Improving Mechanical Properties of Carboxyl-Terminated Polybutadiene (CTPB) Binder System Using a Cure Accelerator
Abstract
1. Introduction
2. Results and Discussion
2.1. Infrared Spectroscopy (IR)
2.2. Mechanical Properties
2.3. Crosslink Density
2.4. Surface Morphology
2.5. Effects of 593 Cure Accelerator on Curing Kinetics of CTPB Binder
3. Materials and Methods
3.1. Materials
3.2. Preparation of CTPB/EP Binder Systems
3.3. Measurements and Characterizations
3.3.1. Fourier Transform Infrared Spectroscopy (FTIR) Testing
3.3.2. Mechanical Testing
3.3.3. Crosslink Density Measurement
3.3.4. Micro-Morphological Examination
3.3.5. Curing Kinetics Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Li, Z.; Ji, Y.; Lu, R. Experimental Study of Rheological Properties of Solid Propellant Slurry at Low-Shear Rate and Numerical Simulation. J. Appl. Polym. Sci. 2020, 137, 49287. [Google Scholar] [CrossRef]
- Qi, C.; Tang, G.; Guo, X.; Liu, C.; Pang, A.; Gan, L.; Huang, J. Network Regulation and Properties Optimization of Glycidyl Azide Polymer-Based Materials as a Candidate of Solid Propellant Binder via Alternating the Functionality of Propargyl-Terminated Polyether. J. Appl. Polym. Sci. 2019, 136, 48016. [Google Scholar] [CrossRef]
- Dai, L.; Wang, X.; Bu, Z.; Li, B.-G.; Jie, S. Facile Access to Carboxyl-Terminated Polybutadiene and Polyethylene from Cis-Polybutadiene Rubber. J. Appl. Polym. Sci. 2019, 136, 46934. [Google Scholar] [CrossRef]
- Boyars, C.; Klager, K. Solid Propellants Based on Polybutadiene Binders. Adv. Chem. 1969, 88, 122–164. [Google Scholar] [CrossRef]
- Xie, F.; Ping, Z.; Xu, W.; Zhang, F.; Dong, Y.; Li, L.; Zhang, C.; Gong, X. A Metal Coordination-Based Supramolecular Elastomer with Shape Memory-Assisted Self-Healing Effect. Polymers 2022, 14, 4879. [Google Scholar] [CrossRef]
- Martínez, M.; López, R.; Rodríguez, J.; Salazar, A. Evaluation of the Structural Integrity of Solid Rocket Propellant by Means of the Viscoelastic Fracture Mechanics Approach at Low and Medium Strain Rates. Theor. Appl. Fract. Mech. 2022, 118, 103237. [Google Scholar] [CrossRef]
- López, R.; Salazar, A.; Rodríguez, J. Fatigue Crack Propagation Behaviour of Carboxyl-Terminated Polybutadiene Solid Rocket Propellants. Int. J. Fract. 2020, 223, 3–15. [Google Scholar] [CrossRef]
- Dong, L.; Zhou, W.; Sui, X.; Wang, Z.; Cai, H.; Wu, P.; Zuo, J.; Liu, X. A Carboxyl-Terminated Polybutadiene Liquid Rubber Modified Epoxy Resin with Enhanced Toughness and Excellent Electrical Properties. J. Electron. Mater. 2016, 45, 3776–3785. [Google Scholar] [CrossRef]
- Gong, Y.; Zhou, W.; Kou, Y.; Xu, L.; Wu, H.; Zhao, W. Heat Conductive H-BN/CTPB/Epoxy with Enhanced Dielectric Properties for Potential High-Voltage Applications. High Volt. 2017, 2, 172–178. [Google Scholar] [CrossRef]
- French, D.M.; Rosborough, L. Oxidation and Heat Aging of Carboxyl-Terminated Polybutadiene. J. Appl. Polym. Sci. 1966, 10, 273–289. [Google Scholar] [CrossRef]
- Bilgin, F.; Sage, T.; Orbey, N.; Guven, O. Lifetime Prediction of Carboxyl-Terminated Polybutadiene (CTPB). J. Appl. Polym. Sci. 1991, 42, 153–158. [Google Scholar] [CrossRef]
- Liu, H.; Fan, X.; Pan, B.; Zhou, Y.; Zhang, L.; Li, M.; Li, Z.; Pang, X. Simultaneously Enhancing Tribological and Mechanical Properties of Epoxy Composites Using Basalt Fiber/Reduced Graphene Oxide/Paraffin Wax. Polym. Compos. 2024, 45, 3343–3354. [Google Scholar] [CrossRef]
- Li, M.; Pan, B.; Liu, H.; Zhu, L.; Fan, X.; Yue, E.; Li, M.; Qin, Y. Interfacial Tailoring of Basalt Fiber/Epoxy Composites by Metal–Organic Framework Based Oil Containers for Promoting Its Mechanical and Tribological Properties. Polym. Compos. 2023, 44, 4757–4770. [Google Scholar] [CrossRef]
- Chmielarek, M.; Stopa, N. Isocyanate-Free Carboxyl-Terminated Polybutadiene and Epoxidised Hydroxyl-Terminated Polybutadiene Cross-Linking System as a Binder in Solid Heterogeneous Propellants. Cent. Eur. J. Energ. Mater. 2023, 20, 200–220. [Google Scholar] [CrossRef]
- Kishore, K.; Verneker, V.R.P.; Vasanthakumari, R. Curing Reactions in Elastomers. II. Carboxy-Terminated Polybutadiene. J. Appl. Polym. Sci. 1983, 28, 595–604. [Google Scholar] [CrossRef]
- Gilev, V.G.; Rusakov, S.V.; Chudinov, V.S.; Rakhmanov, A.Y.; Kondyurin, A.V. Modeling the Curing Kinetics of an Epoxy Binder with Disturbed Stoichiometry for a Composite Material of Aerospace Purpose. Mech. Compos. Mater. 2021, 57, 361–372. [Google Scholar] [CrossRef]
- Konstantinova, A.; Yudaev, P.; Shapagin, A.; Panfilova, D.; Palamarchuk, A.; Chistyakov, E.; Konstantinova, A.; Yudaev, P.; Shapagin, A.; Panfilova, D.; et al. Non-Flammable Epoxy Composition Based on Epoxy Resin DER-331 and 4-(β-Carboxyethenyl)Phenoxy-Phenoxycyclotriphosphazenes with Increased Adhesion to Metals. Sci 2024, 6, 30. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, B.; Liu, L.; Ma, Y.; Li, J.; Ao, W.; Sun, Q.; Wang, Z.; Liu, P.; Zhao, J. In Situ Monitoring of Curing Reaction in Solid Composite Propellant with Fiber-Optic Sensors. ACS Sens. 2023, 8, 2664–2672. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Xu, S.; Xu, H.; Xie, W.; Zhang, Z.; Yao, E.; Jiang, H.; Shao, Y.; Xu, S.; Xu, H.; et al. Study on the Rheological Properties of BGAP Adhesive and Its Propellant. Molecules 2025, 30, 1967. [Google Scholar] [CrossRef]
- Lei, Y.; Fan, Y.; Huo, J. Hydroxyl-Terminated Polybutadiene Curing by 1,3-Dipolar Cycloaddition of Energetic Nitrile N-Oxides: Room Temperature Curing Property, Kinetics, Thermodynamics, and Propellant Combustion Characteristics. Propellants Explos. Pyrotech. 2019, 44, 224–233. [Google Scholar] [CrossRef]
- Orlov, A.; Konstantinova, A.; Korotkov, R.; Yudaev, P.; Mezhuev, Y.; Terekhov, I.; Gurevich, L.; Chistyakov, E.; Orlov, A.; Konstantinova, A.; et al. Epoxy Compositions with Reduced Flammability Based on DER-354 Resin and a Curing Agent Containing Aminophosphazenes Synthesized in Bulk Isophoronediamine. Polymers 2022, 14, 3592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, T.; Cao, T.; Liu, P.; Ma, C.; Li, P.; Huang, D. Study on the Compounding of a New Type of Trimer Epoxy Resin Curing Agent. J. Appl. Polym. Sci. 2022, 139, 52368. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Song, X.; An, C.; Li, F. Rheological Impact of Particle Size Gradation on GAP Propellant Slurries. ACS Omega 2022, 7, 38536–38542. [Google Scholar] [CrossRef]
- Chauhan, D.; Khan, L.; Mandal, S.K.; Jauhari, A.; Bhattacharyya, S.C. Studies on the Processing of HTPB-Based Fast-Burning Propellant with Trimodal Oxidiser Distribution and Its Rheological Behaviour. Asia-Pac. J. Chem. Eng. 2022, 17, e2783. [Google Scholar] [CrossRef]
- Ignatenko, V.Y.; Ilyin, S.O.; Kostyuk, A.V.; Bondarenko, G.N.; Antonov, S.V. Acceleration of Epoxy Resin Curing by Using a Combination of Aliphatic and Aromatic Amines. Polym. Bull. 2020, 77, 1519–1540. [Google Scholar] [CrossRef]
- Laza, J.M.; Julian, C.A.; Larrauri, E.; Rodriguez, M.; Leon, L.M. Thermal Scanning Rheometer Analysis of Curing Kinetic of an Epoxy Resin: 2. An Amine as Curing Agent. Polymer 1999, 40, 35–45. [Google Scholar] [CrossRef]
- Lizza, J.R.; Moura-Letts, G. Solvent-Directed Epoxide Opening with Primary Amines for the Synthesis of β-Amino Alcohols. Synthesis 2017, 49, 1231–1242. [Google Scholar] [CrossRef]
- Bi, X.; Liu, G.; Cao, L.; Sun, C.; Tana, H.; Zhang, Y. Study on improving the toughness of rapidly curing epoxy resin composite materials with a biobased microcrystalline cellulose. Polym. Adv. Technol. 2024, 35, e6361. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Z.; Ma, Y.; Ren, Y.; Tan, J.; Cheng, Z.; Zhu, X. Preparation and properties of epoxy adhesives with fast curing at room temperature and low-temperature resistance. ACS Omega 2024, 20, 22186–22195. [Google Scholar] [CrossRef] [PubMed]
- Kezhen, Y.; Junyi, S.; Kaixin, S.; Min, W.; Goukai, L.; Zhe, H. Effects of the Chemical Structure of Curing Agents on Rheological Properties and Microstructure of WER Emulsified Asphalt. Constr. Build. Mater. 2022, 347, 128531. [Google Scholar] [CrossRef]
- Baraker, B.M.; Lobo, B. Multistage Thermal Decomposition in Films of Cadmium Chloride-Doped PVA–PVP Polymeric Blend. J. Therm. Anal. Calorim. 2018, 134, 865–878. [Google Scholar] [CrossRef]
- GB/T 528-2009; Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties. Standards Press of China: Beijing, China, 2009.
- Flory, P.J.; Rehner, J., Jr. Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity. J. Chem. Phys. 1943, 11, 512–520. [Google Scholar] [CrossRef]
- Cong, K.; He, J.; Yang, R. Facile Synthesis of Three Diazido Compounds and Their Application in Polyether Polytriazido Elastomers as Solid Propellant Binders. Polym. Adv. Technol. 2021, 32, 4940–4950. [Google Scholar] [CrossRef]
- Bristow, G.M.; Watson, W.F. Cohesive Energy Densities of Polymers. Part 2.—Cohesive Energy Densities from Viscosity Measurements. Trans. Faraday Soc. 1958, 54, 1742–1747. [Google Scholar] [CrossRef]
- Sukumaran, S.C.; Sunitha, K.; Mathew, D.; Reghunadhan Nair, C.P. Acrylic Copolymers Crosslinked by Click Chemistry: Some Aspects of Synthesis, Curing, and Crosslinking. J. Appl. Polym. Sci. 2013, 130, 1289–1300. [Google Scholar] [CrossRef]
- Zhang, S.; Gong, X.; Zhao, C.; Zou, G. The Effect of Peroxides on the Structure of High-Melt-Strength Polylactide with Long-Chain Branched Architecture or Micro-Crosslinking. Polym. Adv. Technol. 2023, 34, 3735–3747. [Google Scholar] [CrossRef]
- Kissinger, H.E. Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis. J. Res. Natl. Bur. Stand. 1956, 57, 217. [Google Scholar] [CrossRef]
- Vyazovkin, S. Kissinger Method in Kinetics of Materials: Things to Beware and Be Aware Of. Molecules 2020, 25, 2813. [Google Scholar] [CrossRef]
- Juan, Z.; Ning, Q.; Shaohua, J.; Suping, W. Research on the Preparation of Heat-Resistant Epoxy Resin Cured by o-Carborane-Based Diamine. High Perform. Polym. 2018, 30, 1094–1100. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Z.; Rahman, M.B.; Shen, W.; Zhu, C. The Curing Kinetics of E-Glass Fiber/Epoxy Resin Prepreg and the Bending Properties of Its Products. Materials 2021, 14, 4673. [Google Scholar] [CrossRef]







| Addition of 593 (wt.%) | (°C/min) | Ti (°C) | Tp (°C) | Tf (°C) |
|---|---|---|---|---|
| 0 | 5 | 81.4 | 150.5 | 171.6 |
| 10 | 82.3 | 154.2 | 174.5 | |
| 15 | 84.7 | 159.8 | 176.5 | |
| 20 | 85.4 | 163.5 | 181.3 | |
| 0.5 | 5 | 83.1 | 138.4 | 167.9 |
| 10 | 85.4 | 154.2 | 173.3 | |
| 15 | 81.3 | 161.3 | 181.4 | |
| 20 | 82.7 | 166.5 | 184.4 | |
| 1.0 | 5 | 83.2 | 136.7 | 167.8 |
| 10 | 84.6 | 150.6 | 171.3 | |
| 15 | 88.7 | 159.8 | 178.4 | |
| 20 | 81.3 | 165.4 | 180.4 |
| Addition of 593 (wt.%) | Ea(1)/kJ∙mol−1 | Ea(2)/kJ∙mol−1 | ΔEa/kJ∙mol−1 | A/s−1 |
|---|---|---|---|---|
| 0 | 99.60 | 98.95 | 99.28 | 1.01 × 109 |
| 0.5 | 69.26 | 72.87 | 71.07 | 1.47 × 105 |
| 1.0 | 64.43 | 67.89 | 66.16 | 3.73 × 104 |
| Sample Number | CTPB (wt.%) | E-51 (wt.%) | DOS (wt.%) | 593 (wt.%) |
|---|---|---|---|---|
| 1 | 56 | 9.0 | 35 | 0.0 |
| 2 | 56 | 8.9 | 35 | 0.1 |
| 3 | 56 | 8.8 | 35 | 0.2 |
| 4 | 56 | 8.7 | 35 | 0.3 |
| 5 | 56 | 8.6 | 35 | 0.4 |
| 6 | 56 | 8.5 | 35 | 0.5 |
| 7 | 56 | 8.4 | 35 | 0.6 |
| 8 | 56 | 8.3 | 35 | 0.7 |
| 9 | 56 | 8.2 | 35 | 0.8 |
| 10 | 56 | 8.1 | 35 | 0.9 |
| 11 | 56 | 8.0 | 35 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Qu, X.; Hu, P.; Ma, X.; Liu, Y.; Yang, H.; Zhang, W.; Chen, Y. Improving Mechanical Properties of Carboxyl-Terminated Polybutadiene (CTPB) Binder System Using a Cure Accelerator. Molecules 2026, 31, 284. https://doi.org/10.3390/molecules31020284
Qu X, Hu P, Ma X, Liu Y, Yang H, Zhang W, Chen Y. Improving Mechanical Properties of Carboxyl-Terminated Polybutadiene (CTPB) Binder System Using a Cure Accelerator. Molecules. 2026; 31(2):284. https://doi.org/10.3390/molecules31020284
Chicago/Turabian StyleQu, Xiao, Peixuan Hu, Xinyi Ma, Yunfei Liu, Hongtao Yang, Wei Zhang, and Yu Chen. 2026. "Improving Mechanical Properties of Carboxyl-Terminated Polybutadiene (CTPB) Binder System Using a Cure Accelerator" Molecules 31, no. 2: 284. https://doi.org/10.3390/molecules31020284
APA StyleQu, X., Hu, P., Ma, X., Liu, Y., Yang, H., Zhang, W., & Chen, Y. (2026). Improving Mechanical Properties of Carboxyl-Terminated Polybutadiene (CTPB) Binder System Using a Cure Accelerator. Molecules, 31(2), 284. https://doi.org/10.3390/molecules31020284
