Role of Scleroglucan Produced by Sclerotium rolfsii in Shaping the Microstructure, Rheology, and Flavour Profile of Full-Fat Yoghurts
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Yoghurts
2.2. Effect of Scleroglucan on Yoghurt Colour
2.3. Effect of Scleroglucan on Yoghurt Texture
2.4. Effect of Scleroglucan on Yoghurt Rheology
2.5. Effect of Scleroglucan on Yoghurt Microbiology
2.6. Effect of Scleroglucan on Milk Acidification and Organic Acid Production in Yoghurt
2.7. Effect of Scleroglucan on the Content of Volatile Compounds
2.8. Effect of Scleroglucan Addition on the Sensory Properties of Yoghurt
3. Materials and Methods
3.1. Materials
3.2. Experimental Design
3.3. Yoghurt Production
3.4. Microbiological Analysis
3.5. Acidification Monitoring
3.6. Isolation of Volatile Compounds
3.7. Lactic Acid and Citric Acid Determination
3.8. Lactose Analysis
3.9. Sensory Analysis
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yogurt Trends Call for Action. Available online: https://www.innovamarketinsights.com/trends/yogurt-trends/ (accessed on 2 December 2025).
- Yogurt Trends to Watch in 2025|Glanbia Nutritionals. Available online: https://www.glanbianutritionals.com/en/nutri-knowledge-center/insights/yogurt-trends-watch (accessed on 2 December 2025).
- Arab, M.; Yousefi, M.; Khanniri, E.; Azari, M.; Ghasemzadeh-Mohammadi, V.; Mollakhalili-Meybodi, N. A Comprehensive Review on Yogurt Syneresis: Effect of Processing Conditions and Added Additives. J. Food Sci. Technol. 2023, 60, 1656–1665. [Google Scholar] [CrossRef]
- Hadjimbei, E.; Botsaris, G.; Chrysostomou, S. Beneficial Effects of Yoghurts and Probiotic Fermented Milks and Their Functional Food Potential. Foods 2022, 11, 2691. [Google Scholar] [CrossRef] [PubMed]
- Akalın, A.S.; Unal, G.; Dinkci, N.; Hayaloglu, A.A. Microstructural, Textural, and Sensory Characteristics of Probiotic Yogurts Fortified with Sodium Calcium Caseinate or Whey Protein Concentrate. J. Dairy Sci. 2012, 95, 3617–3628. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, M.; Ahmadi, D.; Alizadeh, M.; Hosseini, F. Physicochemical and Sensorial Properties of Probiotic Yogurt as Affected by Additions of Different Types of Hydrocolloid. Food Sci. Anim. Resour. 2013, 33, 363–368. [Google Scholar] [CrossRef]
- Barcelos, M.C.S.; Vespermann, K.A.C.; Pelissari, F.M.; Molina, G. Current Status of Biotechnological Production and Applications of Microbial Exopolysaccharides. Crit. Rev. Food Sci. Nutr. 2020, 60, 1475–1495. [Google Scholar] [CrossRef]
- Hamidi, M.; Okoro, O.V.; Rashidi, K.; Salami, M.S.; Mirzaei Seveiri, R.; Samadian, H.; Shavandi, A. Evaluation of Two Fungal Exopolysaccharides as Potential Biomaterials for Wound Healing Applications. World J. Microbiol. Biotechnol. 2022, 39, 49. [Google Scholar] [CrossRef]
- Fariña, J.I.; Siñeriz, F.; Molina, O.E.; Perotti, N.I. Isolation and Physicochemical Characterization of Soluble Scleroglucan from Sclerotium rolfsii. Rheological Properties, Molecular Weight and Conformational Characteristics. Carbohydr. Polym. 2001, 44, 41–50. [Google Scholar] [CrossRef]
- Lazaridou, A.; Vaikousi, H.; Biliaderis, C.G. Impact of Mixed-Linkage (1→3, 1→4) β-Glucans on Physical Properties of Acid-Set Skim Milk Gels. Int. Dairy J. 2008, 18, 312–322. [Google Scholar] [CrossRef]
- Qu, X.; Nazarenko, Y.; Yang, W.; Nie, Y.; Zhang, Y.; Li, B. Effect of Oat β-Glucan on the Rheological Characteristics and Microstructure of Set-Type Yogurt. Molecules 2021, 26, 4752. [Google Scholar] [CrossRef]
- Castillo, N.A.; Valdez, A.L.; Fariña, J.I. Microbial Production of Scleroglucan and Downstream Processing. Front. Microbiol. 2015, 6, 1106. [Google Scholar] [CrossRef]
- Aljewicz, M.; Bielecka, M.M.; Dąbrowska, A.; Majcher, M.A.; Popławski, Ł. Scleroglucan as Structure Forming Agent of Low-Fat Yogurt: Effects on Functional Properties, Bacterial Activity and Sensory Profile. Molecules 2025, 30, 4581. [Google Scholar] [CrossRef]
- Aljewicz, M.; Majcher, M.; Nalepa, B. A Comprehensive Study of the Impacts of Oat β-Glucan and Bacterial Curdlan on the Activity of Commercial Starter Culture in Yogurt. Molecules 2020, 25, 5411. [Google Scholar] [CrossRef] [PubMed]
- Raikos, V.; Grant, S.B.; Hayes, H.; Ranawana, V. Use of β-Glucan from Spent Brewer’s Yeast as a Thickener in Skimmed Yogurt: Physicochemical, Textural, and Structural Properties Related to Sensory Perception. J. Dairy Sci. 2018, 101, 5821–5831. [Google Scholar] [CrossRef]
- Zhao, Y.; Fu, R.; Li, J. Effects of the β-Glucan, Curdlan, on the Fermentation Performance, Microstructure, Rheological and Textural Properties of Set Yogurt. LWT 2020, 128, 109449. [Google Scholar] [CrossRef]
- Żbikowska, A.; Szymańska, I.; Kowalska, M. Impact of Inulin Addition on Properties of Natural Yogurt. Appl. Sci. 2020, 10, 4317. [Google Scholar] [CrossRef]
- Hassan, A.N.; Ipsen, R.; Janzen, T.; Qvist, K.B. Microstructure and Rheology of Yogurt Made with Cultures Differing Only in Their Ability to Produce Exopolysaccharides. J. Dairy Sci. 2003, 86, 1632–1638. [Google Scholar] [CrossRef]
- Liu, X.; Sala, G.; Scholten, E. Role of Polysaccharide Structure in the Rheological, Physical and Sensory Properties of Low-Fat Ice Cream. Curr. Res. Food Sci. 2023, 7, 100531. [Google Scholar] [CrossRef]
- Macit, E.; Bakirci, I. Effect of Different Stablizers on Quality Characteristics of the Set-Type Yogurt. AJB 2017, 16, 2142–2151. [Google Scholar] [CrossRef]
- Ge, Z.; Yin, D.; Li, Z.; Chen, X.; Dong, M. Effects of Commercial Polysaccharides Stabilizers with Different Charges on Textural, Rheological, and Microstructural Characteristics of Set Yoghurts. Foods 2022, 11, 1764. [Google Scholar] [CrossRef]
- Chlebowska-Śmigiel, A.; Kycia, K.; Neffe-Skocińska, K.; Kieliszek, M.; Gniewosz, M.; Kołożyn-Krajewska, D. Effect of Pullulan on Physicochemical, Microbiological, and Sensory Quality of Yogurts. Curr. Pharm. Biotechnol. 2019, 20, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Say, D.; Soltani, M.; Güzeler, N. Texture, Colour and Sensory Properties of Non-Fat Yoghurt as Influenced by Tara Gum or Combinations of Tara Gum with Buttermilk Powder. Mljekarstvo Dairy Experts J. 2020, 70, 313–324. [Google Scholar] [CrossRef]
- Brennan, C.S.; Tudorica, C.M. Carbohydrate-Based Fat Replacers in the Modification of the Rheological, Textural and Sensory Quality of Yoghurt: Comparative Study of the Utilisation of Barley Beta-Glucan, Guar Gum and Inulin. Int. J. Food Sci. Technol. 2008, 43, 824–833. [Google Scholar] [CrossRef]
- El Asjadi, S.; Nederpel, Q.A.; Cotiuga, I.M.; Picken, S.J.; Besseling, N.A.M.; Mendes, E.; Lommerts, B.J. Biopolymer Scleroglucan as an Emulsion Stabilizer. Colloids Surf. A Physicochem. Eng. Asp. 2018, 546, 326–333. [Google Scholar] [CrossRef]
- Lazaridou, A.; Serafeimidou, A.; Biliaderis, C.G.; Moschakis, T.; Tzanetakis, N. Structure Development and Acidification Kinetics in Fermented Milk Containing Oat β-Glucan, a Yogurt Culture and a Probiotic Strain. Food Hydrocoll. 2014, 39, 204–214. [Google Scholar] [CrossRef]
- Nie, C.; Zhao, Y.; Wang, X.; Li, Y.; Fang, B.; Wang, R.; Wang, X.; Liao, H.; Li, G.; Wang, P.; et al. Structure, Biological Functions, Separation, Properties, and Potential Applications of Milk Fat Globule Membrane (MFGM): A Review. Nutrients 2024, 16, 587. [Google Scholar] [CrossRef]
- Lucey, J.A. Cultured Dairy Products: An Overview of Their Gelation and Texture Properties. Int. J. Dairy Technol. 2004, 57, 77–84. [Google Scholar] [CrossRef]
- Li, D.; Cui, Y.; Wu, X.; Li, J.; Min, F.; Zhao, T.; Zhang, J.; Zhang, J. Graduate Student Literature Review: Network of Flavor Compounds Formation and Influence Factors in Yogurt. J. Dairy Sci. 2024, 107, 8874–8886. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-S.; Park, S.-K. Volatile Aromatic Compounds and Fermentation Properties of Fermented Milk with Buckwheat. Korean J. Food Sci. Technol. 2013, 45, 267–273. [Google Scholar] [CrossRef]
- Tian, H.; Yu, B.; Yu, H.; Chen, C. Evaluation of the Synergistic Olfactory Effects of Diacetyl, Acetaldehyde, and Acetoin in a Yogurt Matrix Using Odor Threshold, Aroma Intensity, and Electronic Nose Analyses. J. Dairy Sci. 2020, 103, 7957–7967. [Google Scholar] [CrossRef]
- Edo, G.I.; Ndudi, W.; Makia, R.S.; Ainyanbhor, I.E.; Yousif, E.; Gaaz, T.S.; Zainulabdeen, K.; Jikah, A.N.; Opiti, R.A.; Akpoghelie, P.O.; et al. Beta-Glucan: An Overview in Biological Activities, Derivatives, Properties, Modifications and Current Advancements in Food, Health and Industrial Applications. Process Biochem. 2024, 147, 347–370. [Google Scholar] [CrossRef]
- Kycia, K.; Chlebowska-Śmigiel, A.; Gniewosz, M.; Sokół, E. Effect of Pullulan on the Physicochemical Properties of Yoghurt. Int. J. Dairy Technol. 2018, 71, 64–70. [Google Scholar] [CrossRef]
- Piotrowska, A.; Waszkiewicz-Robak, B.; Świderski, F. Possibility of beta-glucan from spent brewer’s yeast addition to yoghurts. Pol. J. Food Nutr. Sci. 2009, 59, 299–302. [Google Scholar]
- Khorshidian, N.; Yousefi, M.; Shadnoush, M.; Mortazavian, A.M. An Overview of β-Glucan Functionality in Dairy Products. Curr. Nutr. Food Sci. 2018, 14, 280–292. [Google Scholar] [CrossRef]
- ISO 7218:2024; Microbiology of the Food Chain—General Requirements and Guidance for Microbiological Examinations. ISO: Geneva, Switzerland, 2024. Available online: https://www.iso.org/standard/79508.html (accessed on 17 November 2025).
- Barros, R.F.; Cutrim, C.S.; da Costa, M.P.; Conte Junior, C.A.; Cortez, M.A.S. Lactose hydrolysis and organic acids production in yogurt prepared with different onset temperatures of enzymatic action and fermentation. Ciência Anim. Bras. 2019, 20, e43549. [Google Scholar] [CrossRef]
- EN ISO 8589:2010; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2017.
- ISO 13299:2016; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/58042.html (accessed on 17 November 2025).
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2012. Available online: https://www.iso.org/standard/45352.html (accessed on 17 November 2025).



| Sample | Concentration [%] | Fat Content (%) ± SD | Dry Matter Content (DM, %) ± SD | Protein Content (%) ± SD |
|---|---|---|---|---|
| Control | 0.25 | 3.2 ± 0.02 | 14.32 b ± 0.11 | 4.23 a ± 0.02 |
| SCGL | 3.19 ± 0.02 | 14.75 a ± 0.11 | 3.82 c ± 0.01 | |
| Control | 0.5 | 3.21 ± 0.02 | 14.11 c ± 0.02 | 4.08 b ± 0.02 |
| SCGL | 3.20 ± 0.01 | 14.45 ab ± 0.04 | 3.76 c ± 0.04 | |
| Control | 1 | 3.18 ± 0.02 | 13.94 d ± 0.05 | 3.64 d ± 0.01 |
| SCGL | 3.20 ± 0.01 | 13.95 d ± 0.06 | 3.57 d ± 0.03 |
| Product | Control | SCGL | ||||||
|---|---|---|---|---|---|---|---|---|
| Time [Days] | 3 | 10 | 21 | 28 | 3 | 10 | 21 | 28 |
| 0.25% | ||||||||
| Syneresis [%] | 2.34 c ± 0.24 | 4.47 b ± 0.15 | 6.08 a ± 0.53 | 5.05 b ± 0.38 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
| Hardness [N] | 1.77 ± 0.23 | 1.88 ± 0.1 | 2.08 ± 0.15 | 2.04 ± 0.09 | 3.6 ± 0.01 | 3.31 ± 0.41 | 3.84 ± 0.46 | 3.89 ± 0.16 |
| Adhesiveness [N·s] | −13.86 ± 5.87 | −12.38 ± 1.48 | −13.66 ± 2.99 | −11.59 ± 0.97 | −6.89 b ± 1.12 | −11.52 a ± 0.99 | −15.35 a ± 4.16 | −15.96 a ± 4.66 |
| L | 87.81 b ± 0.12 | 88.15 a ± 0.04 | 85.67 c ± 0.16 | 85.62 c ± 0.19 | 76.67 c ± 0.18 | 85.24 a ± 0.1 | 83.72 b ± 0.2 | 83.66 b ± 0.12 |
| a | −1.87 b ± 0.03 | −1.93 c ± 0.02 | −1.78 a ± 0.03 | −1.91 ab ± 0.01 | −2.63 c ± 0.01 | −1.91 b ± 0.04 | −1.86 a ± 0.02 | −1.95 b ± 0.02 |
| b | 7.23 c ± 0.07 | 7.6 a ± 0.07 | 7.34 bc ± 0.04 | 7.47 ab ± 0.14 | 6.83 c ± 0.08 | 7.21 b ± 0.1 | 7.02 c ± 0.03 | 7.31 b ± 0.04 |
| 0.50% | ||||||||
| Syneresis [%] | 3.94 b ± 0.49 | 4.3 b ± 0.61 | 4.83 b ± 0.73 | 6.81 a ± 0.22 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
| Hardness [N] | 2.21 c ± 0.09 | 2.36 b ± 0.07 | 2.43 ab ± 0.03 | 2.52 a ± 0.07 | 5.15 b ± 0.21 | 5.58 a ± 0.16 | 5.66 a ± 0.18 | 5.57 a ± 0.18 |
| Adhesiveness [N·s] | −11.93 ± 1.19 | −11.73 ± 0.29 | −9.9 ± 1.15 | −10.94 ± 1.52 | −11.33 ± 0.42 | −11.6 ± 1.09 | −11.96 ± 3.27 | −11.89 ± 0.3 |
| L | 86.78 ab ± 0.18 | 86.95 a ± 0.18 | 86.5 b ± 0.13 | 85.89 c ± 0.07 | 82.21 b ± 0.22 | 82.76 a ± 0.09 | 82.3 b ± 0.14 | 82.31 b ± 0.1 |
| a | −1.95 b ± 0.02 | −1.9 a ± 0.01 | −1.98 b ± 0.03 | −1.97 b ± 0.02 | −2.11 a ± 0.02 | −2.15 b ± 0.01 | −2.17 b ± 0.01 | −2.1 a ± 0.02 |
| b | 7.61 a ± 0.04 | 7.46 b ± 0.05 | 7.58 a ± 0.03 | 7.58 a ± 0.05 | 7.39 b ± 0.04 | 7.44 b ± 0.04 | 7.6 a ± 0.02 | 7.44 b ± 0.07 |
| 1.00% | ||||||||
| Syneresis [%] | 7.49 a ± 0.28 | 7.01 a ± 0.66 | 7.23 a ± 0.35 | 5.23 b ± 0.41 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
| Hardness [N] | 2.36 c ± 0.08 | 2.71 b ± 0.09 | 2.8 ab ± 0.03 | 2.89 a ± 0.09 | 5.17 b ± 0.3 | 6.74 a ± 0.09 | 6.86 a ± 0.05 | 6.84 a ± 0.04 |
| Adhesiveness [N·s] | −9.7 ab ± 0.16 | −8.13 a ± 0.72 | −8.09 a ± 0.35 | −12.28 b ± 3.73 | −16 b ± 1.6 | −17.64 b ± 0.22 | −19.18 a ± 1.62 | −19.22 b ± 2.89 |
| L | 87.01 a ± 0.05 | 86.17 b ± 0.45 | 85.22 c ± 0.22 | 85.29 c ± 0.11 | 85.4 a ± 0.34 | 75.94 b ± 0.09 | 75.98 b ± 0.11 | 76.14 b ± 0.06 |
| a | −1.7 ab ± 0.01 | −1.69 a ± 0.04 | −1.75 b ± 0.02 | −1.71 ab ± 0.02 | −1.82 a ± 0.04 | −2.74 b ± 0.02 | −2.76 b ± 0.02 | −2.86 c ± 0.01 |
| b | 7.33 ± 0.03 | 7.33 ± 0.05 | 7.37 ± 0.04 | 7.33 ± 0.04 | 7.28 a ± 0.17 | 6.94 b ± 0.2 | 7.43 a ± 0.05 | 7.57 a ± 0.15 |
| 0.25% | 0.5% | 1% | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C 3 | C 28 | SCGL 3 | SCGL 28 | C 3 | C 28 | SCGL 3 | SCGL 28 | C 3 | C 28 | SCGL 3 | SCGL 28 | |
| HB τ0 | 0.000 | 0.000 | 221.251 | 340.409 | 0.000 | 0.000 | 304.391 | 468.326 | 0.000 | 0.000 | 480.755 | 739.674 |
| HB k | 3688.4 | 3167.8 | 1266.7 | 2828.100 | 3231.400 | 2853.200 | 3247.200 | 2474.154 | 2417.300 | 2469.300 | 1463.000 | 923.430 |
| HB n | 0.01 | 0.01 | 0.01 | 0.01 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 |
| R2 HB | 0.995 | 0.988 | 0.979 | 0.989 | 0.986 | 0.853 | 0.899 | 415.200 | 0.925 | 0.985 | 0.985 | 0.989 |
| η at 10 SR [1/S] | 46.900 | 48.300 | 128.000 | 88.800 | 37.700 | 50.600 | 53.600 | 87.900 | 38.000 | 32.500 | 13.000 | 14.100 |
| η at 50 SR [1/S] | 12.500 | 12.500 | 30.100 | 20.100 | 10.100 | 12.100 | 13.600 | 20.300 | 10.300 | 8.600 | 3.650 | 3.600 |
| η at 9 SR [1/S] | 6.290 | 6.440 | 15.000 | 9.970 | 5.350 | 5.950 | 6.480 | 10.500 | 5.270 | 4.480 | 2.010 | 1.880 |
| Product | Control | SCGL | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Time | Production [Hours] | Storage [Days] | Production [Hours] | Storage [Days] | ||||||
| 0 | 4 | 3 | 10 | 28 | 0 | 4 | 3 | 10 | 28 | |
| 0.25% | ||||||||||
| Acetic acid (mg·kg−1) | 404.96 ab ± 2.54 | 6617.6 f ± 267.8 | 9651.4 g ± 184.7 | 11,066 h ± 178.4 | 12,312 i ± 655.0 | 0.0 a ± 0.0 | 704.8 b ± 34.9 | 1735.1 c ± 130.9 | 3410.9 d ± 205.2 | 4144.9 e ± 275.6 |
| Citrate (g·kg−1) | 0.379 c ± 0.003 | 0.365 a ± 0.005 | 0.363 ab ± 0.000 | 0.360 ab ± 0.003 | 0.362 ab ± 0.002 | 0.365 a ± 0.007 | 0.365 a ± 0.001 | 0.360 a ± 0.004 | 0.362 ab ± 0.006 | 0.358 ab ± 0.002 |
| Lactic acid (g·kg−1) | 0.0471 a ± 0.0004 | 0.329 e ± 0.002 | 0.367 b ± 0.002 | 0.399 g ± 0.000 | 0.428 h ± 0.007 | 0.047 a ± 0.001 | 0.225 d ± 0.003 | 0.342 f ± 0.001 | 0.368 b ± 0.001 | 0.375 c ± 0.001 |
| Lactose (g·kg−1) | 50.13 c ± 0.91 | 47.71 b ± 0.74 | 46.82 a ± 0.20 | 46.39 a ± 0.57 | 46.59 a ± 0.44 | 49.57 bc ± 0.43 | 48.44 b ± 0.75 | 46.81 a ± 0.38 | 46.92 a ± 0.57 | 46.52 a ± 0.07 |
| 0.5% | ||||||||||
| Acetic acid (mg·kg−1) | 51.25 a ± 1.16 | 4306.3 e ± 319.8 | 8669.3 d ± 131.4 | 8648.6 d ± 337.7 | 10,459 e ± 378.7 | 0.0 a ± 0.0 | 633.5 a ± 41.2 | 1522.8 b ± 169.5 | 3045.5 c ± 90.2 | 3634 ce ± 222.1 |
| Citrate (g·kg−1) | 0.400 c ± 0.002 | 0.379 a ± 0.001 | 0.388 a ± 0.001 | 0.377 a ± 0.003 | 0.378 a ± 0.002 | 0.388 b ± 0.004 | 0.377 a ± 0.002 | 0.375 a ± 0.002 | 0.377 a ± 0.001 | 0.378 a ± 0.002 |
| Lactic acid (g·kg−1) | 0.049 b ± 0.001 | 0.246 e± 0.005 | 0.373 a ± 0.001 | 0.392 f ± 0.001 | 0.413 g ± 0.004 | 0.049 b ± 0.001 | 0.214 d ± 0.009 | 0.351 c ± 0.001 | 0.359 c ± 0.001 | 0.379 a ± 0.001 |
| Lactose (g·kg−1) | 49.90 c ± 0.90 | 48.26 b ± 0.74 | 46.69 a ± 0.20 | 46.38 a ± 0.57 | 46.63 a ± 0.44 | 49.24 bc ± 0.43 | 48.23 b ± 0.75 | 46.44 a ± 0.38 | 46.70 a ± 0.56 | 46.21 a ± 0.07 |
| 1% | ||||||||||
| Acetic acid (mg·kg−1) | 0.0 a ± 0.0 | 1736.3 c ± 53.8 | 2179.6 d ± 197.1 | 2335.9 d ± 149.9 | 5177.9 f ± 292.3 | 0.0 a ± 0.0 | 1004.6 b ± 9.6 | 1056.9 b ± 55.2 | 1126.6 b ± 64.4 | 3098.7 e ± 57.4 |
| Citrate (g·kg−1) | 0.401 b ± 0.004 | 0.399 b ± 0.009 | 0.395 b ± 0.002 | 0.391 ab ± 0.006 | 0.401 b ± 0.003 | 0.395 b ± 0.002 | 0.384 a ± 0.002 | 0.384 a ± 0.003 | 0.383 a ± 0.002 | 0.385 a ± 0.002 |
| Lactic acid (g·kg−1) | 0.053 a ± 0.001 | 0.230 b ± 0.009 | 0.349 d ± 0.001 | 0.370 e ± 0.002 | 0.390 g ± 0.001 | 0.053 a ± 0.000 | 0.226 b ± 0.003 | 0.338 c ± 0.001 | 0.363 e ± 0.000 | 0.384 f ± 0.001 |
| Lactose (g·kg−1) | 49.88 d ± 0.90 | 48.42 c ± 0.75 | 46.90 ab ± 0.20 | 46.57 ab ± 0.58 | 46.83 ab ± 0.45 | 48.60 cd ± 0.42 | 47.54 bc ± 0.74 | 45.98 a ± 0.37 | 46.10 a ± 0.56 | 45.61 a ± 0.07 |
| Sensory Attributes | C 0.25% | C 0.5% | C 1% | SCGL 0.25% | SCGL 0.5% | SCGL 1% | p-Value |
|---|---|---|---|---|---|---|---|
| Appearance | |||||||
| Colour uniformity | 4.6 | 4.6 | 4.6 | 4.7 | 4.7 | 4.8 | >0.05 |
| Creamy colour | 3.2 a | 3.2 a | 3.3 a | 2.9 b | 2.9 b | 2.6 b | 0.000 |
| Whey separation | 3.7 a | 3.5 a | 3.5 a | 1.1 b | 1.0 b | 1.0 b | 0.000 |
| Aroma | |||||||
| Typical of yoghurt | 4.5 a | 3.7 b | 3.7 b | 2.8 c | 2.2 d | 1.5 e | 0.000 |
| Sour | 3.4 a | 3.4 a | 3.2 a | 2.1 b | 1.7 c | 1.5 c | 0.000 |
| Sweet | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | >0.05 |
| Foreign | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | >0.05 |
| Consistency | |||||||
| Uniform | 3.9 b | 4.3 a | 4.1 a | 1.4 c | 4.1 ab | 4.0 ab | 0.000 |
| Lumpy | 2.4 b | 1.0 d | 1.4 c | 4.1 a | 1.0 d | 1.6 c | 0.000 |
| Thick | 3.3 b | 3.8 a | 3.9 a | 1.8 d | 2.6 c | 4.1 a | 0.000 |
| Mouthfeel | |||||||
| Adhesiveness | 2.5 b | 2.4 b | 2.7 b | 1.4 c | 2.6 b | 4.1 a | 0.000 |
| Smoothness | 3.3 b | 4.2 a | 4.1 a | 1.3 d | 2.5 c | 4.2 a | 0.000 |
| Mealiness | 1.4 c | 1.1 c | 1.1 c | 4.1 a | 3.0 b | 1.3 c | 0.000 |
| Taste | |||||||
| Typical of yoghurt | 4.0 a | 3.9 a | 3.6 a | 2.7 b | 1.9 c | 1.5 d | 0.000 |
| Sour | 3.6 a | 3.6 a | 3.4 a | 2.6 b | 2.5 b | 1.9 c | 0.000 |
| Sweet | 1.1 b | 1.2 b | 1.8 a | 1.2 b | 1.3 b | 1.9 a | 0.001 |
| Bitter | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | >0.05 |
| Foreign | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | >0.05 |
| Overall Acceptability | 4.0 ab | 4.2 ab | 4.3 a | 1.5 d | 2.1 c | 3.9 b | 0.005 |
| Compound | Quant. Ions (m/z) a | Labelled Standard | Ion IS (m/z) b |
|---|---|---|---|
| Dimethyl sulphide | 62 | 2H6-Dimethyl sulphide | 68 |
| 2,3-Butanedione | 86 | 13C4-2,3-Butanedione | 90 |
| Acetaldehyde | 44 | 2H4-Acetaldehyde | 48 |
| 2,3-Pentanedione | 100 | 13C4-2,3-Butanedione | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecka, M.M.; Dąbrowska, A.Z.; Majcher, M.A.; Aljewicz, M. Role of Scleroglucan Produced by Sclerotium rolfsii in Shaping the Microstructure, Rheology, and Flavour Profile of Full-Fat Yoghurts. Molecules 2025, 30, 4696. https://doi.org/10.3390/molecules30244696
Bielecka MM, Dąbrowska AZ, Majcher MA, Aljewicz M. Role of Scleroglucan Produced by Sclerotium rolfsii in Shaping the Microstructure, Rheology, and Flavour Profile of Full-Fat Yoghurts. Molecules. 2025; 30(24):4696. https://doi.org/10.3390/molecules30244696
Chicago/Turabian StyleBielecka, Marika Magdalena, Aneta Zofia Dąbrowska, Małgorzata Anna Majcher, and Marek Aljewicz. 2025. "Role of Scleroglucan Produced by Sclerotium rolfsii in Shaping the Microstructure, Rheology, and Flavour Profile of Full-Fat Yoghurts" Molecules 30, no. 24: 4696. https://doi.org/10.3390/molecules30244696
APA StyleBielecka, M. M., Dąbrowska, A. Z., Majcher, M. A., & Aljewicz, M. (2025). Role of Scleroglucan Produced by Sclerotium rolfsii in Shaping the Microstructure, Rheology, and Flavour Profile of Full-Fat Yoghurts. Molecules, 30(24), 4696. https://doi.org/10.3390/molecules30244696

