V.; Iannotta, A.; Ramaglia, M.; Lombardi, A.; Zarone, M.R.; Desiderio, V.; Affinita, M.C.; Pecoraro, G.; Di Martino, M.; Indolfi, P.; et al. EZH2 is increased in paediatric T-cell acute lymphoblastic leukemia and is a suitable molecular target in combination treatment approaches. J. Exp. Clin. Cancer Res. 2015, 34, 1–13. [Google Scholar] [CrossRef]
- Spinella, J.-F.; Cassart, P.; Richer, C.; Saillour, V.; Ouimet, M.; Langlois, S.; St-Onge, P.; Sontag, T.; Healy, J.; Minden, M.D.; et al. Genomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals novel recurrent driver mutations. Oncotarget 2016, 7, 65485–65503. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Van Vlierberghe, P.; Palomero, T.; Khiabanian, H.; Van Der Meulen, J.; Castillo, M.; Van Roy, N.; De Moerloose, B.; Philippé, J.; González-García, S.; Toribio, M.L.; et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat. Genet. 2010, 42, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Wang, G.; Xia, T.; Chen, Z. The depletion of PHF6 decreases the drug sensitivity of T-cell acute lymphoblastic leukemia to prednisolone. Biomed. Pharmacother. 2019, 109, 2210–2217. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.D.; Huang, H.J.; To, H.; Young, L.J.; Oro, A.; Bookstein, R.; Lee, E.Y.; Lee, W.H. Structure of the human retinoblastoma gene. Proc. Natl. Acad. Sci. USA 1989, 86, 5502–5506. [Google Scholar] [CrossRef]
- Hofman, I.; Patchett, S.; Van Duin, M.; Geerdens, E.; Verbeeck, J.; Michaux, L.; Delforge, M.; Sonneveld, P.; Johnson, A.W.; De Keersmaecker, K. Low frequency mutations in ribosomal proteins RPL10 and RPL5 in multiple myeloma. Haematologica 2017, 102, e317–e320. [Google Scholar] [CrossRef]
- De Keersmaecker, K.; Atak, Z.K.; Li, N.; Vicente, C.; Patchett, S.; Girardi, T.; Gianfelici, V.; Geerdens, E.; Clappier, E.; Porcu, M.; et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat. Genet. 2013, 45, 186–190. [Google Scholar] [CrossRef]
- Kampen, K.R.; Sulima, S.O.; Verbelen, B.; Girardi, T.; Vereecke, S.; Rinaldi, G.; Verbeeck, J.; De Beeck, J.O.; Uyttebroeck, A.; Meijerink, J.P.P.; et al. The ribosomal RPL10 R98S mutation drives IRES-dependent BCL-2 translation in T-ALL. Leukemia 2018, 33, 319–332. [Google Scholar] [CrossRef]
- Kunz, J.B.; Rausch, T.; Bandapalli, O.R.; Eilers, J.; Pechanska, P.; Schuessele, S.; Assenov, Y.; Stütz, A.M.; Kirschner-Schwabe, R.; Hof, J.; et al. Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation. Haematologica 2015, 100, 1442–1450. [Google Scholar] [CrossRef]
- Cortés-Ciriano, I.; Lee, J.J.-K.; Xi, R.; Jain, D.; Jung, Y.L.; Yang, L.; Gordenin, D.; Klimczak, L.J.; Zhang, C.-Z.; Pellman, D.S.; et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 2020, 52, 331–341. [Google Scholar] [CrossRef]
- Karrman, K.; Johansson, B. Pediatric T-cell acute lymphoblastic leukemia. Genes Chromosom. Cancer 2017, 56, 89–116. [Google Scholar] [CrossRef]
- Ratnaparkhe, M.; Hlevnjak, M.; Kolb, T.; Jauch, A.; Maass, K.K.; Devens, F.; Rode, A.; Hovestadt, V.; Korshunov, A.; Pastorczak, A.; et al. Genomic profiling of Acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis. Leukemia 2017, 31, 2048–2056. [Google Scholar] [CrossRef] [PubMed]
| Gene | Locus | Alterations | Partners gene | Incidence | Relevance | References |
|---|---|---|---|---|---|---|
| TAL1 (SCL, TCL5) | 1p32 | Overexpression with coexisting LMO1/2 | STIL (1p33) | 30–37.5% | Adverse, potential MRD marker | [29,33] |
| deletions | - | 7.7–25% | [65,66,67] | |||
| TLX3 (HOX11L2) | 5q35 | Overexpression | BCL11B (14q32) | 20–24% | Adverse | [29] |
| TLX1 (HOX11) | 10q24 | TCRD (14q11) | 3–8% | Favorable | [29,34] | |
| Expression level | TCRB (7q35) | OE 1 19.7%, LE 2 28.9% | N/A 3 | |||
| NKX2-1 NKX2-2 | 14q13 20p11 | Overexpression | - | 5.9% | Unidentified | [29] |
| LMO1 (TTG1) | 11p15 | Translocations | TRB (7q34) TRA (14q11.2) TRD (14q11) | <1% | Unidentified | [41] |
| LMO2 (TTG2) | 11p13 | Translocations | TRA (14q11.2) FOXJ3 (1p34) | 7.7% 5% | Unidentified | [41] |
| Deletions | del(1)(p12p13) | |||||
| MEF2C | 5q14.3 | Overexpression | CLINT1 (5q33.3) | 2.5% | Adverse, reduce response to steroids | [13,29] |
| BCL11B (CTIP2) | 14q32.2 | Mutations | - | 2–9% | Unidentified | [47,48] |
| KMT2A (MLL) | 11q23 | Rearrangements | Various partners gene | 4–12% | Adverse | [35,36,37,38,39,40] |
| MYB | 6q23 | Rearrangements | TCRB (7q34) SLC12A9 (7q22) PLAGL1 (6q24) BDP1 (95q13) CHMP1A (16q24) | 4.17% | Unidentified | [41] |
| Mutations | - | 4.92% | [41] | |||
| Amplifications | - | 12.5–12.94% | [41,42] | |||
| MYC | 8q24 | Translocations | TRA (14q11) | 6.1% | Unidentified | [44] |
| RUNX1 (AML1, CBFA2, PEBP2AB) | 21q22.12 | Mutations | - | 12.7%; | Adverse | [17] |
| ETV6 (TEL) | 12q13.2 | Deletions | - | 5.6–6% | Unidentified | [49,50] |
| Translocations | ABL1 (9q34), CTNNB1 (3p22.1) | <1% | [41] | |||
| GATA3 | 10p14 | Inactivating mutations | - | 9% of paediatric patients with ETP-ALL | Adverse | [52,53] |
| LEF1 (TCF10) | 4q25 | Deletions | - | 7–24.5%, | Divided | [41,43,55,56,57] |
| WT1 | 11p13 | Mutations | - | 9.1–13.2% | N/A | [41,58] |
| NF1 | 17q11.2 | Deletions | - | 7.4% | adverse, resistance to treatment induction | [43] |
| IKZF1 (LYF1) | 7p12.2 | Loss of its function | - | 7.4% | Adverse, especially in B cell precursor (BCP)-ALL | [41,43,49,63] |
| Deletions | 2.8% | |||||
| Mutations | 2% | |||||
| PAX5 (BSAP) | 9p13.2 | Loss of its function, deletions and mutations | - | 11–14% | Unidentified | [42,43,49] |
| IKZF2 | 2q34 | loss of its function, deletions and mutations | - | 3.4% | Unidentified | [63] |
| Gene | Locus | Alterations | Incidence | Relevance | References |
|---|---|---|---|---|---|
| NOTCH1 | 9q34.3 | Activating mutations | 51.1–74.6% | Favorable, targeted therapy—γ-secretase inhibitors (GSI) | [41,68] |
| t(7;9)(q34:q34.3) | <1% | ||||
| FBXW7 | 4q31.3 | Inactivating mutations | 22.4–23.9% | Unidentified | [41,68] |
| PIK3CD (PI3K-DELTA) | 1p36.22 | Deletions | 4.65% | Unidentified, targeted therapy—PI3K inhibitors | [42] |
| Mutations | 1.9% | [41] | |||
| AKT | 14q32.33 | Deletions | 6.98% | Adverse, resistance to steroids, targeted therapy—AKT inhibitors | [42,56] |
| PTEN | 10q23.31 | Mutations | 9–14% | Adverse, reduced response to treatment | [41,42,72,73,74] |
| Deletions | 8.7–16% | ||||
| DNM2 | 19p13.2 | Inactivating mutations | 11% | Unidentified | [41] |
| IL7R | 5p13 | Activating mutations | 6.8% | Unidentified | [41] |
| JAK3 | 19p13.11 | Activating mutations | 7.6% | Unidentified | [41] |
| PTPN2 | 18p11.21 | Deletions | 6% | Favorable, good steroid response | [31] |
| CRLF2 | Xp22.3 and Yp11.3 | Overexpression | 14.6% | Adverse, resistance to steroids | [75] |
| N-RAS | 1p13.2 | Activating mutations | 6.2–10.8% | Adverse, resistance to steroids, associated with relapse | [9,11,17,41,57,77,78] |
| K-RAS | 12p12.1 | Activating mutations | 2.1–11.4% | Adverse, resistance to steroids, associated with relapse | [9,11,17,57,77,78] |
| Gene | Locus | Alterations | Incidence | Relevance | References |
|---|---|---|---|---|---|
| CDKN2A (p16(INK4A)) | 9p21.3 | Deletions, mutations, promoter hypermethylation | 66% | Divided | [11,17,79,80] |
| CDKN2B (p15(INK4B)) | 9p21.3 | Deletions, mutations, promoter hypermethylation | 55% | Divided | [11,17,79,80] |
| CDKN1B (p27(KIP1)) | 12p13.1 | Deletions; cooccurrence with MEF2C dysregulation | 12% | Adverse, reduced response to steroids | [13] |
| CCND2 | 12p13.32 | Overexpression | 3.4% | Unidentified | [83] |
| Gene | Locus | Alterations | Partner Genes | Incidence | Relevance | References |
|---|---|---|---|---|---|---|
| PDGFRb | 5q32 | Rearrangements | EBF1 (5q33.3), SATB1 (3p24.3), AGGF1 (5q13.3) DOCK2 (5q35.1) | single cases | Adverse, tyrosine kinase inhibitor (TKI) treatment | [85,86] |
| ABL1 | 9q34.12 | Rearrangements, amplifications | NUP214 (9q34.13) | 5–6% | Adverse, TKI treatment | [42,88,89] |
| BCR (22q11.23), ETV6 (12p13.2), ZBTB16 (11q23.2), EML1 (14q32.2) | <1% | |||||
| FLT3 (STK1) | 13q12.2 | Mutations | - | 3.0–3.8% | N/A | [47,77] |
| Fusion | Locus | Alterations | Incidence | Relevance | References |
|---|---|---|---|---|---|
| SIL-TAL1 | 1p32; 1p33 | Rearrangements | 16–38.5% | Adverse | [8,90,91,92] |
| PICALM-MLLT10 (CALM-AF10) | 11q14.2; 10p12.31 | Rearrangements, t(10;11)(p12-13;q14-21) | 7% | Adverse/unidentified | [93,94] |
| SET-NUP214 | 9q34.11; 9q34.13 | Rearrangements | 15% | Unidentified; potential minimal residual disease (MRD) marker | [96,97] |
| Gene | Locus | Alterations | Incidence | Relevance | References |
|---|---|---|---|---|---|
| EZH2 (KMT6A, ENX1) | 7q36.1 | Inactivating mutations and promoter hypermethylation | 3.3% (adult) | Adverse, less opportunity to obtain disease-free survival (DFS) | [100] |
| EED | 11q14.2 | Inactivating mutations | |||
| SUZ12 (JJAZ1) | 17q11.2 | Inactivating mutations | 0–7.4% | Adverse | [43,57] |
| Gene | Locus | Alterations | Incidence | Relevance | References |
|---|---|---|---|---|---|
| PHF6 | Xq26.2 | Mutations | 5.4–26.7% | Adverse, resistance to steroids | [41,42,91,101,102,103] |
| Deletions | 2.5% | [91] | |||
| TP53 | 17p13.1 | Mutations and promoter hypermethylation | 5% | Adverse, reduced response to treatment and shorter OS | [56] |
| RB1 | 13q14.2 | Mutations | 9.5% | - | [41] |
| Deletions | 5.6–8.3% | [49,64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mroczek, A.; Zawitkowska, J.; Kowalczyk, J.; Lejman, M. Comprehensive Overview of Gene Rearrangements in Childhood T-Cell Acute Lymphoblastic Leukaemia. Int. J. Mol. Sci. 2021, 22, 808. https://doi.org/10.3390/ijms22020808
Mroczek A, Zawitkowska J, Kowalczyk J, Lejman M. Comprehensive Overview of Gene Rearrangements in Childhood T-Cell Acute Lymphoblastic Leukaemia. International Journal of Molecular Sciences. 2021; 22(2):808. https://doi.org/10.3390/ijms22020808
Chicago/Turabian StyleMroczek, Anna, Joanna Zawitkowska, Jerzy Kowalczyk, and Monika Lejman. 2021. "Comprehensive Overview of Gene Rearrangements in Childhood T-Cell Acute Lymphoblastic Leukaemia" International Journal of Molecular Sciences 22, no. 2: 808. https://doi.org/10.3390/ijms22020808
APA StyleMroczek, A., Zawitkowska, J., Kowalczyk, J., & Lejman, M. (2021). Comprehensive Overview of Gene Rearrangements in Childhood T-Cell Acute Lymphoblastic Leukaemia. International Journal of Molecular Sciences, 22(2), 808. https://doi.org/10.3390/ijms22020808

