Self-Assembling Peptide–Co-PPIX Complex Catalyzes Photocatalytic Hydrogen Evolution and Forms Hydrogels
Abstract
:1. Introduction
2. Results
2.1. Design of M1
2.2. Binding of Fe-PPIX and Co-PPIX
2.3. Photocatalytic Hydrogen Evolution
3. Materials and Methods
3.1. Protein Purification
3.2. Binding Assay
3.3. Circular Dichroism (CD)
3.4. Stability Tests
3.5. Hydrogen Evolution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ball, M.; Wietschel, M. The Future of Hydrogen—Opportunities and Challenges. Int. J. Hydrogen Energy 2009, 34, 615–627. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.; Dutta, S. Review and Outlook of Hydrogen Production through Catalytic Processes. Energy Fuels 2024, 38, 2601–2629. [Google Scholar] [CrossRef]
- Lewis, N.S.; Nocera, D.G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed]
- Behar, D.; Dhanasekaran, T.; Neta, P.; Hosten, C.M.; Ejeh, D.; Hambright, P.; Fujita, E. Cobalt Porphyrin Catalyzed Reduction of CO2. Radiation Chemical, Photochemical, and Electrochemical Studies. J. Phys. Chem. A 1998, 102, 2870–2877. [Google Scholar] [CrossRef]
- Call, A.; Cibian, M.; Yamamoto, K.; Nakazono, T.; Yamauchi, K.; Sakai, K. Highly Efficient and Selective Photocatalytic CO2 Reduction to CO in Water by a Cobalt Porphyrin Molecular Catalyst. ACS Catal. 2019, 9, 4867–4874. [Google Scholar] [CrossRef]
- Dolui, D.; Ghorai, S.; Dutta, A. Tuning the Reactivity of Cobalt-Based H2 Production Electrocatalysts via the Incorporation of the Peripheral Basic Functionalities. Coord. Chem. Rev. 2020, 416, 213335. [Google Scholar] [CrossRef]
- Eckenhoff, W.T.; McNamara, W.R.; Du, P.; Eisenberg, R. Cobalt Complexes as Artificial Hydrogenases for the Reductive Side of Water Splitting. Biochim. Biophys. Acta Bioenerg. 2013, 1827, 958–973. [Google Scholar] [CrossRef]
- Hu, X.; Brunschwig, B.S.; Peters, J.C. Electrocatalytic Hydrogen Evolution at Low Overpotentials by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes. J. Am. Chem. Soc. 2007, 129, 8988–8998. [Google Scholar] [CrossRef]
- Beyene, B.B.; Mane, S.B.; Leonardus, M.; Hung, C.-H. Effects of Position and Electronic Nature of Substituents on Cobalt-Porphyrin-Catalyzed Hydrogen Evolution Reaction. ChemistrySelect 2017, 2, 10565–10571. [Google Scholar] [CrossRef]
- Beyene, B.B.; Hung, C.-H. Recent Progress on Metalloporphyrin-Based Hydrogen Evolution Catalysis. Coord. Chem. Rev. 2020, 410, 213234. [Google Scholar] [CrossRef]
- Davis, H.J.; Ward, T.R. Artificial Metalloenzymes: Challenges and Opportunities. ACS Cent. Sci. 2019, 5, 1120–1136. [Google Scholar] [CrossRef]
- Liang, A.D.; Serrano-Plana, J.; Peterson, R.L.; Ward, T.R. Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Acc. Chem. Res. 2019, 52, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Vornholt, T.; Christoffel, F.; Pellizzoni, M.M.; Panke, S.; Ward, T.R.; Jeschek, M. Systematic Engineering of Artificial Metalloenzymes for New-to-Nature Reactions. bioRxiv 2020. [Google Scholar] [CrossRef]
- Drienovská, I.; Roelfes, G. Expanding the Enzyme Universe with Genetically Encoded Unnatural Amino Acids. Nat. Catal. 2020, 3, 193–202. [Google Scholar] [CrossRef]
- Zhou, Z.; Roelfes, G. Synergistic Catalysis in an Artificial Enzyme by Simultaneous Action of Two Abiological Catalytic Sites. Nat. Catal. 2020, 3, 289–294. [Google Scholar] [CrossRef]
- Roy, A.; Madden, C.; Ghirlanda, G. Photo-Induced Hydrogen Production in a Helical Peptide Incorporating a [FeFe] Hydrogenase Active Site Mimic. Chem. Commun. 2012, 48, 9816–9818. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Vaughn, M.D.; Tomlin, J.; Booher, G.J.; Kodis, G.; Simmons, C.R.; Allen, J.P.; Ghirlanda, G. Enhanced Photocatalytic Hydrogen Production by Hybrid Streptavidin-Diiron Catalysts. Chem.-Eur. J. 2020, 26, 6240–6246. [Google Scholar] [CrossRef]
- Alvarez-Hernandez, J.L.; Sopchak, A.E.; Bren, K.L. Buffer pKa Impacts the Mechanism of Hydrogen Evolution Catalyzed by a Cobalt Porphyrin-Peptide. Inorg. Chem. 2020, 59, 8061–8069. [Google Scholar] [CrossRef]
- Kleingardner, J.G.; Kandemir, B.; Bren, K.L. Hydrogen Evolution from Neutral Water under Aerobic Conditions Catalyzed by Cobalt Microperoxidase-11. J. Am. Chem. Soc. 2014, 136, 4–7. [Google Scholar] [CrossRef]
- Sommer, D.J.; Vaughn, M.D.; Ghirlanda, G. Protein Secondary-Shell Interactions Enhance the Photoinduced Hydrogen Production of Cobalt Protoporphyrin IX. Chem. Commun. 2014, 50, 15852–15855. [Google Scholar] [CrossRef]
- Sommer, D.J.; Vaughn, M.D.; Clark, B.C.; Tomlin, J.; Roy, A.; Ghirlanda, G. Reengineering Cyt b562 for Hydrogen Production: A Facile Route to Artificial Hydrogenases. Biochim. Biophys. Acta Bioenerg. 2016, 1857, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Hernandez, J.L.; Salamatian, A.A.; Sopchak, A.E.; Bren, K.L. Hydrogen Evolution Catalysis by a Cobalt Porphyrin Peptide: A Proposed Role for Porphyrin Propionic Acid Groups. J. Inorg. Biochem. 2023, 249, 112390. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Dwaraknath, S.; Ouyang, W.O.; Matsumoto, C.J.; Ouchida, S.; Lu, Y. Engineering an Oxygen-Binding Protein for Photocatalytic CO2 Reductions in Water. Angew. Chem. Int. Ed. 2023, 62, e202215719. [Google Scholar] [CrossRef] [PubMed]
- Labidi, R.J.; Faivre, B.; Carpentier, P.; Veronesi, G.; Solé-Daura, A.; Bjornsson, R.; Léger, C.; Gotico, P.; Li, Y.; Atta, M.; et al. Light-Driven Hydrogen Evolution Reaction Catalyzed by a Molybdenum–Copper Artificial Hydrogenase. J. Am. Chem. Soc. 2023, 145, 13640–13649. [Google Scholar] [CrossRef]
- Edwards, E.H.; Bren, K.L. Light-Driven Catalysis with Engineered Enzymes and Biomimetic Systems. Biotechnol. Appl. Biochem. 2020, 67, 463–483. [Google Scholar] [CrossRef]
- Kosko, R.M.; Kuphal, K.L.; Salamatian, A.A.; Bren, K.L. Engineered Metallobiocatalysts for Energy—Relevant Reactions. Curr. Opin. Chem. Biol. 2025, 84, 102545. [Google Scholar] [CrossRef]
- Alcala-Torano, R.; Halloran, N.; Gwerder, N.; Sommer, D.J.; Ghirlanda, G. Light-Driven CO2 Reduction by Co-Cytochrome b562. Front. Mol. Biosci. 2021, 8, 609654. [Google Scholar] [CrossRef]
- Salamatian, A.A.; Bren, K.L. Bioinspired and Biomolecular Catalysts for Energy Conversion and Storage. FEBS Lett. 2023, 597, 174–190. [Google Scholar] [CrossRef]
- Halloran, N.R. Engineering Metalloproteins for Solar Driven Hydrogen Production. Ph.D. Thesis, Arizona State University, Phoenix, AZ, USA, 2020. [Google Scholar]
- Proppe, A.H.; Li, Y.C.; Aspuru-Guzik, A.; Berlinguette, C.P.; Chang, C.J.; Cogdell, R.; Doyle, A.G.; Flick, J.; Gabor, N.M.; van Grondelle, R.; et al. Bioinspiration in Light Harvesting and Catalysis. Nat. Rev. Mater. 2020, 5, 828–846. [Google Scholar] [CrossRef]
- Chen, K.; Arnold, F.H. Engineering New Catalytic Activities in Enzymes. Nat. Catal. 2020, 3, 203–213. [Google Scholar] [CrossRef]
- Petka, W.A.; Harden, J.L.; McGrath, K.P.; Wirtz, D.; Tirrell, D.A. Reversible Hydrogels from Self-Assembling Artificial Proteins. Science 1998, 281, 389–392. [Google Scholar] [CrossRef]
- Wang, Y.; Katyal, P.; Montclare, J.K. Protein-Engineered Functional Materials. Adv. Healthc. Mater. 2019, 8, 1801374. [Google Scholar] [CrossRef]
- Olsen, A.J.; Katyal, P.; Haghpanah, J.S.; Kubilius, M.B.; Li, R.; Schnabel, N.L.; O’Neill, S.C.; Wang, Y.; Dai, M.; Singh, N.; et al. Protein Engineered Triblock Polymers Composed of Two SADs: Enhanced Mechanical Properties and Binding Abilities. Biomacromolecules 2018, 19, 1552–1561. [Google Scholar] [CrossRef]
- Topp, S.; Prasad, V.; Cianci, G.C.; Weeks, E.R.; Gallivan, J.P. A Genetic Toolbox for Creating Reversible Ca2+-Sensitive Materials. J. Am. Chem. Soc. 2006, 128, 13994–13995. [Google Scholar] [CrossRef] [PubMed]
- Dooley, K.; Kim, Y.H.; Lu, H.D.; Tu, R.; Banta, S. Engineering of an Environmentally Responsive Beta Roll Peptide for Use As a Calcium-Dependent Cross-Linking Domain for Peptide Hydrogel Formation. Biomacromolecules 2012, 13, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Mizuguchi, Y.; Mashimo, Y.; Mie, M.; Kobatake, E. Temperature-Responsive Multifunctional Protein Hydrogels with Elastin-like Polypeptides for 3-D Angiogenesis. Biomacromolecules 2020, 21, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Wheeldon, I.R.; Gallaway, J.W.; Barton, S.C.; Banta, S. Bioelectrocatalytic Hydrogels from Electron-Conducting Metallopolypeptides Coassembled with Bifunctional Enzymatic Building Blocks. Proc. Natl. Acad. Sci. USA 2008, 105, 15275–15280. [Google Scholar] [CrossRef]
- Lu, H.D.; Wheeldon, I.R.; Banta, S. Catalytic Biomaterials: Engineering Organophosphate Hydrolase to Form Self-Assembling Enzymatic Hydrogels. Protein Eng. Des. Sel. 2010, 23, 559–566. [Google Scholar] [CrossRef]
- Lin, Y.; An, B.; Bagheri, M.; Wang, Q.; Harden, J.L.; Kaplan, D.L. Electrochemically Directed Assembly of Designer Coiled-Coil Telechelic Proteins. ACS Biomater. Sci. Eng. 2017, 3, 3195–3206. [Google Scholar] [CrossRef]
- Erdős, G.; Pajkos, M.; Dosztányi, Z. IUPred3: Prediction of Protein Disorder Enhanced with Unambiguous Experimental Annotation and Visualization of Evolutionary Conservation. Nucleic Acids Res. 2021, 49, W297–W303. [Google Scholar] [CrossRef]
- Ghirlanda, G.; Osyczka, A.; Liu, W.; Antolovich, M.; Smith, K.M.; Dutton, P.L.; Wand, A.J.; DeGrado, W.F. De Novo Design of a D2-Symmetrical Protein That Reproduces the Diheme Four-Helix Bundle in Cytochrome bc1. J. Am. Chem. Soc. 2004, 126, 8141–8147. [Google Scholar] [CrossRef] [PubMed]
- Fortage, J.; Collomb, M.-N.; Costentin, C. Turnover Number in Photoinduced Molecular Catalysis of Hydrogen Evolution: A Benchmarking for Catalysts? ChemSusChem 2024, 17, e202400205. [Google Scholar] [CrossRef] [PubMed]
- Simmons, T.R.; Berggren, G.; Bacchi, M.; Fontecave, M.; Artero, V. Mimicking Hydrogenases: From Biomimetics to Artificial Enzymes. Coord. Chem. Rev. 2014, 270–271, 127–150. [Google Scholar] [CrossRef]
- Edwards, E.H.; Le, J.M.; Salamatian, A.A.; Peluso, N.L.; Leone, L.; Lombardi, A.; Bren, K.L. A Cobalt Mimochrome for Photochemical Hydrogen Evolution from Neutral Water. J. Inorg. Biochem. 2022, 230, 111753. [Google Scholar] [CrossRef]
- Lancaster, L.; Bulutoglu, B.; Banta, S.; Wheeldon, I. Chapter Eleven—Enzyme Colocalization in Protein-Based Hydrogels. In Methods in Enzymology; Metabolons and Supramolecular Enzyme, Assemblies; Schmidt-Dannert, C., Quin, M.B., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 617, pp. 265–285. [Google Scholar]
- Sommer, D.J.; Alcala-Torano, R.; Dizicheh, Z.B.; Ghirlanda, G. Design of Redox-Active Peptides: Towards Functional Materials. In Protein-Based Engineered Nanostructures; Cortajarena, A.L., Grove, T.Z., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 215–243. ISBN 978-3-319-39196-0. [Google Scholar]
- Vieregg, J.R.; Lueckheide, M.; Marciel, A.B.; Leon, L.; Bologna, A.J.; Rivera, J.R.; Tirrell, M.V. Oligonucleotide–Peptide Complexes: Phase Control by Hybridization. J. Am. Chem. Soc. 2018, 140, 1632–1638. [Google Scholar] [CrossRef] [PubMed]
- Mout, R.; Bretherton, R.C.; Decarreau, J.; Lee, S.; Gregorio, N.; Edman, N.I.; Ahlrichs, M.; Hsia, Y.; Sahtoe, D.D.; Ueda, G.; et al. De Novo Design of Modular Protein Hydrogels with Programmable Intra- and Extracellular Viscoelasticity. Proc. Natl. Acad. Sci. USA 2024, 121, e2309457121. [Google Scholar] [CrossRef]
- Banwell, E.F.; Abelardo, E.S.; Adams, D.J.; Birchall, M.A.; Corrigan, A.; Donald, A.M.; Kirkland, M.; Serpell, L.C.; Butler, M.F.; Woolfson, D.N. Rational Design and Application of Responsive α-Helical Peptide Hydrogels. Nat. Mater. 2009, 8, 596–600. [Google Scholar] [CrossRef]
- Dexter, A.F.; Fletcher, N.L.; Creasey, R.G.; Filardo, F.; Boehm, M.W.; Jack, K.S. Fabrication and Characterization of Hydrogels Formed from Designer Coiled-Coil Fibril-Forming Peptides. RSC Adv. 2017, 7, 27260–27271. [Google Scholar] [CrossRef]
Atmosphere | Temperature °C | Free Co-PPIX TON | M1-Co-PPIX TON | Enhancement Factor |
---|---|---|---|---|
Anaerobic | 25 | 266 | 1466 | 5.5 |
45 | 182 | 904 | 5.0 | |
Aerobic | 25 | 104 | 861 | 8.3 |
45 | 59 | 496 | 8.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halloran, N.R.; Banerjee, A.; Ghirlanda, G. Self-Assembling Peptide–Co-PPIX Complex Catalyzes Photocatalytic Hydrogen Evolution and Forms Hydrogels. Molecules 2025, 30, 1707. https://doi.org/10.3390/molecules30081707
Halloran NR, Banerjee A, Ghirlanda G. Self-Assembling Peptide–Co-PPIX Complex Catalyzes Photocatalytic Hydrogen Evolution and Forms Hydrogels. Molecules. 2025; 30(8):1707. https://doi.org/10.3390/molecules30081707
Chicago/Turabian StyleHalloran, Nicholas Ryan, Abesh Banerjee, and Giovanna Ghirlanda. 2025. "Self-Assembling Peptide–Co-PPIX Complex Catalyzes Photocatalytic Hydrogen Evolution and Forms Hydrogels" Molecules 30, no. 8: 1707. https://doi.org/10.3390/molecules30081707
APA StyleHalloran, N. R., Banerjee, A., & Ghirlanda, G. (2025). Self-Assembling Peptide–Co-PPIX Complex Catalyzes Photocatalytic Hydrogen Evolution and Forms Hydrogels. Molecules, 30(8), 1707. https://doi.org/10.3390/molecules30081707