Construction of Hierarchical 2D-3D@3D Zn3In2S6@CdS Photocatalyst for Boosting Degradation of an Azo Dye
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization
2.2. Optical Properties and Photocatalytic Performance
3. Materials and Methods
3.1. Precursor Chemicals
3.2. Zn3In2S6 (ZIS3) Synthesis
3.3. CdS Synthesis
3.4. Zn3In2S6@CdS Hybrids Synthesis
3.5. Characterization Methods
3.6. Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uddin, F. Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose 2021, 28, 10715–10739. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D. Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693. [Google Scholar] [CrossRef]
- Khodja, A.A.; Sehili, T.; Pilichowski, J.-F.; Boule, P. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photochem. Photobiol. A Chem. 2001, 141, 231–239. [Google Scholar] [CrossRef]
- Guan, G.; Kida, T.; Kusakabe, K.; Kimura, K.; Fang, X.; Ma, T.; Abe, E.; Yoshida, A. Photocatalytic H2 evolution under visible light irradiation on CdS/ETS-4 composite. Chem. Phys. Lett. 2004, 385, 319–322. [Google Scholar] [CrossRef]
- Li, Q.; Guo, B.; Yu, J.; Ran, J.; Zhang, B.; Yan, H.; Gong, J.R. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Zhao, L.; Guo, L. ZnmIn2S3+m (m = 1–5, integer): A new series of visiblelight-driven photocatalysts for splitting water to hydrogen. Int. J. Hydrogen Energy 2010, 35, 10148–10154. [Google Scholar] [CrossRef]
- Pan, Y.; Yuan, X.; Jiang, L.; Yu, H.; Zhang, J.; Wang, H.; Guan, R.; Zeng, G. Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide. Chem. Eng. J. 2018, 354, 407–431. [Google Scholar]
- Wu, Y.; Wang, H.; Tu, W.; Wu, S.; Chew, J.W. Effects of composition faults in ternary metal chalcogenides (ZnxIn2S3+x, x = 1–5) layered crystals for visible-light-driven catalytic hydrogen generation and carbon dioxide reduction. Appl. Catal. B Environ. 2019, 256, 117810. [Google Scholar]
- Han, H.; Yang, Y.; Liu, J.; Zheng, X.; Wang, X.; Meng, S.; Zhang, S.; Fu, X.; Chen, S. Effect of Zn Vacancies in Zn3In2S6 Nanosheets on Boosting Photocatalytic N2 Fixation. ACS Appl. Energy Mater. 2020, 3, 11275–11284. [Google Scholar] [CrossRef]
- Du, Z.; Gong, K.; Yu, Z.; Yang, Y.; Wang, P.; Zheng, X.; Wang, Z.; Zhang, S.; Chen, S.; Meng, S. Photoredox Coupling of CO2 Reduction with Benzyl Alcohol Oxidation over Ternary Metal Chalcogenides (ZnmIn2S3+m, m = 1–5) with Regulable Products Selectivity. Molecules 2021, 28, 6553. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, D.; Yuwono, J.A.; Kumar, P.V.; Kaleem, A.; Nielsen, M.P.; Tayebjee, M.J.Y.; Oppong-Antwi, L.; Wen, H.; Kuschnerus, I.; Chang, S.L.Y.; et al. Unraveling the structure-activity-selectivity relationships in furfuryl alcohol photoreforming to H2 and hydrofuroin over ZnxIn2S3+x photocatalysts. Appl. Catal. B Environ. 2023, 335, 122880. [Google Scholar] [CrossRef]
- Luo, J.; Wei, X.; Qiao, Y.; Wu, C.; Li, L.; Chen, L.; Shi, J. Photoredox-Promoted Co-Production of Dihydroisoquinoline and H2O2 over Defective Zn3In2S6. Adv. Mater. 2023, 35, 2210110. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, Y.; Shen, S.; Zhong, W.; Lu, H.; Pan, Y. Lattice Defects and Electronic Modulation of Flower-Like Zn3In2S6 Promote Photocatalytic Degradation of Multiple Antibiotics. Small Methods 2024, 8, 2301598. [Google Scholar] [CrossRef]
- Meng, S.; Cui, Y.; Wang, H.; Zheng, X.; Fu, X.; Chen, S. Noble metal-free 0D-1D NiSx/CdS nanocomposite toward highly photocatalytic contaminations removal and hydrogen evolution under visible light. Dalton Trans. 2018, 47, 12671–12683. [Google Scholar] [CrossRef]
- Duan, S.; Zhang, S.; Chang, S.; Meng, S.; Fan, Y.; Zheng, X.; Chen, S. Efficient photocatalytic hydrogen production from formic acid on inexpensive and stable phosphide/Zn3In2S6 composite photocatalysts under mild conditions. Int. J. Hydrogen Energy 2019, 44, 21803–21820. [Google Scholar] [CrossRef]
- Meng, S.; Wu, H.; Cui, Y.; Zheng, X.; Wang, H.; Chen, S.; Wang, Y.; Fu, X. One-step synthesis of 2D/2D-3D NiS/Zn3In2S6 hierarchical structure toward solar-to-chemical energy transformation of biomass-relevant alcohols. Appl. Catal. B Environ. 2020, 266, 118617. [Google Scholar] [CrossRef]
- Liu, T.; Xiong, Y.; Wang, X.; Xue, Y.; Liu, W.; Tian, J. Dual cocatalysts and vacancy strategies for enhancing photocatalytic hydrogen production activity of Zn3In2S6 nanosheets with an apparent quantum efficiency of 66.20%. J. Colloid Interface Sci. 2023, 640, 31–40. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Li, S.; Li, M.; He, P.; Xiao, Y.; Chen, J.; Zhou, Y.; Ren, T. Boosting the photocatalytic hydrogen evolution performance by fabricating the NiO/Zn3In2S6 p-n heterojunction. Appl. Surf. Sci. 2024, 642, 158622. [Google Scholar] [CrossRef]
- Luan, W.; Yan, Y.; Wang, J.; Zong, Y.; Zhao, R.; Han, J.; Wang, L. Fabrication of In-doped CdSe/Zn3In2S6 type II heterojunction composite for efficient photocatalytic hydrogen evolution. Sep. Purif. Technol. 2025, 356, 129907. [Google Scholar] [CrossRef]
- She, H.; Wang, Y.; Zhou, H.; Li, Y.; Wang, L.; Huang, J.; Wang, Q. Preparation of Zn3In2S6/TiO2 for Enhanced CO2 Photocatalytic Reduction Activity Via Z-scheme Electron Transfer. ChemCatChem 2019, 11, 753–759. [Google Scholar] [CrossRef]
- Wang, D.; Xua, Y.; Jing, L.; Xie, M.; Song, Y.; Xu, H.; Li, H.; Xie, J. In situ construction efficient visible-light-driven three-dimensional Polypyrrole/Zn3In2S6 nanoflower to systematically explore the photoreduction of Cr(VI): Performance, factors and mechanism. J. Hazard. Mater. 2020, 384, 121480. [Google Scholar]
- Fan, Q.-Q.; Niu, C.-G.; Guo, H.; Huang, D.-W.; Dong, Z.-T.; Yang, Y.-Y.; Liu, H.-Y.; Li, L.; Qin, M.-Z. Insights into the role of reactive oxygen species in photocatalytic H2O2 generation and OTC removal over a novel BN/Zn3In2S6 heterojunction. J. Hazard. Mater. 2022, 438, 129483. [Google Scholar]
- Meng, S.; Ye, X.; Zhang, J.; Fu, X.; Chen, S. Effective use of photogenerated electrons and holes in a system: Photocatalytic selective oxidation of aromatic alcohols to aldehydes and hydrogen production. J. Catal. 2018, 367, 159–170. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Tu, W.; Liu, Y.; Wu, S.; Tan, Y.Z.; Chew, J.W. Construction of hierarchical 2D-2D Zn3In2S6/fluorinated polymeric carbon nitride nanosheets photocatalyst for boosting photocatalytic degradation and hydrogen production performance. Appl. Catal. B Environ. 2018, 233, 58–69. [Google Scholar] [CrossRef]
- Sun, J.; Hou, Y.; Yu, Z.; Tu, L.; Yan, Y.; Qin, S.; Chen, S.; Lan, D.; Zhu, H.; Wang, S. Visible-light-driven Z-scheme Zn3In2S6/AgBr photocatalyst for boosting simultaneous Cr (VI) reduction and metronidazole oxidation: Kinetics, degradation pathways and mechanism. J. Hazard. Mater. 2021, 419, 126543. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.; Wang, G.; Fang, H.; Yuan, X.; Lu, C. Photocatalytic removal of metronidazole and Cr (VI) by a novel Zn3In2S6/ Bi2O3 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment. Chem. Eng. J. 2022, 450, 138167. [Google Scholar]
- Yang, L.; Li, A.; Dang, T.; Wang, Y.; Liang, L.; Tang, J.; Cui, Y.; Zhang, Z. S-scheme In2S3/Zn3In2S6 microsphere for efficient photocatalytic H2 evolution with simultaneous photodegradation of bisphenol A. Appl. Surf. Sci. 2023, 612, 155848. [Google Scholar] [CrossRef]
- Wang, H.; Li, M.; You, Z.; Chen, Y.; Liu, Y. An innovative Zn3In2S6/ZnIn2S4 homojunction photocatalyst with enhanced interfacial charge transfer for the highly efficient degradation of tetracycline under visible radiation. J. Environ. Manag. 2024, 365, 121605. [Google Scholar]
- Karamoschos, N.; Katsamitros, A.; Sygellou, L.; Andrikopoulos, K.S.; Tasis, D. Composition-Regulated Photocatalytic Activity of ZnIn2S4@CdS Hybrids for Efficient Dye Degradation and H2O2 Evolution. Molecules 2024, 29, 3857. [Google Scholar] [CrossRef]
- Guo, F.; Sun, H.; Shi, Y.; Zhou, F.; Shi, W. CdS nanoparticles decorated hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for improved visible-light photocatalytic hydrogen production. Chin. J. Chem. Eng. 2022, 43, 266–274. [Google Scholar]
- Fu, W.; Li, N.; Shi, M.; Zhao, G.; Zhang, S.; Yin, F.; Ma, J. Zn3In2S6 hollow nanoflower with sulfur vacancies: Efficient photocatalytic co-production of H2O2 and benzaldehyde. Sep. Purif. Technol. 2025, 360, 131192. [Google Scholar]
- Ji, X.; Guo, R.; Lin, Z.; Hong, L.; Yuan, Y.; Pan, W. A NiS co-catalyst decorated Zn3In2S6/g-C3N4 type-II ball-flower-like nanosphere heterojunction for efficient photocatalytic hydrogen production. Dalton Trans. 2021, 50, 11249–11258. [Google Scholar]
- Wang, Y.; Gao, T.; Li, R.; Luo, W.; Xie, Y.; Wang, Y.; Zhang, Y. Layered deposited MoS2 nanosheets on acorn leaf like CdS as an efficient anti-photocorrosion photocatalyst for hydrogen production. Fuel 2024, 368, 131621. [Google Scholar]
- Ruan, X.; Zhao, S.; Xu, M.; Meng, D.; Jiang, Z.; Jin, S.; Cui, X.; Ravi, S.K. Iso-Elemental ZnIn2S4/Zn3In2S6 Heterojunction with Low Contact Energy Barrier Boosts Artificial Photosynthesis of Hydrogen Peroxide. Adv. Energy Mater. 2024, 14, 2401744. [Google Scholar]
- Jing, L.; Xie, M.; Xu, Y.; Tong, C.; Li, H.; Gates, I.D.; Hu, J. Multifunctional 3D MoSx/Zn3In2S6 nanoflower for selective photothermal-catalytic biomass oxidative and non-selective organic pollutants degradation. Appl. Catal. B Environ. 2022, 318, 121814. [Google Scholar]
- Razzetti, C.; Lottici, P.P.; Bini, S.; Curti, M. Raman Scattering in nZnS-In2S3 Layered Compounds. Phys. Status Solidi (b) 1993, 177, 525. [Google Scholar]
- Kalampounias, A.G.; Andrikopoulos, K.S.; Yannopoulos, S.N. Probing the sulfur polymerization transition in situ with Raman spectroscopy. J. Chem. Phys. 2003, 118, 8460–8467. [Google Scholar]
- Liang, Y.; Xiong, J.; Yang, Q.; Wang, S. Bagasse cellulose-based S-type Bi2O3/Zn3In2S6 photocatalyst for efficient and stable degradation of 2,4-dichlorophenol under visible light. J. Colloid Interface Sci. 2023, 651, 976–986. [Google Scholar]
- Paraschoudi, E.N.; Bairamis, F.; Sygellou, L.; Andrikopoulos, K.S.; Konstantinou, I.; Tasis, D. Construction of Pd-Co-Doped CdS Heterojunctions as Efficient Platforms in Photocatalysis. Chem. Eur. J. 2023, 29, e202300568. [Google Scholar]
- Yuvaraj, S.; Fernandez, A.C.; Sundararajan, M.; Dash, C.S.; Sakthivel, P. Hydrothermal synthesis of ZnO–CdS nanocomposites: Structural, optical and electrical behavior. Ceram. Int. 2020, 46, 391–402. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsamitros, A.; Karamoschos, N.; Sygellou, L.; Andrikopoulos, K.S.; Tasis, D. Construction of Hierarchical 2D-3D@3D Zn3In2S6@CdS Photocatalyst for Boosting Degradation of an Azo Dye. Molecules 2025, 30, 1409. https://doi.org/10.3390/molecules30071409
Katsamitros A, Karamoschos N, Sygellou L, Andrikopoulos KS, Tasis D. Construction of Hierarchical 2D-3D@3D Zn3In2S6@CdS Photocatalyst for Boosting Degradation of an Azo Dye. Molecules. 2025; 30(7):1409. https://doi.org/10.3390/molecules30071409
Chicago/Turabian StyleKatsamitros, Andreas, Nikolaos Karamoschos, Labrini Sygellou, Konstantinos S. Andrikopoulos, and Dimitrios Tasis. 2025. "Construction of Hierarchical 2D-3D@3D Zn3In2S6@CdS Photocatalyst for Boosting Degradation of an Azo Dye" Molecules 30, no. 7: 1409. https://doi.org/10.3390/molecules30071409
APA StyleKatsamitros, A., Karamoschos, N., Sygellou, L., Andrikopoulos, K. S., & Tasis, D. (2025). Construction of Hierarchical 2D-3D@3D Zn3In2S6@CdS Photocatalyst for Boosting Degradation of an Azo Dye. Molecules, 30(7), 1409. https://doi.org/10.3390/molecules30071409