You are currently viewing a new version of our website. To view the old version click .
Molecules
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

14 December 2025

Photochemical Rearrangements of Pyridine N-Oxides: Pathways to Oxaziridine Derivatives

,
,
,
,
,
,
,
,
and
1
Laboratorio de Síntesis y Reactividad de Compuestos Orgánicos, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 275, Santiago 8370146, Chile
2
Laboratorio de Diseño y Síntesis de Compuestos Bioactivos, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070386, Chile
3
Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus los Leones, Lota 2465, Providencia, Santiago 7510602, Chile
4
Departamento de Ciencias Químicas, Facultad de Ciencias Exactas Bello, Universidad Andrés Bello, Quillota 980, Viña del Mar 2531015, Chile
Molecules2025, 30(24), 4776;https://doi.org/10.3390/molecules30244776 
(registering DOI)
This article belongs to the Special Issue Recent Advances in Charge-Transfer/Biomimetic Coordination Chemistry – Electrochemistry, Photochemistry, Catalysis, Biological Application and Theory

Abstract

The photochemical behavior of substituted pyridine N-Oxides is characterized by complex rearrangements culminating in the formation of valuable photoproducts. The CAS(10,8)/cc-pVDZ approach with NEVPT2 corrections is applied to investigate geometric distortions associated with the S1 excited state, conical intersections, and the ultimate transformation of pyridine N-Oxides into oxaziridine-like derivative formations. Our results reveal that the deactivation of the S1 excited state is driven by an out-of-plane rotation of the N-O oxygen atom, resulting in the formation of a lone pair over the nitrogen atom. Along this excited-state reaction pathway, the N-O bond undergoes significant weakening, while a C=C double bond emerges mainly in the excited state. The deactivation at the minimum-energy conical intersection leading to the ground state reveals the formation of an oxaziridine-like intermediate, which subsequently converts into a 1,2-oxazepine derivative.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.