Next Article in Journal
Suppression of β1-Adrenoceptor Autoantibodies is Involved in the Antiarrhythmic Effects of Omega-3 Fatty Acids in Male and Female Hypertensive Rats
Previous Article in Journal
Inhibitory Effects of Peptide Lunasin in Colorectal Cancer HCT-116 Cells and Their Tumorsphere-Derived Subpopulation
Previous Article in Special Issue
Protein and Polysaccharide-Based Magnetic Composite Materials for Medical Applications
Open AccessArticle

Preparation and Characterization of Surface Heat Sintered Nanohydroxyapatite and Nanowhitlockite Embedded Poly (Lactic-co-glycolic Acid) Microsphere Bone Graft Scaffolds: In Vitro and in Vivo Studies

1
Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
2
Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
3
Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
4
Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
*
Authors to whom correspondence should be addressed.
Int. J. Mol. Sci. 2020, 21(2), 528; https://doi.org/10.3390/ijms21020528
Received: 9 December 2019 / Revised: 7 January 2020 / Accepted: 10 January 2020 / Published: 14 January 2020
(This article belongs to the Collection Feature Papers in Materials Science)
In the context of using bone graft materials to restore and improve the function of damaged bone tissues, macroporous biodegradable composite bone graft scaffolds have osteoinductive properties that allow them to provide a suitable environment for bone regeneration. Hydroxyapatite (HAP) and whitlockite (WLKT) are the two major components of hard tissues such as bone and teeth. Because of their biocompatibility and osteoinductivity, we synthesized HAP (nHAP) and WLKT nanoparticles (nWLKT) by using the chemical precipitation method. The nanoparticles were separately incorporated within poly (lactic-co-glycolic acid) (PLGA) microspheres. Following this, the composite microspheres were converted to macroporous bone grafts with sufficient mechanical strength in pin or screw shape through surface sintering. We characterized physico-chemical and mechanical properties of the nanoparticles and composites. The biocompatibility of the grafts was further tested through in vitro cell adhesion and proliferation studies using rabbit bone marrow stem cells. The ability to promote osteogenic differentiation was tested through alkaline phosphate activity and immunofluorescence staining of bone marker proteins. For in vivo study, the bone pins were implanted in tibia bone defects in rabbits to compare the bone regeneration ability though H&E, Masson’s trichrome and immunohistochemical staining. The results revealed similar physico-chemical characteristics and cellular response of PLGA/nHAP and PLGA/nWLKT scaffolds but the latter is associated with higher osteogenic potential towards BMSCs, pointing out the possibility to use this ceramic nanoparticle to prepare a sintered composite microsphere scaffold for potential bone grafts and tissue engineered implants. View Full-Text
Keywords: whitlockite; hydroxyapatite; poly (lactic-co-glycolic acid); microsphere; bone graft; bone marrow stem cells whitlockite; hydroxyapatite; poly (lactic-co-glycolic acid); microsphere; bone graft; bone marrow stem cells
Show Figures

Figure 1

MDPI and ACS Style

Jose, G.; Shalumon, K.; Liao, H.-T.; Kuo, C.-Y.; Chen, J.-P. Preparation and Characterization of Surface Heat Sintered Nanohydroxyapatite and Nanowhitlockite Embedded Poly (Lactic-co-glycolic Acid) Microsphere Bone Graft Scaffolds: In Vitro and in Vivo Studies. Int. J. Mol. Sci. 2020, 21, 528.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop