Bridge Nucleic Acid/DNA Gapmers as Potential Inhibitors of Bacterial Gene Expression by Multiple Antisense Mechanisms: An In Vitro Study
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Strain, Plasmids, and Oligonucleotides
4.2. RNase P Preparation
4.3. In Vitro RNase P and RNase H Assays
4.4. Coupled In Vitro Transcription-Translation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crooke, S.T.; Liang, X.H.; Baker, B.F.; Crooke, R.M. Antisense technology: A review. J. Biol. Chem. 2021, 296, 100416. [Google Scholar] [CrossRef]
- Dhuri, K.; Bechtold, C.; Quijano, E.; Pham, H.; Gupta, A.; Vikram, A.; Bahal, R. Antisense oligonucleotides: An emerging area in drug discovery and development. J. Clin. Med. 2020, 9, 2004. [Google Scholar] [CrossRef]
- Jani, S.; Ramirez, M.S.; Tolmasky, M.E. Silencing antibiotic resistance with antisense oligonucleotides. Biomedicines 2021, 9, 416. [Google Scholar] [CrossRef]
- Penchovsky, R.; Georgieva, A.V.; Dyakova, V.; Traykovska, M.; Pavlova, N. Antisense and functional nucleic acids in rational drug development. Antibiotics 2024, 13, 221. [Google Scholar] [CrossRef]
- Rasmussen, L.C.; Sperling-Petersen, H.U.; Mortensen, K.K. Hitting bacteria at the heart of the central dogma: Sequence-specific inhibition. Microb. Cell Fact. 2007, 6, 24. [Google Scholar] [CrossRef]
- Sully, E.K.; Geller, B.L. Antisense antimicrobial therapeutics. Curr. Opin. Microbiol. 2016, 33, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Ludolph, A.; Wiesenfarth, M. Tofersen and other antisense oligonucleotides in ALS. Ther. Adv. Neurol. Disord. 2025, 18, 17562864251313915. [Google Scholar] [CrossRef]
- Rodrigues, M.; Yokota, T. An overview of recent advances and clinical applications of exon skipping and splice modulation for muscular dystrophy and various genetic diseases. Methods Mol. Biol. 2018, 1828, 31–55. [Google Scholar] [CrossRef]
- Marasco, L.E.; Dujardin, G.; Sousa-Luis, R.; Liu, Y.H.; Stigliano, J.N.; Nomakuchi, T.; Proudfoot, N.J.; Krainer, A.R.; Kornblihtt, A.R. Counteracting chromatin effects of a splicing-correcting antisense oligonucleotide improves its therapeutic efficacy in spinal muscular atrophy. Cell 2022, 185, 2057–2070.e15. [Google Scholar] [CrossRef] [PubMed]
- Crooke, S.T.; Baker, B.F.; Crooke, R.M.; Liang, X.H. Antisense technology: An overview and prospectus. Nat. Rev. Drug Discov. 2021, 20, 427–453. [Google Scholar] [CrossRef] [PubMed]
- Dinan, A.M.; Loftus, B.J. (Non-)translational medicine: Targeting bacterial RNA. Front. Genet. 2013, 4, 230. [Google Scholar] [CrossRef]
- Goltermann, L.; Nielsen, P.E. PNA antisense targeting in bacteria: Determination of antibacterial activity (MIC) of PNA-peptide conjugates. In Peptide Nucleic Acids; Springer: Berlin/Heidelberg, Germany, 2020; Volume 2105, pp. 231–239. [Google Scholar] [CrossRef]
- Pifer, R.; Greenberg, D.E. Antisense antibacterial compounds. Transl. Res. 2020, 223, 89–106. [Google Scholar] [CrossRef]
- Sully, E.K.; Geller, B.L.; Li, L.; Moody, C.M.; Bailey, S.M.; Moore, A.L.; Wong, M.; Nordmann, P.; Daly, S.M.; Sturge, C.R.; et al. Peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) restores carbapenem susceptibility to NDM-1-positive pathogens in vitro and in vivo. J. Antimicrob. Chemother. 2017, 72, 782–790. [Google Scholar] [CrossRef]
- Tolmasky, M.E. Strategies to prolong the useful life of existing antibiotics and help overcoming the antibiotic resistance crisis. In Frontiers in Clinical Drug Research-Anti Infectives; Rahman, A.U., Ed.; Bentham Books: Sharjah, United Arab Emirates, 2017; Volume 1, pp. 1–27. [Google Scholar]
- Crooke, S.T.; Lemonidis, K.M.; Neilson, L.; Griffey, R.; Lesnik, E.A.; Monia, B.P. Kinetic characteristics of Escherichia coli RNase H1: Cleavage of various antisense oligonucleotide-RNA duplexes. Biochem. J. 1995, 312, 599–608. [Google Scholar] [CrossRef]
- Kirsebom, L.A.; Liu, F.; McClain, W.H. The discovery of a catalytic RNA within RNase P and its legacy. J. Biol. Chem. 2024, 300, 107318. [Google Scholar] [CrossRef] [PubMed]
- Davies-Sala, C.; Soler-Bistue, A.; Bonomo, R.A.; Zorreguieta, A.; Tolmasky, M.E. External guide sequence technology: A path to development of novel antimicrobial therapeutics. Ann. N. Y. Acad. Sci. 2015, 1354, 98–110. [Google Scholar] [CrossRef]
- Gopalan, V.; Vioque, A.; Altman, S. RNase P: Variations and uses. J. Biol. Chem. 2002, 277, 6759–6762. [Google Scholar] [CrossRef]
- Agrawal, S.; Gait, M. History and development of nucleotide analogues in nucleic acids drugs. In Advances in Nucleic Acid Therapeutics; Agrawal, S., Gait, M., Eds.; Royal Society of Chemistry: London, UK, 2019; pp. 1–21. [Google Scholar]
- Clave, G.; Reverte, M.; Vasseur, J.J.; Smietana, M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chem. Biol. 2021, 2, 94–150. [Google Scholar] [CrossRef]
- Soler-Bistue, A.; Zorreguieta, A.; Tolmasky, M.E. Bridged Nucleic Acids Reloaded. Molecules 2019, 24, 2297. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Nikolaidis, N.; Tolmasky, M.E. Rise and dissemination of aminoglycoside resistance: The aac(6′)-Ib. paradigm. Front. Microbiol. 2013, 4, 121. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updates 2010, 13, 151–171. [Google Scholar] [CrossRef]
- d’Udekem d’Acoz, O.; Hue, F.; Ye, T.; Wang, L.; Leroux, M.; Rajngewerc, L.; Tran, T.; Phan, K.; Ramirez, M.S.; Reisner, W.; et al. Dynamics and quantitative contribution of the aminoglycoside 6′-N-acetyltransferase type Ib to amikacin resistance. mSphere 2024, 9, e0078923. [Google Scholar] [CrossRef]
- Jackson, A.; Jani, S.; Davies-Sala, C.D.; Soler-Bistue, A.J.; Zorreguieta, A.; Tolmasky, M.E. Assessment of configurations and chemistries of bridged nucleic acids-containing oligomers as external guide sequences: A methodology for inhibition of expression of antibiotic resistance genes. Biol. Methods Protoc. 2016, 1, bpw001. [Google Scholar] [CrossRef]
- Jani, S.; Jackson, A.; Davies-Sala, C.; Chiem, K.; Soler-Bistue, A.; Zorreguieta, A.; Tolmasky, M.E. Assessment of external guide sequences’ (EGS) efficiency as inducers of RNase P-mediated cleavage of mRNA target molecules. Methods Mol. Biol. 2018, 1737, 89–98. [Google Scholar] [CrossRef]
- Seth, P.P.; Vasquez, G.; Allerson, C.A.; Berdeja, A.; Gaus, H.; Kinberger, G.A.; Prakash, T.P.; Migawa, M.T.; Bhat, B.; Swayze, E.E. Synthesis and biophysical evaluation of 2′,4′-constrained 2′O-methoxyethyl and 2′,4′-constrained 2′O-ethyl nucleic acid analogues. J. Org. Chem. 2010, 75, 1569–1581. [Google Scholar] [CrossRef]
- Petersen, M.; Wengel, J. LNA: A versatile tool for therapeutics and genomics. Trends Biotechnol. 2003, 21, 74–81. [Google Scholar] [CrossRef]
- Soler Bistue, A.J.; Martin, F.A.; Vozza, N.; Ha, H.; Joaquin, J.C.; Zorreguieta, A.; Tolmasky, M.E. Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria. Proc. Natl. Acad. Sci. USA 2009, 106, 13230–13235. [Google Scholar] [CrossRef]
- Soler Bistue, A.J.; Ha, H.; Sarno, R.; Don, M.; Zorreguieta, A.; Tolmasky, M.E. External guide sequences targeting the aac(6′)-Ib. mRNA induce inhibition of amikacin resistance. Antimicrob. Agents Chemother. 2007, 51, 1918–1925. [Google Scholar] [CrossRef]
- Sarno, R.; Ha, H.; Weinsetel, N.; Tolmasky, M.E. Inhibition of aminoglycoside 6′-N-acetyltransferase type Ib-mediated amikacin resistance by antisense oligodeoxynucleotides. Antimicrob. Agents Chemother. 2003, 47, 3296–3304. [Google Scholar] [CrossRef]
- Kirsebom, L.A. RNase P RNA mediated cleavage: Substrate recognition and catalysis. Biochimie 2007, 89, 1183–1194. [Google Scholar] [CrossRef]
- Pande, V.; Nilsson, L. Insights into structure, dynamics and hydration of locked nucleic acid (LNA) strand-based duplexes from molecular dynamics simulations. Nucleic Acids Res. 2008, 36, 1508–1516. [Google Scholar] [CrossRef]
- Liao, Z.; Oyama, T.; Kitagawa, Y.; Katayanagi, K.; Morikawa, K.; Oda, M. Pivotal role of a conserved histidine in Escherichia coli ribonuclease HI as proposed by X-ray crystallography. Acta Crystallogr. D Struct. Biol. 2022, 78, 390–398. [Google Scholar] [CrossRef]
- Pals, M.J.; Lindberg, A.; Velema, W.A. Chemical strategies for antisense antibiotics. Chem. Soc. Rev. 2024, 53, 11303–11320. [Google Scholar] [CrossRef]
- Alhamadani, F.; Zhang, K.; Parikh, R.; Wu, H.; Rasmussen, T.P.; Bahal, R.; Zhong, X.B.; Manautou, J.E. Adverse drug reactions and toxicity of the Food and Drug Administration-approved antisense oligonucleotide drugs. Drug Metab. Dispos. 2022, 50, 879–887. [Google Scholar] [CrossRef]
- Marwick, C. First “antisense” drug will treat CMV retinitis. JAMA 1998, 280, 871. [Google Scholar] [CrossRef]
- Nanayakkara, A.K.; Moustafa, D.A.; Pifer, R.; Goldberg, J.B.; Greenberg, D.E. Sequence specificity defines the effectiveness of PPMOs targeting Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2023, 67, e0024523. [Google Scholar] [CrossRef]
- Kim, S.K.; Lee, J.B.; Lee, H.T.; Yoon, J.W. Combined antimicrobial effect of two peptide nucleic acids against Staphylococcus aureus and S. pseudintermedius veterinary isolates. J. Vet. Sci. 2024, 25, e12. [Google Scholar] [CrossRef]
- Kim, S.K.; Lee, J.B.; Lee, H.T.; Han, D.; Yoon, J.W. Development of antisense peptide-peptide nucleic acids against fluoroquinolone-resistant Escherichia coli. J. Antimicrob. Chemother. 2023, 78, 2052–2060. [Google Scholar] [CrossRef]
- Vioque, A.; Arnez, J.; Altman, S. Protein-RNA interactions in the RNase P holoenzyme from Escherichia coli. J. Mol. Biol. 1988, 202, 835–848. [Google Scholar] [CrossRef]
- Shimizu, Y.; Inoue, A.; Tomari, Y.; Suzuki, T.; Yokogawa, T.; Nishikawa, K.; Ueda, T. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 2001, 19, 751–755. [Google Scholar] [CrossRef]




| Name | Sequence (5′-3′) | Chemistry |
|---|---|---|
| M1 amplicon F | TTGTAATACGACTCACTATAGGGGAAG | DNA |
| M1 amplicon R | AGGTGAAACTGACCGATAAG | DNA |
| aac(6′)-Ib mRNA F | GCAAGCTTTAATACGACTCACTATAGCATGAGACAATAACCCTGATAAATGCTTC | DNA |
| aac(6′)-Ib mRNA R | GTTTAACGTTTGACATGAGGGC | DNA |
| RNAA | rCrGrArTrArTrGrArGrArTrCrGrArCrCrA | RNA |
| DNAA | CGATATGAGATCGACCA | DNA |
| LDAA | [LC][LG][LA][LT][LA]TGAGATCG[LA][LC][LC][LA] | LNA5-DNA8-LNA4 |
| BDAA | [BC][BG][BA][BT][BA]TGAGATCG[BA][BC][BC][BA] | BNANC5-DNA8-BNANC4 |
| EDAA | [EC][EG][EA][ET][EA]TGAGATCG[EA][EC][EC][EA] | cET5-DNA8-cET4 |
| MDAA | [MC][MG][MA][MT][MA]TGAGATCG[MA][MC][MC][MA] | cMOE5-DNA8-cMOE4 |
| LDAR | [LG][LC][LT][LG][LA]CTGAAATG[LA][LC][LC][LA] | LNA5-DNA8-LNA4 |
| DNAN1 | ATACTCATACTCTTCCT | DNA |
| DNAN2 | AATGTTGAATACTCATA | DNA |
| DNAN3 | TGGAAATGTTGAATACT | DNA |
| LDAN1 | [LA] [LT] [LA] [LC] [LT]CATACTCT[LT] [LC] [LC] [LT] | LNA5-DNA8-LNA4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magaña, A.J.; Phan, K.; Lopez, J.A.; Ramirez, M.S.; Tolmasky, M.E. Bridge Nucleic Acid/DNA Gapmers as Potential Inhibitors of Bacterial Gene Expression by Multiple Antisense Mechanisms: An In Vitro Study. Molecules 2025, 30, 4721. https://doi.org/10.3390/molecules30244721
Magaña AJ, Phan K, Lopez JA, Ramirez MS, Tolmasky ME. Bridge Nucleic Acid/DNA Gapmers as Potential Inhibitors of Bacterial Gene Expression by Multiple Antisense Mechanisms: An In Vitro Study. Molecules. 2025; 30(24):4721. https://doi.org/10.3390/molecules30244721
Chicago/Turabian StyleMagaña, Angel J., Kimberly Phan, Jesse A. Lopez, Maria S. Ramirez, and Marcelo E. Tolmasky. 2025. "Bridge Nucleic Acid/DNA Gapmers as Potential Inhibitors of Bacterial Gene Expression by Multiple Antisense Mechanisms: An In Vitro Study" Molecules 30, no. 24: 4721. https://doi.org/10.3390/molecules30244721
APA StyleMagaña, A. J., Phan, K., Lopez, J. A., Ramirez, M. S., & Tolmasky, M. E. (2025). Bridge Nucleic Acid/DNA Gapmers as Potential Inhibitors of Bacterial Gene Expression by Multiple Antisense Mechanisms: An In Vitro Study. Molecules, 30(24), 4721. https://doi.org/10.3390/molecules30244721

