Abstract
Anemia, characterized by reduced hemoglobin (Hb), remains a major health concern. Although iron and erythropoietin (EPO) therapies are effective, limitations in safety and accessibility have prompted interest in nutritional alternatives. Hydrolyzed milk-derived peptides (H-MDPs) contain bioactive sequences with diverse physiological effects, yet their role in erythropoiesis remains poorly defined. This study investigated the hematopoietic actions of H-MDP using zebrafish and mouse models. Adult zebrafish underwent phlebotomy-induced anemia and received oral H-MDP for 3 weeks. Hb levels, erythrocyte morphology, and expression of erythropoiesis- and iron-metabolism genes were assessed. In healthy mice, renal Epo expression, circulating EPO, and serum cytokines were measured after 2 weeks of H-MDP administration. H-MDP significantly accelerated Hb recovery in anemic zebrafish (4.6 ± 0.64 g/dL vs. 3.4 ± 0.66 g/dL in untreated fish at week 1) and markedly improved erythrocyte maturation. These effects coincided with strong induction of epo, hif1aa/b, igf1, csf1a, and csf3b in the heart and liver, as well as normalization of anemia-induced hepatic iron-transport genes (tfa, fpn1, tfr2) and reactivation of hamp. In mice, H-MDP elevated renal Epo mRNA and circulating EPO (approximately 2.3-fold) without altering steady-state Hb, and cytokine profiling with IPA-predicted activation of the erythropoietin signaling pathway. Collectively, these findings indicate that H-MDPs modulate erythropoiesis by coordinating the activation of EPO-related and iron-regulatory networks, supporting their potential as functional food ingredients for hematologic recovery and anemia management.