Importance and Involvement of Imidazole Structure in Current and Future Therapy
Abstract
1. Introduction
2. The Biological Activities of Imidazole Derivatives
2.1. Antifungal Activity
2.2. Antibacterial Activity
2.3. Anti-Inflammatory and Antiplatelet Activity
2.4. Antitubercular Activity
2.5. Anti-Ulcer Activity
2.6. Antihyperglycemic Activity
2.7. Antidepressant Activity
2.8. Antiparasitic Activity
2.9. Anticancer Activity
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| A2780 | Human ovarian cancer cell line |
| A549 | Human alveolar basal epithelial adenocarcinoma cell line |
| ADME | Absorption, Distribution, Metabolism, Excretion |
| ATP | Adenosine triphosphate |
| BCL-2 | B-cell lymphoma 2 |
| BJ-1 | Normal human fibroblast cell line |
| BRD4 | Bromodomain-containing protein 4 |
| BTK | Bruton’s tyrosine kinase |
| Colo-205 | Human colorectal adenocarcinoma cell line |
| DDP | Cisplatin-resistant |
| DMAD | Dimethyl acetylenedicarboxylate |
| DNA | Deoxyribonucleic acid |
| DU-145 | Human prostate carcinoma cell line |
| G2/M | G2/M phase of the cell cycle |
| GABA | Gamma-aminobutyric acid |
| H1975 | Human lung adenocarcinoma cell line |
| H357 | Human oral squamous carcinoma cell line |
| H37 Rv | Standard references for Mycobacterium tuberculosis |
| HCC827 | Human non-small cell lung cancer cell line |
| HCT116 | Human colorectal carcinoma cell line |
| HCT-15 | Human colorectal adenocarcinoma cell line |
| HDAC | Histone deacetylase |
| HEK | Human embryonic kidney cells |
| HeLa | Human cervical cancer cell line |
| Hep G2 | Hepatocellular carcinoma |
| HOMO | Highest occupied molecular orbital |
| HT-29 | Human colorectal adenocarcinoma cell line |
| IC50 | Inhibitory concentration 50% |
| IR | Infrared Spectroscopy |
| K562 | Human chronic myelogenous leukemia cell line |
| LDH | Lactate dehydrogenase |
| LUMO | Lowest occupied molecular orbital |
| MCF-7 | Human breast cancer cell line |
| MD | Molecular dynamics |
| MDA-MB-231 | Triple-negative human breast cancer cell line |
| MELK | Maternal embryonic leucine zipper kinase |
| MIA Pa Ca-2 | Human pancreatic adenocarcinoma cell line |
| MIC50 | Minimum inhibitory concentration 50% |
| MM/GBSA | Molecular mechanics/Generalized born surface area |
| MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
| NMR | Nuclear magnetic resonance |
| P | Perimeter |
| PC3 | Human prostate cancer cell line |
| PI3K | Phosphatidylinositol 3-kinase |
| PP2A | Protein phosphatase 2A |
| QSAR | Quantitative structure–activity relationship |
| Rac1 | Ras-related C3 botulinum toxin substrate |
| RAW | Murine macrophage cell line |
| RI | Resistance index |
| RNA | Ribonucleic acid |
| SAR | Structure–activity relationship |
| SKLU-1 | Human lung carcinoma cell line |
| SYK | Spleen tyrosine kinase |
| TBTA | Tris(benzyltriazolylmethyl)amine |
| TCD50 | Tumor control dose 50% |
References
- Bettencourt, A.; Castro, M.; Silva, J.; Fernandes, F.; Coutinho, O.; Sousa, M.; Proença, M.F.; Areias, F. Phenolic Imidazole Derivatives with Dual Antioxidant/Antifungal Activity: Synthesis and Structure-Activity Relationship. Med. Chem. 2019, 15, 341–351. [Google Scholar] [CrossRef]
- Devi, E.R.; Sravani, D.; Alkhathami, A.G.; Suresh, P.; Sreenivasulu, R.; Malladi, S.; Venkatesan, S. Design, Synthesis, In Vitro and In Silico Anticancer Studies on Amide Derivatives of 1,3,4-Oxadiazole–Isoxazol–Pyridine Benzimidazole. Chem. Pap. 2025, 79, 1385–1405. [Google Scholar] [CrossRef]
- Dong, J.; Chen, S.; Li, R.; Cui, W.; Jiang, H.; Ling, Y.; Yang, Z.; Hu, W. Imidazole-Based Pinanamine Derivatives: Discovery of Dual Inhibitors of the Wild-Type and Drug-Resistant Mutant of the Influenza A Virus. Eur. J. Med. Chem. 2016, 108, 605–615. [Google Scholar] [CrossRef]
- Kumari, A.; Maity, C.K.; Dey, S. A Comprehensive Review of the Imidazole, Benzimidazole and Imidazo[1,2-a]Pyridine-Based Sensors for the Detection of Fluoride Ion. Org. Biomol. Chem. 2025, 23, 2281–2301. [Google Scholar] [CrossRef] [PubMed]
- Buckley, G.M.; Ceska, T.A.; Fraser, J.L.; Gowers, L.; Groom, C.R.; Higueruelo, A.P.; Jenkins, K.; Mack, S.R.; Morgan, T.; Parry, D.M.; et al. IRAK-4 Inhibitors. Part II: A Structure-Based Assessment of Imidazo[1,2-a]Pyridine Binding. Bioorg. Med. Chem. Lett. 2008, 18, 3291–3295. [Google Scholar] [CrossRef]
- Küçük, C. Synthesis, Characterization, DFT Studies, and Molecular Docking Investigation of a Silver Nitrate Complex of 5-Benzimidazole Carboxylic Acid as Targeted Anticancer Agents. J. Mol. Struct. 2023, 1293, 136166. [Google Scholar] [CrossRef]
- Bansal, Y.; Silakari, O. The Therapeutic Journey of Benzimidazoles: A Review. Bioorg. Med. Chem. 2012, 20, 6208–6236. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.; Jain, R. An Insight into Synthetic, Structural and Medicinal Perspective of Imidazole Analogs: A Review. Eur. J. Med. Chem. 2025, 290, 117524. [Google Scholar] [CrossRef]
- Solo, P. Unlocking the Imidazole Ring: A Comprehensive Review of Synthetic Strategies. Synth. Commun. 2025, 55, 183–235. [Google Scholar] [CrossRef]
- Khalili, N.S.D.; Khawory, M.H.; Salin, N.H.; Zakaria, I.I.; Hariono, M.; Mikhaylov, A.A.; Kamarulzaman, E.E.; Wahab, H.A.; Supratman, U.; Azmi, M.N. Synthesis and Biological Activity of Imidazole Phenazine Derivatives as Potential Inhibitors for NS2B-NS3 Dengue Protease. Heliyon 2024, 10, e24202. [Google Scholar] [CrossRef]
- Mageed, A.H.; Ali, W.H. Synthesis, and Study Biological Activity of CuI Complexes Involving Imidazole-2-Selones as Ligands. J. Organomet. Chem. 2023, 1001, 122890. [Google Scholar] [CrossRef]
- Yamada, Y.; Nishii, K.; Kuwata, K.; Nakamichi, M.; Nakanishi, K.; Sugimoto, A.; Ikemoto, K. Effects of Pyrroloquinoline Quinone and Imidazole Pyrroloquinoline on Biological Activities and Neural Functions. Heliyon 2020, 6, e03240. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, H.; Jin, H.; Cai, X.; Zhang, R.; Jin, Z.; Yang, W.; Yu, P.; Zhang, L.; Liu, Z. Design, Synthesis and Biological Activities of Benzo[d]Imidazo[1,2-a]Imidazole Derivatives as TRPM2-Specfic Inhibitors. Eur. J. Med. Chem. 2021, 225, 113750. [Google Scholar] [CrossRef]
- Gleave, R.J.; Walter, D.S.; Beswick, P.J.; Fonfria, E.; Michel, A.D.; Roman, S.A.; Tang, S.P. Synthesis and biological activity of a series of tetrasubstituted-imidazoles as P2X7 antagonists. Bioorg. Med. Chem. Lett. 2010, 20, 4951–4954. [Google Scholar] [CrossRef]
- Conlon, K.; Christy, C.; Westbrook, S.; Whitlock, G.; Roberts, L.; Stobie, A.; McMurray, G. Pharmacological Properties of 2-((R-5-Chloro-4-Methoxymethylindan-1-Yl)-1H-Imidazole (PF-3774076), a Novel and Selective α1A-Adrenergic Partial Agonist, in in Vitro and in Vivo Models of Urethral Function. J. Pharmacol. Exp. Ther. 2009, 330, 892–901. [Google Scholar] [CrossRef]
- Xu, W.-B.; Li, S.; Zheng, C.-J.; Yang, Y.-X.; Zhang, C.; Jin, C.-H. Synthesis and Evaluation of Imidazole Derivatives Bearing Imidazo[2,1-b] [1,3,4]Thiadiazole Moiety as Antibacterial Agents. Med. Chem. 2024, 20, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Ziarani, G.M.; Dashtianeh, Z.; Nahad, M.S.; Badiei, A. One-Pot Synthesis of 1,2,4,5-Tetra Substituted Imidazoles Using Sulfonic Acid Functionalized Silica (SiO2-Pr-SO3H). Arab. J. Chem. 2015, 8, 692–697. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Qiu, D.; Wei, J.; Zhang, J.; Guo, L. Synthesis, Pharmacological Evaluation, and Modeling of Novel Quaternary Ammonium Salts Derived from β-Carboline Containing an Imidazole Moiety as Angiogenesis Inhibitors. Bioorg. Med. Chem. 2024, 114, 117946. [Google Scholar] [CrossRef]
- Rayate, A.M.; Gaware, M.R.; Lokhande, D.D.; Kategaonkar, A.H.; Bhagare, A.M.; Shelke, B.N.; Kale, A.S.; Bhamare, S.S. Design, Synthesis of Imidazole Scaffolds as an Effective Larvicidal Agent against Etiella zinkenella and in Vitro Antibacterial and Antifungal Evaluation against Candida albicans with DFT Calculations, Molecular Docking Technique and Theoretical Biological Potential. Results Chem. 2025, 15, 102259. [Google Scholar] [CrossRef]
- Andrei, G.Ș.; Andrei, B.F.; Roxana, P.R. Imidazole Derivatives and Their Antibacterial Activity—A Mini-Review. Mini-Rev. Med. Chem. 2021, 21, 1380–1392. [Google Scholar] [CrossRef]
- Tripathi, P.; Malviya, A. Imidazole Scaffold: A Review of Synthetic Strategies and Therapeutic Action. Biomed. Pharmacol. J. 2023, 16, 1159–1168. [Google Scholar] [CrossRef]
- Çetiner, G.; Çevik, U.A.; Celik, I.; Bostancı, H.E.; Özkay, Y.; Kaplancıklı, Z.A. New Imidazole Derivatives as Aromatase Inhibitor: Design, Synthesis, Biological Activity, Molecular Docking, and Computational ADME-Tox Studies. J. Mol. Struct. 2023, 1278, 134920. [Google Scholar] [CrossRef]
- Rani, N.; Sharma, A.; Singh, R. Trisubstituted Imidazole Synthesis: A Review. Mini-Rev. Org. Chem. 2015, 12, 34–65. [Google Scholar] [CrossRef]
- Hamdi, A.; Daoudi, W.; Aaddouz, M.; Azzouzi, M.; Amhamdi, H.; Elyoussfi, A.; Aatiaoui, A.E.; Verma, D.K.; Abboud, M.; Ahari, M. Various Synthesis and Biological Evaluation of Some Tri-Tetra-Substituted Imidazoles Derivatives: A Review. Heliyon 2024, 10, e31253. [Google Scholar] [CrossRef]
- Atanasova-Stamova, S.Y.; Georgieva, S.F.; Georgieva, M.B. Reaction Strategies for Synthesis of Imidazole Derivatives: A Review. Scr. Sci. Pharm. 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Chaudhury, D.; Banerjee, J.; Sharma, N.; Shrestha, N. Routes of synthesis and biological significances of Imidazole derivatives. World J. Pharm. Sci. 2015, 3, 1668–1681. [Google Scholar]
- Goel, K.K.; Thapliyal, S.; Kharb, R.; Joshi, G.; Negi, A.; Kumar, B. Imidazoles as Serotonin Receptor Modulators for Treatment of Depression: Structural Insights and Structure–Activity Relationship Studies. Pharmaceutics 2023, 15, 2208. [Google Scholar] [CrossRef]
- Shabalin, D.A.; Camp, J.E. Recent advances in the synthesis of imidazoles. Org. Biomol. Chem. 2020, 18, 3950–3964. [Google Scholar] [CrossRef] [PubMed]
- Rani, N.; Singh, R.; Kumar, P. Imidazole and Derivatives Drugs Synthesis: A Review. Curr. Org. Synth. 2022, 20, 630–662. [Google Scholar] [CrossRef] [PubMed]
- Green, M.D.; Long, T.E. Designing Imidazole-Based Ionic Liquids and Ionic Liquid Monomers for Emerging Technologies. Polym. Rev. 2009, 49, 291–314. [Google Scholar] [CrossRef]
- Wingate, D. Martindale: The Extra Pharmacopeia, 29th ed.; BMJ: London, UK, 1989; Volume 30. [Google Scholar] [CrossRef]
- Eicher, T.; Hauptmann, S.; Speicher, A. The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Ziarani, G.M.; Shamkhali, N.; Panahande, Z.; Badiei, A. A Novel Hg2+ Ion Chemosensor Based on Dihydro-Pyrano Imidazole Derivatives. J. Mol. Struct. 2025, 1337, 142096. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, P.; Song, Y.; Duan, S.; Liu, W.; Ansari, K.R.; Singh, A.; Lin, Y. Synergistic Mechanism and Synergistic Effect of Two Structurally Complex Imidazole Derivatives Forming a Double Adsorption Layer. Appl. Surf. Sci. 2025, 701, 163239. [Google Scholar] [CrossRef]
- Panneerselvam, S.; Selvaraj, E.; Mannathan, S.; Saravanan, T.; Baskar, B. Synthesis of diverse imidazole and quinoxaline derivatives via iodine-mediated cyclization reactions. J. Org. Chem. 2025, 90, 3359–3364. [Google Scholar] [CrossRef]
- Péret, V.A.C.; Reis, R.C.F.M.; Braga, S.F.P.; Benedetti, M.D.; Caldas, I.S.; Carvalho, D.T.; de Andrade Santana, L.F.; Johann, S.; de Souza, T.B. New Miconazole-Based Azoles Derived from Eugenol Show Activity against Candida spp. and Cryptococcus gattii by Inhibiting the Fungal Ergosterol Biosynthesis. Eur. J. Med. Chem. 2023, 256, 115436. [Google Scholar] [CrossRef]
- Liu, B.; Chen, H.; Cao, J.; Chen, X.; Xie, J.; Shu, Y.; Yan, F.; Huang, W.; Qin, T. Imidazole Derivative Assisted Crystallization for High-Efficiency Mixed Sn–Pb Perovskite Solar Cells. Adv. Funct. Mater. 2024, 34, 2310828. [Google Scholar] [CrossRef]
- Beltran-Hortelano, I.; Alcolea, V.; Font, M.; Pérez-Silanes, S. The Role of Imidazole and Benzimidazole Heterocycles in Chagas Disease: A Review. J. Med. Chem. 2020, 206, 112692. [Google Scholar] [CrossRef] [PubMed]
- Woolley, D.W. Some Biological Effects Produced by Benzimidazole and Their Reversal by Purines. J. Biol. Chem. 1944, 152, 225–232. [Google Scholar] [CrossRef]
- Hamano, H.; Hameka, H.F. On the Dipole Moments and Chemical Properties of Pyrazole and Imidazole. Tetrahedron 1962, 18, 985–990. [Google Scholar] [CrossRef]
- Di Pietra, A.M.; Cavrini, V.; Andrisano, V.; Gatti, R. HPLC Analysis of Imidazole Antimycotic Drugs in Pharmaceutical Formulations. J. Pharm. Biomed. Anal. 1992, 10, 873–879. [Google Scholar] [CrossRef]
- Van den Bossche, H. Biochemical Effects of Miconazole on Fungi. I. Effects on the Uptake and or Utilization of Purines, Pyrimidines, Nucleosides, Amino Acids and Glucose by Candida albicans. Biochem. Pharmacol. 1974, 23, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Seeliger, H.P.R. Pilzhemmende Wirkung Eines Neuen Benzimidazol-Derivates. Mycoses 1958, 1, 162–171. [Google Scholar] [CrossRef]
- Saadh, M.J.; Ahmed, H.H.; Kareem, R.A.; Jain, V.; Ballal, S.; Singh, A.; Sharma, G.C.; Devi, A.; Nasirov, A.; Sameer, H.N.; et al. In Silico Design and Molecular Dynamics Analysis of Imidazole Derivatives as Selective Cyclooxygenase-2 Inhibitors. Comput. Biol. Chem. 2025, 115, 108341. [Google Scholar] [CrossRef]
- Rayan, S.A.; George, R.F.; Said, M.F. Insight on Development of Oxazole and Imidazole Derivatives as COX Inhibitors with Anti-Inflammatory Effects. J. Mol. Struct. 2025, 1321, 140148. [Google Scholar] [CrossRef]
- Ruggiero, N.; Ciuciu, A.; Sedigh, A.; Rajpar, I.; Shelton, D.; Belanger, P.; Gropp, K.; Collins, J.A.; Freeman, T.A.; Tomlinson, R.E. The Effect of Celecoxib and muMab911 on Strain Adaptive Bone Remodeling and Fracture Repair in Female Mice: Implications for Rapidly Progressive Osteoarthritis. Bone 2025, 198, 117542. [Google Scholar] [CrossRef]
- Thanikachalam, P.V.; Maurya, R.K.; Garg, V.; Monga, V. An Insight into the Medicinal Perspective of Synthetic Analogs of Indole: A Review. Eur. J. Med. Chem. 2019, 180, 562–612. [Google Scholar] [CrossRef] [PubMed]
- Petruncio, G.; Lee, K.H.; Girgis, M.; Shellnutt, Z.; Beaulac, Z.; Xiang, J.; Lee, S.H.; Peng, X.; Burdick, M.; Noble, S.M.; et al. Synthesis and Evaluation of Diaryl Ether Modulators of the Leukotriene A4 Hydrolase Aminopeptidase Activity. Eur. J. Med. Chem. 2024, 272, 116459. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, H.; Oh, I.-S.; Jeong, H.E.; Bea, S.; Jang, S.H.; Son, H.; Shin, J.-Y. Comparative Safety of Bedaquiline and Delamanid in Patients with Multidrug Resistant Tuberculosis: A Nationwide Retrospective Cohort Study. J. Microbiol. Immunol. Infect. 2023, 56, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Aghababa, A.A.; Nasiri, M.J.; Pakzad, P.; Mirsamadi, E.S. Delamanid and Bedaquiline Resistance Patterns in Mycobacterium tuberculosis in Iran: A Cross-Sectional Analysis. New Microbes New Infect. 2024, 60–61, 101437. [Google Scholar] [CrossRef]
- Abrahams, K.A.; Batt, S.M.; Gurcha, S.S.; Veerapen, N.; Bashiri, G.; Besra, G.S. DprE2 Is a Molecular Target of the Anti-Tubercular Nitroimidazole Compounds Pretomanid and Delamanid. Nat. Commun. 2023, 14, 3828. [Google Scholar] [CrossRef]
- Mongia, H.; Mamnoon, F.; Silsarma, A.; Mahajan, R.; Dalal, A.; Galindo, M.A.; Iyer, A.; Singh, P.; Mansoor, H.; Das, M.; et al. Concomitant Bedaquiline and Delamanid Therapy in Patients with Drug-Resistant Extra-Pulmonary Tuberculosis in Mumbai, India. J. Clin. Tuberc. Other Mycobact. Dis. 2024, 35, 100433. [Google Scholar] [CrossRef]
- Poyraz, S.; Yıldırım, M.; Ersatir, M. Recent Pharmacological Insights about Imidazole Hybrids: A Comprehensive Review. Med. Chem. Res. 2024, 33, 839–868. [Google Scholar] [CrossRef]
- Rajesh, R.; Manikandan, A.; Sivakumar, A.; Ramasubbu, C.; Nagaraju, N. Substituted Methoxybenzyl-Sulfonyl-1H-Benzo[d]Imidazoles Evaluated as Effective H+/K+-ATPase Inhibitors and Anti-Ulcer Therapeutics. Eur. J. Med. Chem. 2017, 139, 454–460. [Google Scholar] [CrossRef]
- Amirmostofian, M.; Kobarfard, F.; Reihanfard, H.; Mashayekhi, V.; Zarghi, A. Design, Synthesis, and Cytotoxicity Evaluation of New 1,2-Diaryl-4,5,6,7-Tetrahydro-1H-Benzo[d]imidazoles as Tubulin Inhibitors. Iran. J. Pharm. Res. 2015, 14, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Vasamsetti, R.; Gatchakayala, N.B.; Bujjibabu, N.; Kumar, V.S.; Satyanarayana, T.V.V.; Pavani, G.; Kapavarapu, R.K.; Madhav, B. Rational Design, and Synthesis of Imidazole Ring Incorporated Pyridine-1,2,4-Oxadiazole Derivatives: In-Vitro Anticancer Evaluation and in-Silico Molecular Docking Simulations. Results Chem. 2025, 15, 102217. [Google Scholar] [CrossRef]
- Alzahrani, A.Y.A. Development of Novel Imidazole-2-One/-2-Thione Heterocyclic Derivatives as Antimicrobial and Antiproliferative Agents and Evaluation through Biological Studies and Molecular Modeling Simulations. J. Mol. Struct. 2025, 1324, 140959. [Google Scholar] [CrossRef]
- Al-Qahtani, S.D.; Al-Senani, G.M. Novel Hybrid Motifs of 2-(2-Pyridinyl)-1H-Benzo[d]Imidazole-1,2,3-Triazole: Synthesis, Anticancer Assessment, and in Silico Study. J. Mol. Struct. 2024, 1318, 139376. [Google Scholar] [CrossRef]
- Chen, N.; Wang, B.; Wang, S.; Wang, G.; Shen, Z.; Wen, Y.; Li, J.; Zhang, B.; Li, F.; Li, W.; et al. Design, Synthesis and Anticancer Evaluation of Novel 1,3-Imidazole-Type Phenylhistin Derivatives: Dual Mechanism via P53 Induction and Microtubulin Inhibition. Bioorg. Chem. 2025, 157, 108271. [Google Scholar] [CrossRef]
- Golcienė, B.; Vaickelionienė, R.; Endriulaitytė, U.; Mickevičius, V.; Petrikaitė, V. Synthesis and Effect of 4-Acetylphenylamine-Based Imidazole Derivatives on Migration and Growth of 3D Cultures of Breast, Prostate and Brain Cancer Cells. Sci. Rep. 2024, 14, 28065. [Google Scholar] [CrossRef] [PubMed]
- Badrey, M.G.; Elhenawy, A.A.; Alam, M.M.; Nazreen, S.; Zaki, M.E.A.; Gomha, S.M. Novel Imidazoles from Guanylhydrazone: Synthesis, Computational, and Molecular Docking Studies as α-Amylase Inhibitors for Type 2 Diabetes Management. Results Chem. 2025, 16, 102313. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.S.; Eskandarpour, V.; Maleki, M.F.; Eisvand, F.; Mashreghi, M.; Hadizadeh, F.; Tayarani-Najaran, Z.; Ghodsi, R. Design, Synthesis and Biological Evaluation of Novel Imidazole-Based Benzamide and Hydroxamic Acid Derivatives as Potent Histone Deacetylase Inhibitors and Anticancer Agents. J. Mol. Struct. 2024, 1297, 136951. [Google Scholar] [CrossRef]
- Leshabane, M.; Dziwornu, G.A.; Coertzen, D.; Reader, J.; Moyo, P.; van der Watt, M.; Chisanga, K.; Nsanzubuhoro, C.; Ferger, R.; Erlank, E.; et al. Benzimidazole Derivatives Are Potent against Multiple Life Cycle Stages of Plasmodium falciparum Malaria Parasites. ACS Infect. Dis. 2021, 7, 1945–1955. [Google Scholar] [CrossRef]
- Shafiei, M.; Peyton, L.; Hashemzadeh, M.; Foroumadi, A. History of the Development of Antifungal Azoles: A Review on Structures, SAR, and Mechanism of Action. Bioorg. Chem. 2020, 104, 104240. [Google Scholar] [CrossRef]
- Pahan, K.; Khan, M.; Smith, B.T.; Singh, I. Ketoconazole and Other Imidazole Derivatives Are Potent Inhibitors of Peroxisomal Phytanic Acid Alpha-Oxidation. FEBS Lett. 1995, 377, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Fan, L.; Shi, L.; Wang, C.; Pan, Z.; Xu, C.; Yang, G. Synthesis, Characterization and Antifungal Activity of Imidazole Chitosan Derivatives. Carbohydr. Res. 2024, 544, 109238. [Google Scholar] [CrossRef]
- Sadeghian, S.; Bekhradi, F.; Mansouri, F.; Razmi, R.; Mansouri, S.G.; Poustforoosh, A.; Khabnadideh, S.; Zomorodian, K.; Zareshahrabadi, Z.; Rezaei, Z. Imidazole Derivatives as Novel and Potent Antifungal Agents: Synthesis, Biological Evaluation, Molecular Docking Study, Molecular Dynamic Simulation and ADME Prediction. J. Mol. Struct. 2024, 1302, 137447. [Google Scholar] [CrossRef]
- Lisa, E.L.; Dragostin, O.M.; Petroaie, A.D.; Gurau, G.; Cristea, A.; Pavel, A.; Bonifate, F.; Popa, P.S.; Matei, M. The Effect of the New Imidazole Derivatives Complexation with Betacyclodextrin, on the Antifungal Activity in Oropharyngeal Infections. Processes 2022, 10, 2697. [Google Scholar] [CrossRef]
- Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S. Synthesis and Evaluation of in Vitro Anti-Microbial and Anti-Tubercular Activity of 2-Styryl Benzimidazoles. Eur. J. Med. Chem. 2009, 44, 4244–4248. [Google Scholar] [CrossRef]
- Deshmukh, R.; Dumbare, M.; Disale, S.; Kale, S.; Asrondkar, A.; Kulkarni, M.; Gaikwad, N. Synthesis, Characterization, Antifungal Evaluation, and in Silico Studies of Novel Imidazole-Pyrazole and Imidazole-Isoxazole Clubbed Scaffolds. J. Mol. Struct. 2025, 1328, 141289. [Google Scholar] [CrossRef]
- Ramachandran, R.; Rani, M.; Senthan, S.; Jeong, Y.T.; Kabilan, S. Synthesis, Spectral, Crystal Structure and in Vitro Antimicrobial Evaluation of Imidazole/Benzotriazole Substituted Piperidin-4-One Derivatives. Eur. J. Med. Chem. 2011, 46, 1926–1934. [Google Scholar] [CrossRef]
- Jain, A.K.; Ravichandran, V.; Sisodiya, M.; Agrawal, R. Synthesis and Antibacterial Evaluation of 2–Substituted–4,5–Diphenyl–N–Alkyl Imidazole Derivatives. Asian Pac. J. Trop. Med. 2010, 3, 471–474. [Google Scholar] [CrossRef]
- Michalczyk, E.; Hommernick, K.; Behroz, I.; Kulike, M.; Pakosz-Stępień, Z.; Mazurek, L.; Seidel, M.; Kunert, M.; Santos, K.; von Moeller, H.; et al. Molecular Mechanism of Topoisomerase Poisoning by the Peptide Antibiotic Albicidin. Nat. Catal. 2023, 6, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Germe, T.; Vörös, J.; Jeannot, F.; Taillier, T.; Stavenger, R.A.; Bacqué, E.; Maxwell, A.; Bax, B.D. A New Class of Antibacterials, the Imidazopyrazinones, Reveal Structural Transitions Involved in DNA Gyrase Poisoning and Mechanisms of Resistance. Nucleic Acids Res. 2018, 46, 4114–4128. [Google Scholar] [CrossRef]
- Kulike-Koczula, M.; Hommernick, K.; Ghimire, L.B.; Kosol, S.; Zborovsky, L.; Seidel, M.; Sattler, N.; Mainz, A.; Weston, J.B.; Ghilarov, D.; et al. Synthesis of Derivatives of the Antibiotic Albicidin: The N-Terminal Fragment as Key to Control Potency and Resistance Mediated by the Binding Protein AlbA. Chem. Eur. J. 2025, 31, e202500162. [Google Scholar] [CrossRef]
- Arjomandi, O.K.; Kavoosi, M.; Adibi, H. Synthesis and Investigation of Inhibitory Activities of Imidazole Derivatives against the Metallo-β-Lactamase IMP-1. Bioorg. Chem. 2019, 92, 103277. [Google Scholar] [CrossRef]
- Yan, Y.-H.; Li, W.; Chen, W.; Li, C.; Zhu, K.-R.; Deng, J.; Dai, Q.-Q.; Yang, L.-L.; Wang, Z.; Li, G.-B. Structure-guided optimization of 1H-imidazole-2-carboxylic acid derivatives affording potent VIM-Type metallo-β-lactamase inhibitors. Eur. J. Med. Chem. 2022, 228, 113965. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Zhang, Y.; Yin, P.; Sun, X. Environmentally-Friendly Functionalized Carbon Dots for the Detection of Metronidazole and Antibacterial Applications. Microchem. J. 2025, 214, 113985. [Google Scholar] [CrossRef]
- Mitra, A.; Srivastava, N.K.; Vivek, A.; Bhuyan, N.; Jain, A.; Paul, S.; Mishra, V.N.; Pathak, A. A Rare Clinical Presentation of Metronidazole-Induced Dysarthria: A Case Report with Literature Review. Radiol. Case Rep. 2025, 20, 2355–2359. [Google Scholar] [CrossRef] [PubMed]
- Patel, O.P.S.; Jesumoroti, O.J.; Legoabe, L.J.; Beteck, R.M. Metronidazole-Conjugates: A Comprehensive Review of Recent Developments towards Synthesis and Medicinal Perspective. Eur. J. Med. Chem. 2021, 210, 112994. [Google Scholar] [CrossRef]
- Atacan, K.; Semerci, A.B.; Güy, N.; Mammadova, N.; Ozmen, M.; Kursunlu, A.N. Preparation of Water-Soluble Imidazole-Functionalized Pillar[5]Arenes: The Activities of Antibacterial and Antioxidant, Catalytic Reduction of 4-Nitrophenol. Bioorg. Chem. 2025, 161, 108544. [Google Scholar] [CrossRef]
- Aono, J.; Nabata, H.; Sakai, K. Effects of a new anti-inflammatory imidazole derivative, fenflumizole, on platelet aggregation in the rabbit. Jpn. J. Pharmacol. 1986, 42, 575–578. [Google Scholar] [CrossRef]
- Song, Z.-J.; Wu, X.-F.; Zhou, Z.-Y.; Zhang, J.-J.; Pan, Y.-Y.; Dong, X.; Pang, X.; Xie, Y.-P.; Sun, J.; Zhang, Y.; et al. Design, Synthesis, and Evaluation of Carboxylic Acid-Substituted Celecoxib Isosteres as Potential Anti-Inflammatory Agents. Eur. J. Med. Chem. 2025, 286, 117286. [Google Scholar] [CrossRef] [PubMed]
- Rocha, T.M.; Machado, N.J.; de Sousa, J.A.C.; Araujo, E.V.O.; Guimaraes, M.A.; Lima, D.F.; Leite, J.R.D.S.D.A.; Leal, L.K.A.M. Imidazole Alkaloids Inhibit the Pro-Inflammatory Mechanisms of Human Neutrophil and Exhibit Anti-Inflammatory Properties in Vivo. J. Pharm. Pharmacol. 2019, 71, 849–859. [Google Scholar] [CrossRef]
- Dos Santos Nascimento, M.V.P.; Munhoz, A.C.M.; De Campos Facchin, B.M.; Fratoni, E.; Rossa, T.A.; Sá, M.M.; Campa, C.C.; Ciraolo, E.; Hirsch, E.; Dalmarco, E.M. New Pre-Clinical Evidence of Anti-Inflammatory Effect and Safety of a Substituted Fluorophenyl Imidazole. Biomed. Pharmacother. 2019, 111, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, A.; Rahman, M.A.; Raju, M.B. Synthesis, In Silico Studies, and In Vitro Anti-Inflammatory Activity of Novel Imidazole Derivatives Targeting P38 MAP Kinase. ACS Omega 2023, 8, 17788–17799. [Google Scholar] [CrossRef]
- Miyawaki, S.; Sawamoto, A.; Okuyama, S.; Nakajima, M. Sulconazole Induces Pyroptosis Promoted by Interferon-γ in Monocyte/Macrophage Lineage Cells. J. Pharmacol. Sci. 2024, 154, 166–174. [Google Scholar] [CrossRef]
- Khoshnood, S.; Taki, E.; Sadeghifard, N.; Kaviar, V.H.; Haddadi, M.H.; Farshadzadeh, Z.; Kouhsari, E.; Goudarzi, M.; Heidary, M. Mechanism of Action, Resistance, Synergism, and Clinical Implications of Delamanid Against Multidrug-Resistant Mycobacterium tuberculosis. Front. Microbiol. 2021, 12, 717045. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.-L.; Jin, X.-H.; Huang, Z.-P.; Yu, H.-F.; Zeng, Z.-G.; Gao, T.; Feng, L.-S. Recent Advances of Imidazole-Containing Derivatives as Anti-Tubercular Agents. Eur. J. Med. Chem. 2018, 150, 347–365. [Google Scholar] [CrossRef]
- Korycka-Machała, M.; Viljoen, A.; Pawełczyk, J.; Borówka, P.; Dziadek, B.; Gobis, K.; Brzostek, A.; Kawka, M.; Blaise, M.; Strapagiel, D.; et al. 1H-Benzo[d]Imidazole Derivatives Affect MmpL3 in Mycobacterium Tuberculosis. Antimicrob. Agents Chemother. 2019, 63, e00441. [Google Scholar] [CrossRef]
- Fil, M.; Alibert, S. Unveiling DprE1 as a Key Target in the Fight against Tuberculosis: Insights and Perspectives on Developing Novel Antimicrobial Agents. BioMed 2024, 4, 220–236. [Google Scholar] [CrossRef]
- Shin, J.M.; Sachs, G. Proton pump inhibitors. In Encyclopedia of Gastroenterology; Johnson, L.R., Ed.; Elsevier Academic Press: San Diego, CA, USA, 2004; pp. 259–262. [Google Scholar] [CrossRef]
- Park, G.-J.; Bae, S.H.; Park, W.-S.; Han, S.; Park, M.-H.; Shin, S.-H.; Shin, Y.G.; Yim, D.-S. Drug–drug interaction of microdose and regular-dose omeprazole with a CYP2C19 inhibitor and inducer. Drug Des. Dev. Ther. 2017, 11, 1043–1053. [Google Scholar] [CrossRef]
- Ganavi, D.; Kumar, V.; Akhileshwari, P.; Prabhu, A.; Omantheswara, N.; Mahendra, M.; Poojary, B. Synthesis, Crystal Structure, Hirshfeld, DFT, Molecular Docking, Dynamics Studies, and Anti-Cancer Activity of 1-Substituted-2-(4-(Diethylamino)-2-Hydroxyphenyl)-1H-Benzo[d]Imidazole-5-Ethyl Carboxylates. J. Mol. Struct. 2024, 1314, 138657. [Google Scholar] [CrossRef]
- Spyrou, A.; Tzamaria, A.; Dormousoglou, M.; Skourti, A.; Vlastos, D.; Papadaki, M.; Antonopoulou, M. The Overall Assessment of Simultaneous Photocatalytic Degradation of Cimetidine and Amisulpride by Using Chemical and Genotoxicological Approaches. Sci. Total Environ. 2022, 838, 156140. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, E.S.; Al-Sadi, A.M.; Talebi, M.; Amanlou, M.; Amini, M.; Abdel-Jalil, R. Novel Benzimidazole Derivatives; Synthesis, Bioactivity and Molecular Docking Study as Potent Urease Inhibitors. DARU J. Pharm. Sci. 2022, 30, 29–37. [Google Scholar] [CrossRef]
- Li, H.; Ouyang, S.; Zhang, Y.; Peng, K.; Fang, W.; Liu, Z.; Wang, C.-Y.; Zhang, X.; Wang, Y. Structural Optimization of Imidazo[1, 2-a]Pyridine Derivatives for the Treatment of Gastric Cancer via STAT3 Signaling Pathway. Eur. J. Med. Chem. 2022, 244, 114858. [Google Scholar] [CrossRef]
- Narayan, A.; Patel, S.; Baile, S.B.; Jain, S.; Sharma, S. Imidazo[1,2-A]Pyridine: Potent Biological Activity, SAR and Docking Investigations (2017–2022). Infect. Disord. Drug Targets 2024, 24, e200324228067. [Google Scholar] [CrossRef]
- Palmer, A.M.; Grobbel, B.; Jecke, C.; Brehm, C.; Zimmermann, P.J.; Buhr, W.; Feth, M.P.; Simon, W.-A.; Kromer, W. Synthesis and Evaluation of 7H-8,9-Dihydropyrano[2,3-c]Imidazo[1,2-a]Pyridines as Potassium-Competitive Acid Blockers. J. Med. Chem. 2007, 50, 6240–6264. [Google Scholar] [CrossRef] [PubMed]
- Shahin, A.I.; Zaib, S.; Zaraei, S.-O.; Kedia, R.A.; Anbar, H.S.; Younas, M.T.; Al-Tel, T.H.; Khoder, G.; El-Gamal, M.I. Design and Synthesis of Novel Anti-Urease Imidazothiazole Derivatives with Promising Antibacterial Activity against Helicobacter Pylori. PLoS ONE 2023, 18, e0286684. [Google Scholar] [CrossRef]
- Rego, Y.F.; Queiroz, M.P.; Brito, T.O.; Carvalho, P.G.; de Queiroz, V.T.; de Fátima, Â.; Macedo, F., Jr. A Review on the Development of Urease Inhibitors as Antimicrobial Agents against Pathogenic Bacteria. J. Adv. Res. 2018, 13, 69–100. [Google Scholar] [CrossRef]
- Valenzuela-Hormazabal, P.; Sepúlveda, R.V.; Alegría-Arcos, M.; Valdés-Muñoz, E.; Rojas-Pérez, V.; González-Bonet, I.; Suardíaz, R.; Galarza, C.; Morales, N.; Leddermann, V.; et al. Unveiling Novel Urease Inhibitors for Helicobacter Pylori: A Multi-Methodological Approach from Virtual Screening and ADME to Molecular Dynamics Simulations. Int. J. Mol. Sci. 2024, 25, 1968. [Google Scholar] [CrossRef] [PubMed]
- Azmi, A.; Noori, M.; Ghomi, M.K.; Montazer, M.N.; Iraji, A.; Dastyafteh, N.; Oliyaei, N.; Khoramjouy, M.; Rezaei, Z.; Javanshir, S.; et al. Alpha-Glucosidase Inhibitory and Hypoglycemic Effects of Imidazole-Bearing Thioquinoline Derivatives with Different Substituents: In Silico, in Vitro, and in Vivo Evaluations. Bioorg. Chem. 2024, 144, 107106. [Google Scholar] [CrossRef]
- Trifonov, R.E.; Ostrovskii, V.A. Tetrazoles and Related Heterocycles as Promising Synthetic Antidiabetic Agents. Int. J. Mol. Sci. 2023, 24, 17190. [Google Scholar] [CrossRef]
- Naureen, S.; Chaudhry, F.; Munawar, M.A.; Ashraf, M.; Hamid, S.; Khan, M.A. Biological evaluation of new imidazole derivatives tethered with indole moiety as potent α-glucosidase inhibitors. Bioorg. Chem. 2018, 76, 365–369. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Li, Y.-J.; Shao, J.; Fu, C.; Li, Y.-S.; Cui, Z.-N. 2,5-Disubstituted Furan Derivatives Containing Imidazole, Triazole or Tetrazole Moiety as Potent α-Glucosidase Inhibitors. Bioorg. Chem. 2023, 131, 106298. [Google Scholar] [CrossRef]
- Luo, Z.; Deng, S.; Zhou, R.; Ye, L.; Zhu, T.; Chen, G. Comparative Efficacy of Video Games Versus Midazolam in Reducing Perioperative Anxiety in Pediatric Patients: Systematic Review and Meta-Analysis. JMIR Serious Games 2025, 13, e67007. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, R.; Gupta, R.; Gupta, L.K. Intranasal Midazolam versus Intravenous/Rectal Benzodiazepines for Acute Seizure Control in Children: A Systematic Review and Meta-Analysis. Epilepsy Behav. 2021, 125, 108390. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.; Salluh, J.I.F.; Andrade, T.R.; Farah, D.; da Silva, P.S.L.; Bastos, D.F.; Fonseca, M.C.M. A Systematic Review and Meta-Analysis of Propofol versus Midazolam Sedation in Adult Intensive Care (ICU) Patients. J. Crit. Care 2021, 64, 91–99. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Han, X.; Xu, L.; Wang, Z.; Liu, N.; Yang, Y.; Zhang, H.; Zheng, A. A Comprehensive Study on Needle-Free Injection Technology Combined with Midazolam Nanosuspension. J. Drug Deliv. Sci. Technol. 2025, 106, 106704. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Wei, L.; Mao, S. Assessing the Safety of Midazolam: A Comprehensive Analysis of Adverse Events from FAERS. Toxicol. Vitr. 2025, 105, 106023. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 4192, Midazolam. 2023. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4192 (accessed on 9 December 2025).
- Saber, S.W.; Al-Qawasmeh, R.A.; Abu-Qatouseh, L.; Shtaiwi, A.; Khanfar, M.A.; Al-Soud, Y.A. Novel Hybrid Motifs of 4-Nitroimidazole-Piperazinyl Tagged 1,2,3-Triazoles: Synthesis, Crystal Structure, Anticancer Evaluations, and Molecular Docking Study. Heliyon 2023, 9, e19327. [Google Scholar] [CrossRef]
- Hadizadeh, F.; Hosseinzadeh, H.; Motamed-Shariaty, V.S.; Seifi, M.; Kazemi, S. Synthesis and antidepressant activity of N-substituted imidazole-5-carboxamides in forced swimming test model. Iran. J. Pharm. Res. 2010, 7, 29–33. [Google Scholar] [CrossRef]
- Sasidharan, R.; Baek, S.C.; Leelabaiamma, M.S.; Kim, H.; Mathew, B. Imidazole Bearing Chalcones as a New Class of Monoamine Oxidase Inhibitors. Biomed. Pharmacother. 2018, 106, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, H.S.; Adole, V.A.; Wagh, S.B.; Khedkar, V.M.; Jagdale, B.S. Exploring N-Heterocyclic Linked Novel Hybrid Chalcone Derivatives: Synthesis, Characterization, Evaluation of Antidepressant Activity, Toxicity Assessment, Molecular Docking, DFT and ADME Study. RSC Adv. 2025, 15, 16187–16210. [Google Scholar] [CrossRef] [PubMed]
- Gardner, T.B.; Hill, D.R. Treatment of Giardiasis. Clin. Microbiol. Rev. 2001, 14, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Ansell, B.R.E.; McConville, M.J.; Ma’ayeh, S.Y.; Dagley, M.J.; Gasser, R.B.; Svard, S.G.; Jex, A.R. Transcriptomics Indicates Active and Passive Metronidazole Resistance Mechanisms in Three Seminal Giardia Lines. Front. Microbiol. 2017, 8, 398. [Google Scholar] [CrossRef]
- Jarrad, A.M.; Debnath, A.; Miyamoto, Y.; Hansford, K.A.; Pelingon, R.; Butler, M.S.; Bains, T.; Karoli, T.; Blaskovich, M.A.T.; Cooper, M.A. Nitroimidazole Carboxamides as Antiparasitic Agents Targeting Giardia lamblia, Entamoeba histolytica and Trichomonas vaginalis. Eur. J. Med. Chem. 2016, 120, 353–362. [Google Scholar] [CrossRef]
- Wijnant, G.-J.; Croft, S.L.; de la Flor, R.; Alavijeh, M.; Yardley, V.; Braillard, S.; Mowbray, C.; Van Bocxlaer, K. Pharmacokinetics and Pharmacodynamics of the Nitroimidazole DNDI-0690 in Mouse Models of Cutaneous Leishmaniasis. Antimicrob. Agents Chemother. 2019, 63, e00829-19. [Google Scholar] [CrossRef]
- Van Bocxlaer, K.; Caridha, D.; Black, C.; Vesely, B.; Leed, S.; Sciotti, R.J.; Wijnant, G.-J.; Yardley, V.; Braillard, S.; Mowbray, C.E.; et al. Novel Benzoxaborole, Nitroimidazole and Aminopyrazoles with Activity against Experimental Cutaneous Leishmaniasis. Int. J. Parasitol. Drugs Drug Resist. 2019, 11, 129–138. [Google Scholar] [CrossRef]
- Vichi-Ramírez, M.M.; López-López, E.; Soriano-Correa, C.; Barrientos-Salcedo, C. Using 5-Nitroimidazole Derivatives against Neglected Tropical Protozoan Diseases: Systematic Review. Future Pharmacol. 2024, 4, 222–255. [Google Scholar] [CrossRef]
- Martínez-Rosas, M.E.; Quiroz-Cruz, S.; Valdés-Casillas, A.; Rivas-García, I.; Guzmán-Delgado, N.E.; Álvarez-Hernández, A.A.; Ramírez-Mendoza, M.J.; González-Castro, M.A.; Chávez-Munguía, B.; Reyes-Batlle, M.; et al. Imidazole Carbamates as a Promising Alternative for Treating Trichomoniasis. Molecules 2024, 29, 2585. [Google Scholar] [CrossRef]
- Chai, J.-Y.; Jung, B.-K.; Hong, S.-J. Albendazole and Mebendazole as Anti-Parasitic and Anti-Cancer Agents: An Update. Korean J. Parasitol. 2021, 59, 189–225. [Google Scholar] [CrossRef]
- Kern, P. Echinococcus granulosus infection: Clinical presentation, medical treatment and outcome. Langenbecks Arch. Surg. 2003, 388, 413–420. [Google Scholar] [CrossRef]
- Guarnaschelli, I.; Koziol, U. Albendazole specifically disrupts microtubules and protein turnover in the tegument of the cestode Mesocestoides corti. PLoS Pathog. 2025, 21, e1013221. [Google Scholar] [CrossRef]
- Bhoi, P.; Sahoo, U.; Dash, D.; Behera, A.K.; Behera, R.K. An Efficient Synthesis of Rearranged New Biologically Active Benzimidazoles Derived from 2-Formyl Carvacrol. Res. Chem. Intermed. 2022, 48, 401–422. [Google Scholar] [CrossRef]
- Francesconi, V.; Rizzo, M.; Schenone, S.; Carbone, A.; Tonelli, M. State-of-the-art Review on the Antiparasitic Activity of Benzimidazole-based Derivatives: Facing Malaria, Leishmaniasis, and Trypanosomiasis. Curr. Med. Chem. 2024, 31, 1955–1982. [Google Scholar] [CrossRef]
- Valderas-García, J.C.; García-Camín, R.; Hernández-González, A.; Robledo-Camacho, M.; Rojas-Caraballo, J.; Pérez-Arévalo, J.; Rojo-Vázquez, F.A.; Álvarez-Sánchez, M.A. New Benzimidazole Derivative Compounds with In Vitro Fasciolicidal Properties. Parasites Vectors 2024, 17, 224. [Google Scholar] [CrossRef]
- Paes, V.B.; da Silva Lara, L.; Orlando, L.M.R.; Lechuga, G.C.; de Souza, T.P.; Ferreira, B.S.; de Oliveira Zago, M.; dos Santos, M.S.; de Souza Pereira, M.C. Insights into the Antiparasitic Activity of Pyrazole-benzimidazole against Trypanosoma cruzi. Curr. Med. Chem. 2025, 32, 7938–7959. [Google Scholar] [CrossRef]
- Makawana, J.A.; Sangani, C.B.; Lin, L.; Zhu, H.-L. Schiff’s Base Derivatives Bearing Nitroimidazole and Quinoline Nuclei: New Class of Anticancer Agents and Potential EGFR Tyrosine Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 1734–1736. [Google Scholar] [CrossRef]
- Ali, I.; Lone, M.N.; Aboul-Enein, H.Y. Imidazoles as Potential Anticancer Agents. Med. Chem. Commun. 2017, 8, 1742–1773. [Google Scholar] [CrossRef]
- Rashed, F.; Diaz-Dussan, D.; Mashayekhi, F.; Macdonald, D.; Patrick, N.; Yang, X.H.; Sokhi, S.; Stoica, A.C.; El-Saidi, H.; Ricardo, C.; et al. Cellular mechanism of action of 2-nitroimidazoles as hypoxia-selective therapeutic agents. Redox Biol. 2022, 52, 102300. [Google Scholar] [CrossRef] [PubMed]
- Teimouri, F.; Nikfar, S.; Abdollahi, M. Efficacy and side effects of dacarbazine in comparison with temozolomide in the treatment of malignant melanoma: A meta-analysis consisting of 1314 patients. Melanoma Res. 2013, 23, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Lalić, H.; Aurer, I.; Batinić, D.; Višnjić, D.; Smoljo, T.; Babić, A. Bendamustine: A review of pharmacology, clinical use and immunological effects. Oncol. Rep. 2022, 47, 114. [Google Scholar] [CrossRef]
- Foster, J.L.; Conroy, P.J.; Searle, A.J.; Willson, R.L. Metronidazole (Flagyl): Characterization as a cytotoxic drug specific for hypoxic tumour cells. Br. J. Cancer 1976, 33, 485–490. [Google Scholar] [CrossRef]
- Hockel, M.; Schlenger, K.; Aral, B.; Mitze, M.; Schaffer, U.; Vaupel, P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996, 56, 4509–4515. [Google Scholar]
- Sprangers, B.; Cosmai, L.; Porta, C. Conventional chemotherapy. In Onco-Nephrology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 127–153. [Google Scholar] [CrossRef]
- Hassan, A.Y.; El-sebaey, S.A.; El Deeb, M.A.; Elzoghbi, M.S. Potential antiviral and anticancer effect of imidazoles and bridgehead imidazoles generated by HPV-Induced cervical carcinomas via reactivating the P53/pRb pathway and inhibition of CA IX. J. Mol. Struct. 2021, 1230, 129865. [Google Scholar] [CrossRef]
- Rahimzadeh, O.S.; Mirzaei, S.; Jafari-Nik, M.R.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Design, synthesis and biological evaluation of novel imidazole-chalcone derivatives as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem. 2021, 112, 104904. [Google Scholar] [CrossRef] [PubMed]
- Ram, A.; Rawat, P.; Pandey, S.; Pandey, A.; Gautam, A.; Gautam, S.; Darwari, A.; Ranjan, A.; Shukla, P.N.; Singh, P.C.; et al. Synthesis, QTAIM, Anticancer Activity Analysis of Pyrrole-Imidazole/Benzimidazole Derivatives and Investigation of Their Reactivity Properties Using DFT Calculations and Molecular Docking. J. Mol. Struct. 2025, 1321, 139622. [Google Scholar] [CrossRef]
- Özkay, Y.; Işıkdağ, İ.; İncesu, Z.; Akalın, G. Synthesis of 2-Substituted-N-[4-(1-Methyl-4,5-Diphenyl-1H-Imidazole-2-Yl)Phenyl]Acetamide Derivatives and Evaluation of Their Anticancer Activity. Eur. J. Med. Chem. 2010, 45, 3320–3328. [Google Scholar] [CrossRef] [PubMed]
- Bairi, S.; Alagarsamy, V.; Rachamalla, S.S.; Eppakayala, L. Synthesis and Biological Evaluation of Aryl 1,2,4-Oxadiazole Incorporated (2-(Oxazol)-1H-Imidazoles as Anticancer Agents. Results Chem. 2022, 4, 100649. [Google Scholar] [CrossRef]
- Tapera, M.; Doğan, E.; Şahin, K.; Gözkamane, G.A.; Kekeçmuhammed, H.; Sandal, S.; Gurkan, A.C.; Bora, R.E.; Anber, A.; Durdagi, S.; et al. Imidazole-Based Hydrazones as Potent Anti-Colon Cancer Agents: Design, Synthesis, Biological Evaluation and Computational Studies. J. Mol. Struct. 2024, 1318, 139240. [Google Scholar] [CrossRef]
- Fan, Y.; Luo, F.; Su, M.; Li, Q.; Zhong, T.; Xiong, L.; Li, M.; Yuan, M.; Wang, D. Structure Optimization, Synthesis, and Biological Evaluation of 6-(2-Amino-1H-Benzo[d]Imidazole-6-Yl)-Quinazolin-4(3H)-One Derivatives as Potential Multi-Targeted Anticancer Agents via Aurora A/ PI3K/BRD4 Inhibition. Bioorg. Chem. 2023, 132, 106352. [Google Scholar] [CrossRef]
- Avila-Sorrosa, A.; Gil-Ruiz, L.A.; Vargas-Diaz, M.E.; Torres-Nogueda, B.; Morales-Morales, D. Green Synthesis and in Vitro Anticancer Evaluation of 1,2-Disubstituted Benzimidazole Derivatives. Results Chem. 2025, 14, 102134. [Google Scholar] [CrossRef]
- Edukondalu, P.; Sireesha, R.; Bandaru, C.M.; Rao, M.V.B.; Kala, P.; Raju, R.R. Design, Synthesis and Anticancer Evaluation of 2-(5-(Benzo[d]Thiazol-2-Yl)-1H-Imidazol-1-Yl)-5-Aryl-1H-Benzo[d]Imidazole Derivatives. Chem. Data Collect. 2021, 35, 100753. [Google Scholar] [CrossRef]




































Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Burlacu, A.P.; Drăgan, M.; Oniga, O.; Matei, M.N.; Oniga, I.; Lisă, E.-L.; Stefan, C.-S.; Dragostin, O.-M. Importance and Involvement of Imidazole Structure in Current and Future Therapy. Molecules 2026, 31, 423. https://doi.org/10.3390/molecules31030423
Burlacu AP, Drăgan M, Oniga O, Matei MN, Oniga I, Lisă E-L, Stefan C-S, Dragostin O-M. Importance and Involvement of Imidazole Structure in Current and Future Therapy. Molecules. 2026; 31(3):423. https://doi.org/10.3390/molecules31030423
Chicago/Turabian StyleBurlacu, Alexandra Pavel, Maria Drăgan, Ovidiu Oniga, Mădălina Nicoleta Matei, Ilioara Oniga, Elena-Lăcrămioara Lisă, Claudia-Simona Stefan, and Oana-Maria Dragostin. 2026. "Importance and Involvement of Imidazole Structure in Current and Future Therapy" Molecules 31, no. 3: 423. https://doi.org/10.3390/molecules31030423
APA StyleBurlacu, A. P., Drăgan, M., Oniga, O., Matei, M. N., Oniga, I., Lisă, E.-L., Stefan, C.-S., & Dragostin, O.-M. (2026). Importance and Involvement of Imidazole Structure in Current and Future Therapy. Molecules, 31(3), 423. https://doi.org/10.3390/molecules31030423

