Abstract
Oxytropis glabra DC, a Fabaceae species distributed across Central Asia, is characterized by a dual biological profile encompassing pronounced toxicity alongside promising pharmacological potential. This review synthesizes current knowledge on its phytochemistry, bioactivity, and toxicological liabilities to clarify the plant’s risk–benefit landscape. The objectives are to summarize the dominant classes of metabolites identified in O. glabra, evaluate their toxicological and therapeutic relevance, and identify key gaps limiting translational research. O. glabra contains a diverse array of secondary metabolites, with quinolizidine and indolizidine alkaloids, including swainsonine, anagyrine, thermopsine, and sparteine, representing the primary determinants of toxicity. These compounds are associated with teratogenicity, neurotoxicity, and locoism through mechanisms involving α-mannosidase inhibition, disruption of glycoprotein processing, and impaired lysosomal homeostasis. In contrast, flavonoids such as quercetin, isoquercitrin, and kaempferol derivatives exhibit antioxidant, anti-inflammatory, hepatoprotective, and cardioprotective effects, while triterpenoid saponins and fatty acids contribute additional cytoprotective and metabolic activities. Despite extensive reports on both toxic and bioactive constituents, critical gaps remain regarding chemotype variability, dose–response relationships, and pharmacokinetics, which currently constrain therapeutic exploitation. Future research should prioritize defining safe exposure thresholds, elucidating structure–activity relationships, and developing standardized extracts or optimized derivatives that balance efficacy and safety. This integrative perspective highlights O. glabra as a chemically rich but biologically ambivalent species whose toxicological risks and pharmacological opportunities warrant systematic mechanistic investigation.