Untargeted Metabolomics for Metabolic Diagnostic Screening with Automated Data Interpretation Using a Knowledge-Based Algorithm
Abstract
1. Introduction
2. Results
2.1. Training Sets, Optimization Sets and Patient Samples
2.2. Validation Set, Patient Samples
2.3. Performance Assessment of All Patient Samples
2.4. Control Samples
2.5. R Shiny App to Aid Insight in Automated Data Interpretation
3. Discussion
4. Materials and Methods
4.1. Development of an IEM-Panel and Automated Data Interpretation
4.2. Patient Inclusion
4.3. Sample Inclusion
4.4. Input Parameter: Expected Library
4.5. Input Parameter: Observed Metabolite Alterations Using Untargeted Metabolomics
4.6. Automated Data Interpretation
4.7. R Shiny App to Aid Automated Data Interpretation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CSF | cerebrospinal fluid |
DBS | dried blood spots |
DD | differential diagnosis |
HMDB | Human Metabolome Database |
IEM | inborn error of metabolism |
m/z | mass to charge ratio |
NGMS | next generation metabolic screening |
OMIM | Online Mendelian Inheritance in Man |
References
- Miller, M.J.; Kennedy, A.D.; Eckhart, A.D.; Burrage, L.C.; Wulff, J.E.; Miller, L.A.; Milburn, M.V.; Ryals, J.A.; Beaudet, A.L.; Sun, Q.; et al. Untargeted metabolomic analysis for the clinical screening of inborn errors of metabolism. J. Inherit. Metab. Dis. 2015, 38, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Coene, K.L.M.; Kluijtmans, L.A.J.; van der Heeft, E. Next-generation metabolic screening: Targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients. J. Inherit. Metab. Dis. 2018, 41, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Haijes, H.A.; Willemsen, M.; van der Ham, M.; Gerrits, J.; Pras-Raves, M.L.; Prinsen, H.C.M.T.; van Hasselt, P.M.; de Sain-van der Velden, M.G.M.; Verhoeven-Duif, N.M.; Jans, J.J.M. Direct infusion based metabolomics identifies metabolic disease in patients’ dried blood spots and plasma. Metabolites 2019, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Haijes, H.A.; van der Ham, M.; Gerrits, J.; van Hasselt, P.M.; Prinsen, H.C.M.T.; de Sain-van der Velden, M.G.M.; Verhoeven-Duif, N.M.; Jans, J.J.M. Direct-infusion based metabolomics unveils biochemical profiles of inborn errors of metabolism in cerebrospinal fluid. Mol. Genet. Metab. 2019, 127, 51–57. [Google Scholar] [CrossRef] [PubMed]
- European Research Network for Evaluation and Improvement of Screening, Diagnosis and Treatment of Inherited Disorders of Metabolism. Annual Report 2017. Available online: https://www.erndim.org/store/docs/DOC4322ERNDIMAnnualRepor-HETAEBUV245881-19-10-2018.pdf (accessed on 31 January 2020).
- Smedley, D.; Robinson, P.N. Phenotype-driven strategies for exome prioritization of human Mendelian disease genes. Genome Med. 2015, 7, 81. [Google Scholar] [CrossRef] [PubMed]
- Aitken, S.; Firth, H.V.; McRae, J.; Halachev, M.; Kini, U.; Parker, M.J.; Lees, M.M.; Lachlan, K.; Sarkar, A.; Joss, S.; et al. Finding diagnostically useful patterns in quantitative phenotypic data. Am. J. Hum. Genet. 2019, 105, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Haijes, H.A.; de Sain-van der Velden, M.G.M.; Prinsen, H.C.M.T.; Willems, A.P.; van der Ham, M.; Gerrits, J.; Couse, M.H.; Friedman, J.M.; van Karnebeek, C.D.M.; Selby, K.A.; et al. Aspartylglycosamine is a biomarker for NGLY1-CDDG, a congenital disorder of deglycosylation. Mol. Genet Metab. 2019, 127, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Abela, L.; Simmons, L.; Steindl, K.; Schmitt, B.; Mastrangelo, M.; Joset, P.; Papuc, M.; Sticht, H.; Baumer, A.; Crowther, L.M.; et al. N(8)-acetylspermidine as a potential biomarker for Snyder-Robinson syndrome identified by clinical metabolomics. J. Inherit Metab. Dis. 2016, 39, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.D.; Pappan, K.L.; Donti, T.; Delgado, M.R.; Shinawi, M.; Pearson, T.S.; Lalani, S.R.; Craigen, W.E.; Sutton, V.R.; Evans, A.M.; et al. 2-Pyrrolidinone and succinimide as clinical screening biomarkers for GABA-transaminase deficiency: Anti-seizure medications impact accurate diagnosis. Front Neurosci. 2019, 13, 394. [Google Scholar] [CrossRef] [PubMed]
- Burrage, L.C.; Thistlethwaite, L.; Stroup, B.M.; Sun, Q.; Miller, M.J.; Nagamani, S.C.S.; Craigen, W.; Scaglia, F.; Sutton, V.R.; Graham, B.; et al. Untargeted metabolomics profiling reveals multiple pathway perturbations and new clinical biomarkers in urea cycle disorders. Genet. Med. 2019, 21, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.R.; van Karnebeek, C.D.M.; Vockley, J.; Blau, N. A proposed nosology of inborn errors of metabolism. Genet Med. 2019, 21, 102–106. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, R.; Castilla-Quintero, R.; García-Barrera, T.; Gómez-Ariza, J.L. Development of a metabolomics approach based on urine samples and direct infusion mass spectrometry. Anal. Biochem. 2014, 465, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2013, 41, 801–807. [Google Scholar] [CrossRef] [PubMed]
Training Sets | Optimization Set | Validation Set | ||
---|---|---|---|---|
Matrix | DBS | Plasma | DBS | Plasma |
Samples | 110 | 86 | 96 | 115 |
Patients | 42 | 38 | 96 | 115 |
IEM | 23 | 21 | 53 | 58 |
Correct IEM in DD (n; %) | 86/110; 78% | 68/86; 79% | 68/96; 71% | 83/115; 72% |
Correct IEM in top 3 of DD (n; %) | 74/110; 67% | 36/86; 42% | 60/96; 63% | 65/115; 57% |
Correct IEM ranked first (n; %) | 46/110; 42% | 28/86; 33% | 38/96; 40% | 43/115; 37% |
Length DD (median; (5th–95th)) | 8; [2–14] | 12; [3–25] | 8; [1–23] | 10; [3–22] |
Training Sets | Optimization Set | Validation Set | ||
---|---|---|---|---|
Matrix | DBS | Plasma | DBS | Plasma |
Samples | 105 | 84 | 66 | 83 |
Individuals | 30 | 28 | 48 | 28 |
Length DD (median; (5th–95th)) | 2; (0–12) | 3; (0–11) | 2; (0–8) | 3; (0–10) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haijes, H.A.; van der Ham, M.; Prinsen, H.C.M.T.; Broeks, M.H.; van Hasselt, P.M.; de Sain-van der Velden, M.G.M.; Verhoeven-Duif, N.M.; Jans, J.J.M. Untargeted Metabolomics for Metabolic Diagnostic Screening with Automated Data Interpretation Using a Knowledge-Based Algorithm. Int. J. Mol. Sci. 2020, 21, 979. https://doi.org/10.3390/ijms21030979
Haijes HA, van der Ham M, Prinsen HCMT, Broeks MH, van Hasselt PM, de Sain-van der Velden MGM, Verhoeven-Duif NM, Jans JJM. Untargeted Metabolomics for Metabolic Diagnostic Screening with Automated Data Interpretation Using a Knowledge-Based Algorithm. International Journal of Molecular Sciences. 2020; 21(3):979. https://doi.org/10.3390/ijms21030979
Chicago/Turabian StyleHaijes, Hanneke A., Maria van der Ham, Hubertus C.M.T. Prinsen, Melissa H. Broeks, Peter M. van Hasselt, Monique G.M. de Sain-van der Velden, Nanda M. Verhoeven-Duif, and Judith J.M. Jans. 2020. "Untargeted Metabolomics for Metabolic Diagnostic Screening with Automated Data Interpretation Using a Knowledge-Based Algorithm" International Journal of Molecular Sciences 21, no. 3: 979. https://doi.org/10.3390/ijms21030979
APA StyleHaijes, H. A., van der Ham, M., Prinsen, H. C. M. T., Broeks, M. H., van Hasselt, P. M., de Sain-van der Velden, M. G. M., Verhoeven-Duif, N. M., & Jans, J. J. M. (2020). Untargeted Metabolomics for Metabolic Diagnostic Screening with Automated Data Interpretation Using a Knowledge-Based Algorithm. International Journal of Molecular Sciences, 21(3), 979. https://doi.org/10.3390/ijms21030979