Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (258)

Search Parameters:
Keywords = erythroid differentiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2361 KB  
Article
Mechanism of Inosine from Lactiplantibacillus plantarum MWFLp-182-Treated Mice Model in Alleviating D-Galactose-Induced HT-22 Cell Injury via Oxidative and Inflammatory Pathways
by Jianbo Tang, Qing Zhao, Hanying Tan, Ni Yang, Qun Yu, Zhiyu Cui, Xiaochun Li, Yanghe Luo, Guangqing Mu, Xiaomeng Wu and Hui Nie
Foods 2026, 15(2), 349; https://doi.org/10.3390/foods15020349 - 18 Jan 2026
Viewed by 166
Abstract
Gut microbial metabolites play a crucial role in modulating cognitive function. In a previous animal study, oral administration of Lactiplantibacillus plantarum MWFLp-182 (L. plantarum MWFLp-182) significantly increased inosine levels in both the serum and feces of D-galactose (D-gal)-induced mice, which was accompanied [...] Read more.
Gut microbial metabolites play a crucial role in modulating cognitive function. In a previous animal study, oral administration of Lactiplantibacillus plantarum MWFLp-182 (L. plantarum MWFLp-182) significantly increased inosine levels in both the serum and feces of D-galactose (D-gal)-induced mice, which was accompanied by improved cognitive performance. Building on this finding, we further investigated the neuroprotective mechanisms of inosine derived from L. plantarum MWFLp-182 in alleviating D-gal-induced neuronal damage in HT-22 cells. Reverse transcription-quantitative PCR (RT-qPCR) was used to analyze the addition of inosine (250 μg/mL, 500 μg/mL), which considerably reduces oxidative stress induced by D-gal (20 mg/mL), on the regulation of mRNA expression of the nuclear factor erythroid 2-related factor (Nrf2)/hemeoxygenase 1 (HO-1) signaling pathway factors. Compared to the D-gal group, the inosine-treated group exhibited a 4.3-fold and 8.7-fold increase in HO-1 and Nrf2 levels, respectively. Furthermore, inosine alleviates neuroinflammation by modulating the mRNA expression of the Toll-like receptor 4 (TLR4)/myeloid differentiation primary response protein 88 (MyD88)/nuclear factor kappa B (NF-κB) signaling pathway. Compared to the D-gal group, the inosine-treated group showed reductions of 41.75%, 28.29%, and 32.17% in TLR4, MyD88, and NF-κB levels, respectively. Moreover, immunofluorescence staining revealed that inosine exhibits anti-apoptotic properties by enhancing the levels of neurotrophic factors, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), while simultaneously lowering the expression of the pro-apoptotic protein bcl-2-associated X (Bax). These findings suggest that inosine, a differentially expressed metabolite identified in a probiotic-intervention mouse model, alleviates D-gal-induced neuronal damage in HT-22 cells by modulating oxidative, inflammatory, and apoptotic pathways, providing mechanistic insights into the neuroprotective effects of this metabolite. Full article
Show Figures

Graphical abstract

24 pages, 17450 KB  
Article
Integrated Single-Cell and Bulk Transcriptomics Unveils Immune Profiles in Chick Erythroid Cells upon Avian Pathogenic Escherichia coli Infection
by Fujuan Cai, Xianjue Wang, Chunzhi Wang, Yuzhen Wang and Wenguang Zhang
Animals 2026, 16(2), 179; https://doi.org/10.3390/ani16020179 - 7 Jan 2026
Viewed by 261
Abstract
Nucleated erythroid cells (NECs) have emerged as active participants in immune responses in addition to their canonical oxygen transport function. The subpopulations and immune heterogeneity of chick erythroid cells (ch-ECs) upon infection have not been fully characterized. Single-cell RNA sequencing (scRNA-seq) was used [...] Read more.
Nucleated erythroid cells (NECs) have emerged as active participants in immune responses in addition to their canonical oxygen transport function. The subpopulations and immune heterogeneity of chick erythroid cells (ch-ECs) upon infection have not been fully characterized. Single-cell RNA sequencing (scRNA-seq) was used to profile ch-ECs in chicks infected with avian pathogenic Escherichia coli (APEC). Unsupervised clustering uncovered ten distinct ch-EC subpopulations (C1–C10), with significant compositional shifts between infected and control groups. Pseudotime analysis revealed a developmental continuum: C1, C3, C5, and C9 as early progenitors; C2, C4, C6, C7, and C10 as mature erythroid cells; and C8 as a naive population. We revealed 62 immune-related genes, including protein kinases and heat shock proteins, and subpopulation-specific differentially expressed genes (DEGs) linked to immune functions. SCENIC analysis revealed Fos, Srf, and Stat3 as key transcription factors with elevated regulon activity and specificity following infection. Subpopulations C2, C4, C6, and C7, which exhibited marked abundance changes, were scrutinized for immune relevance through integrated multi-omics analysis. Immune-related genes including FOS, AKAP9, HS6ST1, GAB3, TFRC, HSPA8, HSP90AA1, and DNAJB6 were identified. Enrichment analysis indicated activation of the MHC class I antigen presentation pathway, while pathways such as Mitogen-Activated Protein Kinase (MAPK) signaling, NOD-like receptor (NLR) signaling, and the heat shock response were found to be suppressed. In conclusion, this study delineates the immune gene repertoire and signaling networks of ch-ECs during APEC infection, offering new perspectives on NEC immunoregulatory functions. Full article
(This article belongs to the Special Issue Bacterial Disease Research in Livestock and Poultry)
Show Figures

Figure 1

14 pages, 548 KB  
Systematic Review
Ineffective Erythropoiesis Markers in β-Thalassemia: A Systematic Review
by Kartika Prahasanti, Ami Ashariati, Lilik Herawati, Pradana Zaky Romadhon, Bagus Aulia Mahdi, Afifah Zahra Dzakiyah, Maulana Bagus Adi Cahyono and Narazah Mohd Yusoff
J. Clin. Med. 2026, 15(1), 308; https://doi.org/10.3390/jcm15010308 - 31 Dec 2025
Viewed by 464
Abstract
Background/Objectives: Ineffective erythropoiesis (IE) is a hallmark of β-thalassemia and contributes to major clinical complications, including severe anemia, extramedullary hematopoiesis, and progressive iron overload. Despite its central role in disease pathophysiology, there is no established biomarker for the reliable identification and monitoring [...] Read more.
Background/Objectives: Ineffective erythropoiesis (IE) is a hallmark of β-thalassemia and contributes to major clinical complications, including severe anemia, extramedullary hematopoiesis, and progressive iron overload. Despite its central role in disease pathophysiology, there is no established biomarker for the reliable identification and monitoring of IE. This systematic review was conducted to evaluate potential serum markers that reflect IE in β-thalassemia. Methods: Across seven databases (PubMed, ScienceDirect, Web of Science, SpringerLink, Taylor & Francis, ProQuest, and SAGE), thirteen studies met the eligibility criteria and were analyzed to identify circulating biomarkers associated with IE in β-thalassemia. Results: The most consistently reported markers were growth differentiation factor-15 (GDF-15), soluble transferrin receptor (sTfR), erythropoietin (EPO), and erythroferrone (ERFE), all of which demonstrated strong correlations with the degree of IE and erythroid expansion. Additional markers, including circulating cell-free DNA (cfDNA), CA15.3, hepcidin, ferritin, and phosphatidylserine (PS)-exposed red blood cells, were also found to be elevated, reflecting increased erythroid turnover, apoptosis, and secondary iron dysregulation. These findings suggest that while individual markers capture different aspects of IE, their combined evaluation may provide a more comprehensive picture of disease burden. Conclusions: IE represents the central pathophysiological driver of β-thalassemia and is closely linked to disease complications. Early detection through circulating biomarkers offers the potential for timely identification of high-risk patients, monitoring of therapeutic responses, and prognostication. Although current evidence highlights GDF-15, sTfR, ERFE, and EPO as the most promising candidates, further validation in larger, longitudinal cohorts is required before clinical implementation. Full article
Show Figures

Figure 1

28 pages, 19507 KB  
Article
Parvovirus B19 and Cellular Transcriptome Dynamics in Differentiating Erythroid Progenitor Cells
by Erika Fasano, Niccolò Guglietta, Federica Bichicchi, Ilaria Gasperini, Elisabetta Manaresi and Giorgio Gallinella
Viruses 2026, 18(1), 39; https://doi.org/10.3390/v18010039 - 25 Dec 2025
Viewed by 487
Abstract
Parvovirus B19 (B19V) is a human ssDNA virus with ample pathogenic potential. It is characterized by a selective tropism for erythroid progenitor cells (EPC), exerting a cytotoxic effect with blockade of erythropoiesis. In our work, we investigated both viral and cellular expression profile [...] Read more.
Parvovirus B19 (B19V) is a human ssDNA virus with ample pathogenic potential. It is characterized by a selective tropism for erythroid progenitor cells (EPC), exerting a cytotoxic effect with blockade of erythropoiesis. In our work, we investigated both viral and cellular expression profile in the course of infection of EPCs cultures via mRNA high throughput sequencing technology (HTS) and a dedicated bioinformatic pipeline, reconstructing both the viral and cellular transcriptome and their variations. A productive infection was confirmed as restricted to EPCs expressing mature differentiation markers and the specific receptor for virus VP1u region. mRNA HTS reconstructed the viral transcriptome in terms of localization and abundance of the different mRNA species, detailing the differential expression profile of B19V among early or late times in the course of infection. Analysis of cellular transcriptome indicated that variation was mainly driven by the cellular differentiation process, with the virus impacting to a lesser level, but still clearly separating infected vs. non-infected profiles. At early times post-infection, variations were typical of cellular sensing of viral infection and aimed at the induction of an antiviral state. At later times in the course of infection, the cellular population showed induction of an inflammatory response, related to TNF and IL-10, and a transition to adaptive immunity with evidence of upregulation of genes involved in MHC-II presentation. This dual-transcriptome analysis on infected EPCs population can lay the ground for future research aimed at a better definition of the pathogenetic mechanisms of B19V. Full article
(This article belongs to the Collection Parvoviridae)
Show Figures

Figure 1

17 pages, 1509 KB  
Article
IL-10 Plays a Critical Role in Mitigating Acute Anaemia Development During African Trypanosome Infection
by Maida Živalj, Anaïs St. Martin, Patrick De Baetselier, Liudmyla Maksymova, Fara Berghmans, Louis Boon, Jo A. Van Ginderachter, Stefan Magez, Carl De Trez and Benoit Stijlemans
Pathogens 2025, 14(12), 1276; https://doi.org/10.3390/pathogens14121276 - 12 Dec 2025
Viewed by 460
Abstract
During the first week of T. b. brucei infection, pro-inflammatory IFN-γ production drives acute anaemia by promoting red blood cell clearance by activated macrophages in concert with insufficient bone marrow compensation. The latter is followed by a partial recovery phase, which later progresses [...] Read more.
During the first week of T. b. brucei infection, pro-inflammatory IFN-γ production drives acute anaemia by promoting red blood cell clearance by activated macrophages in concert with insufficient bone marrow compensation. The latter is followed by a partial recovery phase, which later progresses to chronic anaemia. To compensate for acute anaemia, stress-induced extramedullary erythropoiesis occurs in the spleen. However, the role of IL-10, a key anti-inflammatory cytokine in regulating stress-induced acute anaemia during African trypanosomosis (AT), remains unclear. Using both genetic and pharmacological approaches, we show that IL-10 is essential to limit acute anaemia by dampening inflammation and promoting splenic erythropoiesis, enabling recovery. More specifically, IL-10 blockade impairs erythropoiesis in both bone marrow and spleen, particularly at early erythroid differentiation stages, and associates with reduced central macrophage (CM) numbers in the bone marrow. In contrast, the co-inhibition of IL-10 and IFN-γ reduces inflammation and partially restores splenic CM numbers and erythropoiesis, highlighting IFN-γ’s suppressive role in erythropoiesis. Overall, these findings underscore IL-10’s key role in regulating stress-induced erythropoiesis during AT by modulating erythroid differentiation and CM abundance, thereby limiting immune-mediated acute anaemia. Consequently, timely adjustment of the IL-10/IFN-γ balance may enhance erythropoiesis and offer a potential therapeutic strategy to mitigate anaemia development. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

15 pages, 2080 KB  
Article
Hydrolyzed Milk-Derived Peptides Promote Erythropoietin Pathways and Hematologic Recovery: A Cross-Species Analysis
by Liqing Zang, Akira Yokota, Misa Nakai, Kazutake Fukada, Norihiro Nishimura and Yasuhito Shimada
Molecules 2025, 30(24), 4739; https://doi.org/10.3390/molecules30244739 - 11 Dec 2025
Viewed by 509
Abstract
Anemia, characterized by reduced hemoglobin (Hb), remains a major health concern. Although iron and erythropoietin (EPO) therapies are effective, limitations in safety and accessibility have prompted interest in nutritional alternatives. Hydrolyzed milk-derived peptides (H-MDPs) contain bioactive sequences with diverse physiological effects, yet their [...] Read more.
Anemia, characterized by reduced hemoglobin (Hb), remains a major health concern. Although iron and erythropoietin (EPO) therapies are effective, limitations in safety and accessibility have prompted interest in nutritional alternatives. Hydrolyzed milk-derived peptides (H-MDPs) contain bioactive sequences with diverse physiological effects, yet their role in erythropoiesis remains poorly defined. This study investigated the hematopoietic actions of H-MDP using zebrafish and mouse models. Adult zebrafish underwent phlebotomy-induced anemia and received oral H-MDP for 3 weeks. Hb levels, erythrocyte morphology, and expression of erythropoiesis- and iron-metabolism genes were assessed. In healthy mice, renal Epo expression, circulating EPO, and serum cytokines were measured after 2 weeks of H-MDP administration. H-MDP significantly accelerated Hb recovery in anemic zebrafish (4.6 ± 0.64 g/dL vs. 3.4 ± 0.66 g/dL in untreated fish at week 1) and markedly improved erythrocyte maturation. These effects coincided with strong induction of epo, hif1aa/b, igf1, csf1a, and csf3b in the heart and liver, as well as normalization of anemia-induced hepatic iron-transport genes (tfa, fpn1, tfr2) and reactivation of hamp. In mice, H-MDP elevated renal Epo mRNA and circulating EPO (approximately 2.3-fold) without altering steady-state Hb, and cytokine profiling with IPA-predicted activation of the erythropoietin signaling pathway. Collectively, these findings indicate that H-MDPs modulate erythropoiesis by coordinating the activation of EPO-related and iron-regulatory networks, supporting their potential as functional food ingredients for hematologic recovery and anemia management. Full article
(This article belongs to the Special Issue Small Fish Models for Molecular-Ethnopharmacology and Drug Discovery)
Show Figures

Figure 1

24 pages, 1274 KB  
Review
The Non-Coding RNome Landscape in Erythropoiesis: Pathophysiological Implications
by Emma Brisot, Laurent Metzinger and Valérie Metzinger-Le Meuth
Cells 2025, 14(24), 1971; https://doi.org/10.3390/cells14241971 - 11 Dec 2025
Viewed by 398
Abstract
Erythropoiesis is a multistage process critical for red blood cell production and systemic oxygen transport. It is tightly regulated, and recent advances have highlighted the pivotal regulatory roles of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in governing both [...] Read more.
Erythropoiesis is a multistage process critical for red blood cell production and systemic oxygen transport. It is tightly regulated, and recent advances have highlighted the pivotal regulatory roles of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in governing both physiological and pathological erythropoiesis. These ncRNAs have roles in the fine-tuning of the classical transcriptional and post-transcriptional control. This review explores the complex landscape of the non-coding RNome in erythroid differentiation, maturation, and function. We summarize how specific miRNAs influence erythroid lineage commitment, hemoglobin switching, iron metabolism, and cellular morphology, as well as their modulation by environmental and pathological cues. We also discuss emerging evidence on lncRNAs regulating chromatin remodeling, alternative splicing, apoptosis, enucleation, and erythroid-specific gene expression. These insights suggest that ncRNAs are instrumental orchestrators of erythropoiesis and accordingly, potential biomarkers and therapeutic targets in anemia and related hematologic disorders. Full article
Show Figures

Figure 1

17 pages, 5153 KB  
Article
Megakaryocytic Differentiation Regulates the Permissiveness and Antiviral Response of the Megakaryocytic Erythroid Progenitor to Dengue Virus
by Diego Sait Cruz-Hernández, Francisco Javier Sánchez-Peña, Marymar Cruz-Cruz, Darío de Jesús Guillén-Morales, Martha Cristina Castillo-Soriano, Elizabeth Cruz-Altamirano, Juan Alpuche, José Bustos-Arriaga, María de Los Ángeles Romero-Tlalolini, Honorio Torres-Aguilar, Juan Carlos Rodríguez-Alba and Sergio Roberto Aguilar-Ruíz
Int. J. Mol. Sci. 2025, 26(22), 11081; https://doi.org/10.3390/ijms262211081 - 16 Nov 2025
Viewed by 510
Abstract
Dengue virus (DENV) affects not only peripheral immune cells but also hematopoietic progenitors in the bone marrow, particularly megakaryocytic precursors, which contribute to the thrombocytopenia characteristic of the disease. In this study, we evaluated the relationship between the differentiation status of the megakaryocytic [...] Read more.
Dengue virus (DENV) affects not only peripheral immune cells but also hematopoietic progenitors in the bone marrow, particularly megakaryocytic precursors, which contribute to the thrombocytopenia characteristic of the disease. In this study, we evaluated the relationship between the differentiation status of the megakaryocytic lineage and its permissiveness and antiviral response to DENV. Our results demonstrate that the erythroid–megakaryocytic precursor (K562 cells) was more permissive to DENV infection than megakaryoblasts, as evidenced by immunofluorescence, flow cytometry, and quantification of viral particles. The antiviral response in K562 cells peaked at three days post-infection, with maximal expression of genes associated with the type I interferon (IFN-I) pathway. In vitro-induced differentiation of K562 cells reduced the initial susceptibility to DENV and enhanced the expression of Toll-like receptor 3 (TLR3) and the type I interferon receptor (IFNAR1), accelerating and intensifying IFN-β secretion, and increasing the expression of OAS2 and IRF3. Furthermore, pretreatment of K562 cells with recombinant IFN-β significantly reduced viral replication from the first day post-infection. Collectively, these findings demonstrate for the first time that the differentiation status of erythroid–megakaryocytic progenitor critically shapes their antiviral response and underscore the central role of IFN-β in the early restriction of DENV infection. Full article
(This article belongs to the Collection 30th Anniversary of IJMS: Updates and Advances in Biochemistry)
Show Figures

Figure 1

17 pages, 1775 KB  
Article
AI-Driven Analysis for Real-Time Detection of Unstained Microscopic Cell Culture Images
by Kathrin Hildebrand, Tatiana Mögele, Dennis Raith, Maria Kling, Anna Rubeck, Stefan Schiele, Eelco Meerdink, Avani Sapre, Jonas Bermeitinger, Martin Trepel and Rainer Claus
AI 2025, 6(10), 271; https://doi.org/10.3390/ai6100271 - 18 Oct 2025
Viewed by 1483
Abstract
Staining-based assays are widely used for cell analysis but are invasive, alter physiology, and prevent longitudinal monitoring. Label-free, morphology-based approaches could enable real-time, non-invasive drug testing, yet detection of subtle and dynamic changes has remained difficult. We developed a deep learning framework for [...] Read more.
Staining-based assays are widely used for cell analysis but are invasive, alter physiology, and prevent longitudinal monitoring. Label-free, morphology-based approaches could enable real-time, non-invasive drug testing, yet detection of subtle and dynamic changes has remained difficult. We developed a deep learning framework for stain-free monitoring of leukemia cell cultures using automated bright-field microscopy in a semi-automated culture system (AICE3, LABMaiTE, Augsburg, Germany). YOLOv8 models were trained on images from K562, HL-60, and Kasumi-1 cells, using an NVIDIA DGX A100 GPU for training and tested on GPU and CPU environments for real-time performance. Comparative benchmarking with RT-DETR and interpretability analyses using Eigen-CAM and radiomics (RedTell) was performed. YOLOv8 achieved high accuracy (mAP@0.5 > 98%, precision/sensitivity > 97%), with reproducibility confirmed on an independent dataset from a second laboratory and an AICE3 setup. The model distinguished between morphologically similar leukemia lines and reliably classified untreated versus differentiated K562 cells (hemin-induced erythroid and PMA-induced megakaryocytic; >95% accuracy). Incorporation of decitabine-treated cells demonstrated applicability to drug testing, revealing treatment-specific and intermediate phenotypes. Longitudinal monitoring captured culture- and time-dependent drift, enabling separation of temporal from drug-induced changes. Radiomics highlighted interpretable features such as size, elongation, and texture, but with lower accuracy than the deep learning approach. To our knowledge, this is the first demonstration that deep learning resolves subtle, drug-induced, and time-dependent morphological changes in unstained leukemia cells in real time. This approach provides a robust, accessible framework for label-free longitudinal drug testing and establishes a foundation for future autonomous, feedback-driven platforms in precision oncology. Ultimately, this approach may also contribute to more precise and adaptive clinical decision-making, advancing the field of personalized medicine. Full article
(This article belongs to the Special Issue AI in Bio and Healthcare Informatics)
Show Figures

Figure 1

14 pages, 1960 KB  
Article
TP53 Expression Status Alters Hemoglobinization and Ferroptosis Sensitivity in K-562 Cells
by Cameron Cardona, Madelyne Young and McKale Montgomery
Int. J. Mol. Sci. 2025, 26(17), 8359; https://doi.org/10.3390/ijms26178359 - 28 Aug 2025
Viewed by 1227
Abstract
Activation of TP53 signaling during ribosome biogenesis is an essential part of erythroid development, whereas the pathologic activation of TP53 in ribosomopathies such as Diamond-Blackfan anemia (DBA) and del (5q) myelodysplastic syndrome (MDS) prevents the normal expansion of erythroid precursors. TP53 can also [...] Read more.
Activation of TP53 signaling during ribosome biogenesis is an essential part of erythroid development, whereas the pathologic activation of TP53 in ribosomopathies such as Diamond-Blackfan anemia (DBA) and del (5q) myelodysplastic syndrome (MDS) prevents the normal expansion of erythroid precursors. TP53 can also be linked to the pathogenesis of DBA and MDS via ferroptosis, a form of iron-mediated cell death propagated by excess polyunsaturated fatty acid-containing oxidizable phospholipids and loss of lipid peroxide repair capacity. The primary objective of this work was to establish how overexpression and mutation of the TP53 gene influences lipid composition, erythroid differentiation, and ferroptosis sensitivity in K-562 cells, an in vitro model for studying erythropoiesis. Employing a reverse genetics approach, we generated four isogenic cell lines that either lacked functional TP53 expression, expressed wild-type (WT) TP53, or expressed one of the two most common TP53 mutation types, R175H or R282W. We then utilized non-targeted lipidomics to quantify and identify changes in specific lipid species that occur with induction of WT and mutant TP53 expression. We also analyzed differences in gene expression, ferroptosis sensitivity, and hemoglobinization by qPCR, CCK-8 cytotoxicity assay, and o-dianisidine staining, respectively. The abundance of 337 distinct lipid species was impacted by induction of WT TP53 expression compared to K-562 cells expressing a nonfunctional P53 protein. Yet only 17 lipid compounds were differentially impacted between cells expressing WT TP53 and either of the mutant TP53 genes tested. Similarly, while the TP53 null K-562 cells displayed modest sensitivity to ferroptosis, cells expressing both WT and mutant TP53 genes were remarkably resistant to ferroptosis. However, terminal differentiation and hemoglobinization were significantly impacted in R175H mutant TP53-expressing K-562 cells. Findings from this work provide novel insights into the role of TP53 in lipid metabolism and terminal erythropoiesis. Full article
(This article belongs to the Special Issue Lipidomics and Lipid Metabolism in Health and Disease)
Show Figures

Figure 1

13 pages, 1294 KB  
Review
VEXAS Syndrome: Genetics, Gender Differences, Clinical Insights, Diagnostic Pitfalls, and Emerging Therapies
by Salvatore Corrao, Marta Moschetti, Salvatore Scibetta, Luigi Calvo, Annarita Giardina, Ignazio Cangemi, Carmela Zizzo, Paolo Colomba and Giovanni Duro
Int. J. Mol. Sci. 2025, 26(16), 7931; https://doi.org/10.3390/ijms26167931 - 17 Aug 2025
Viewed by 2816
Abstract
VEXAS syndrome (Vacuoles, E1-enzyme, X-linked, Autoinflammation, and Somatic) is a recently identified late-onset autoinflammatory disorder characterized by a unique interplay between hematological and inflammatory manifestations. It results from somatic mutations in the UBA1 gene, located on the short arm of the X chromosome. [...] Read more.
VEXAS syndrome (Vacuoles, E1-enzyme, X-linked, Autoinflammation, and Somatic) is a recently identified late-onset autoinflammatory disorder characterized by a unique interplay between hematological and inflammatory manifestations. It results from somatic mutations in the UBA1 gene, located on the short arm of the X chromosome. Initially, females were considered mere carriers, with the syndrome primarily affecting males over 50. However, recent evidence indicates that heterozygous females can exhibit symptoms as severe as those seen in hemizygous males. The disease manifests as systemic inflammation, macrocytic anemia, thrombocytopenia, chondritis, neutrophilic dermatoses, and steroid-dependent inflammatory symptoms. Due to its overlap with autoimmune and hematologic disorders such as relapsing polychondritis, Still’s disease, and myelodysplastic syndromes, misdiagnosis is common. At the molecular level, VEXAS syndrome is driven by impaired ubiquitination pathways, resulting in dysregulated immune responses and clonal hematopoiesis. A key diagnostic marker is the presence of cytoplasmic vacuoles in myeloid and erythroid precursors, though definitive diagnosis requires genetic testing for UBA1 mutations. Traditional immunosuppressants and TNF inhibitors are generally ineffective, while JAK inhibitors and IL-6 blockade provide partial symptom control. Azacitidine and decitabine have shown promise in reducing disease burden, but hematopoietic stem cell transplantation (HSCT) remains the only curative treatment, albeit with significant risks. This review provides a comprehensive analysis of VEXAS syndrome, examining its clinical features, differential diagnoses, diagnostic challenges, and treatment approaches, including both pharmacological and non-pharmacological strategies. By enhancing clinical awareness and optimizing therapeutic interventions, this article aims to bridge emerging genetic insights with practical patient management, ultimately improving outcomes for those affected by this complex and often life-threatening disease. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 1841 KB  
Review
An Update on Role of Ionizing Radiation to Enhance Proliferation and Differentiation of Normal Stem Cells via Activation of NRF2 Pathway: Review
by Kave Moloudi and Siamak Haghdoost
Antioxidants 2025, 14(8), 986; https://doi.org/10.3390/antiox14080986 - 11 Aug 2025
Cited by 1 | Viewed by 2848
Abstract
Ionizing radiation (IR) as a stress inducer has a significant impact on various normal stem cells differentiation through activation of various signaling pathways. Low levels of oxidative stress of IR may preserve or even enhance cell differentiation. In response to IR, reactive oxygen [...] Read more.
Ionizing radiation (IR) as a stress inducer has a significant impact on various normal stem cells differentiation through activation of various signaling pathways. Low levels of oxidative stress of IR may preserve or even enhance cell differentiation. In response to IR, reactive oxygen species (ROS) can activate various signaling pathways that promote cell differentiation, notably through the involvement of nuclear factor erythroid 2–related factor 2 (NRF2). NRF2 interacts with multiple pathways, including Wnt/β-catenin (osteogenesis), PPARγ (adipogenesis), and BDNF/TrkB (neurogenesis). This response is dose-dependent: low doses of IR activate NRF2 and support differentiation, while high doses can overwhelm the antioxidant system, resulting in cell death. However, the quality of various types of IR, such as proton and carbon ion radiation, may have a varied impact on stem cells (SCs) differentiation compared to X-rays. Hence, activation of the NRF2 signaling pathway in SCs and cell differentiation depends on the level of stress and the quality and quantity of IR. This review is an update to explore how IR modulates SCs fate toward osteogenic, adipogenic, and neurogenic lineages through the NRF2 signaling pathway. We highlight mechanistic insights, dose-dependent effects, and therapeutic implications, bridging gaps between experimental models and clinical translation. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

20 pages, 2361 KB  
Article
Abelmoschus esculentus Ameliorates Cognitive Impairment in Hyperlipidemic ApoE−/− Mice via Modulation of Oxidative Stress and Neuronal Differentiation
by Chiung-Huei Peng, Hsin-Wen Liang, Chau-Jong Wang, Chien-Ning Huang and Huei-Jane Lee
Antioxidants 2025, 14(8), 955; https://doi.org/10.3390/antiox14080955 - 4 Aug 2025
Viewed by 1318
Abstract
Cardiovascular disease (CVD) and dementia may share common pathogenic factors such as atherosclerosis and hyperlipoproteinemia. Dyslipidemia-induced oxidative stress contributes to dementia comorbidity in CVD. Abelmoschus esculentus (AE, okra) potentiates in alleviating hyperlipidemia and diabetes-related cognitive impairment. This study evaluated the effects of AE [...] Read more.
Cardiovascular disease (CVD) and dementia may share common pathogenic factors such as atherosclerosis and hyperlipoproteinemia. Dyslipidemia-induced oxidative stress contributes to dementia comorbidity in CVD. Abelmoschus esculentus (AE, okra) potentiates in alleviating hyperlipidemia and diabetes-related cognitive impairment. This study evaluated the effects of AE in hyperlipidemic ApoE−/− mice treated with streptozotocin (50 mg/kg) and fed a high-fat diet (17% lard oil, 1.2% cholesterol). AE fractions F1 or F2 (0.65 mg/kg) were administered for 8 weeks. AE significantly reduced serum LDL-C, HDL-C, triglycerides, and glucose, improved cognitive and memory function, and protected hippocampal neurons. AE also lowered oxidative stress markers (8-hydroxy-2′-deoxyguanosine, 8-OHdG) and modulated neuronal nuclei (NeuN) and doublecortin (DCX) expression. In vitro, AE promoted neurite outgrowth and neuronal differentiation in retinoic acid (RA)-differentiated human SH-SY5Y cells under metabolic stress (glucose and palmitate), alongside the upregulation of heme oxygenase-1 (HO-1), Nuclear factor-erythroid 2-related factor 2 (Nrf2), and brain-derived neurotrophic factor (BDNF). These findings suggest AE may counter cognitive decline via oxidative stress regulation and the enhancement of neuronal differentiation. Full article
Show Figures

Graphical abstract

22 pages, 13067 KB  
Article
Engineering Marrow-Mimetic Hydrogel Platforms Enhance Erythropoiesis: A Mechanobiology-Driven Approach for Transfusion Red Blood Cell Production
by Qinqin Yang, Runjin Liu and Xiang Wang
Gels 2025, 11(8), 594; https://doi.org/10.3390/gels11080594 - 31 Jul 2025
Viewed by 884
Abstract
Red blood cell (RBC) production from bone marrow hematopoietic stem cells (BMHSCs) in vitro overlooks the mechanical signals of the bone marrow niche and overly relies on growth factors. Considering that the fate of hematopoietic stem cells (HSCs) is determined by the natural [...] Read more.
Red blood cell (RBC) production from bone marrow hematopoietic stem cells (BMHSCs) in vitro overlooks the mechanical signals of the bone marrow niche and overly relies on growth factors. Considering that the fate of hematopoietic stem cells (HSCs) is determined by the natural bone marrow microenvironment, differences in mechanical microenvironments provide a reference for the regulation of HSC differentiation. This study seek to reveal the role of mechanobiology cues in erythropoiesis and provide a new perspective for the design of in vitro erythropoiesis platforms. The hydrogel platforms we designed simulate the stiffness gradient of the bone marrow niche to culture HSCs and induce their differentiation into the erythroid system. Cells on the low-stiffness scaffold have higher potential for erythrocyte differentiation and faster differentiation efficiency and promote erythrocyte differentiation after erythropoietin (EPO) restriction. In vivo transplantation experiments demonstrated that these cells have the ability for continuous proliferation and differentiation into mature erythrocytes. By combining mechanical cues with in vitro erythrocyte production, this method is expected to provide insights for in vitro hematopoietic design and offer a scalable cell manufacturing platform for transfusion medicine. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

21 pages, 2807 KB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Cited by 1 | Viewed by 1979
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

Back to TopTop