Gluten-Free Rice Malt Extract Powder: Pilot-Scale Production, Characterization, and Food Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemicals
2.2. Malting Process
2.3. Optimization of Extraction Process at Bench Scale
2.3.1. Enzymatic Extraction Process Optimization
- (1)
- Protease and β-Amylase Rest Phase
- (2)
- α-Amylase Rest Phase
2.3.2. Validation Experiments Under Optimal Conditions
2.4. Pilot Plant Production of Rice Malt Extract Powder
2.4.1. Enzymatic Extraction Process
2.4.2. Filtration, Drying, and Byproduct Utilization
2.5. Shelf Life Study of Rice Malt Extract Powder in Laminated Pouches and HDPE Containers
2.6. Investigation of the Application of Malt Extract Powder from Chainat 1 Variety
2.6.1. Potential to Use the Malt Extract Powder from Chainat 1 Variety in Yeast and Mold Agar (YM Agar)
2.6.2. Optimization of YM Agar Formulation Using Rice Malt Extract Powder from Chainat 1
2.6.3. Preparation of Wort and Non-Alcoholic Beer Using Rice Malt Extract Powder from the Chainat 1 Variety
2.7. Analytical Methods for Nutritional, Functional, and Safety Evaluation
2.7.1. Germination Energy
2.7.2. Diastatic Power Analysis
2.7.3. Free Amino Nitrogen (FAN)
2.7.4. DPPH Radical Scavenging Assay
2.7.5. Iodine Blue Value
2.7.6. Moisture Content Analysis
2.7.7. Ash Content
2.7.8. Crude Protein Content
2.7.9. Crude Fat Content
2.7.10. Crude Fiber Content
2.7.11. Available Carbohydrate
2.7.12. Total Energy
2.7.13. Total and Reducing Sugar Analysis
2.7.14. Free Fatty Acid (FFA)
2.7.15. Total Phenolic Content (TPC)
2.7.16. Soluble Fiber Content
2.7.17. Determination of GABA
2.7.18. Color Measurement
2.7.19. Determination of Vitamin B1
2.7.20. Determination of Vitamins B2, B3, B5, B6, and B9
2.7.21. Mineral Analysis
2.7.22. Microbiological Analysis
2.7.23. Contaminant Analysis
2.7.24. Amino Acid Composition
2.7.25. Xylose Determination
2.7.26. Phytic Acid Determination
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Malted Chainat 1 Rice Variety
3.2. Bench-Scale Optimization of Enzymatic Extraction from Unmalted and Malted Chainat 1 Rice
3.2.1. Protease and β-Amylase Rest Phase
3.2.2. α-Amylase Rest Phase
3.2.3. Validation Batch Experiments Under Optimal Extraction Conditions
3.3. Production of Rice Malt Extract Powder
3.3.1. Nutritional Analysis of the Extracted Rice Malt Powder
3.3.2. Microbiological and Contaminant Analysis of Malt Extract Powder
3.4. Shelf-Life Evaluation of Rice Malt Extract Powder
3.5. Investigation of the Application of Malt Extract Powder
3.5.1. Evaluation of Malt Extract Powder as a Substrate for Fungal Cultivation
3.5.2. Optimization of YM Agar Formulations Using Malt Extract Powder
3.5.3. Production of a Gluten-Free Malt Beverage with a Beer-like Flavor and No Alcohol Using Rice Malt Extract Powder
4. Conclusions
5. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANOVA | Analysis of Variance |
| AOAC | Association of Official Analytical Chemists |
| °Brix | Degrees Brix (sugar content of an aqueous solution) |
| CFU | Colony-Forming Unit |
| CFU/mL | Colony-Forming Units per milliliter (specific to microbial counts) |
| DM | Dry Matter (sometimes used instead of DW) |
| DP | Diastatic Power |
| DW | Dry Weight |
| FAO | Food and Agriculture Organization |
| FDA | Food and Drug Administration |
| GABA | Gamma-Aminobutyric Acid |
| GC–MS | Gas Chromatography–Mass Spectrometry |
| GE | Germination Energy |
| HDPE | High-Density Polyethylene |
| HPLC | High-Performance Liquid Chromatography |
| H2SO4 | Sulfuric acid |
| ICP–MS | Inductively Coupled Plasma–Mass Spectrometry |
| ISO | International Organization for Standardization |
| LOD | Limit of Detection |
| LOQ | Limit of Quantification |
| 1-MCP | 1-Methylcyclopropene (ripening inhibitor, mentioned in storage trials) |
| MRS | de Man, Rogosa, and Sharpe medium |
| NA | Not Analyzed/Not Applicable |
| NaOH | Sodium hydroxide |
| ND | Not Detected |
| NIST | National Institute of Standards and Technology |
| PBS | Phosphate-Buffered Saline |
| PCA | Plate Count Agar |
| °Plato (°P) | Degrees Plato (percentage of extract in wort by weight) |
| RH | Relative Humidity |
| SD | Standard Deviation |
| SEM | Standard Error of the Mean (sometimes appears alongside SD) |
| SPSS | Statistical Package for the Social Sciences |
| TPC | Total Plate Count |
| UV–Vis | Ultraviolet–Visible Spectrophotometry |
| WHO | World Health Organization |
References
- Karki, S.; Dangal, A.; Pokharel, A.; Dhakal, L.; Timsina, P. The effect of germination on the nutritional quality and sensory evaluation of finger millet (Elusine coracana L., var. Kabre-1) malt incorporated biscuit. Cogent Food Agric. 2024, 10, 2419149. [Google Scholar] [CrossRef]
- Gusain, P. Global Malt Extracts and Ingredients Market—Industry Trends and Forecast to 2029; Data Bridge Market Research: Pune, India, 2022; Available online: https://www.databridgemarketresearch.com/reports/global-malt-extracts-market (accessed on 20 July 2025).
- Guimaraes, B.P.; Schrickel, F.; Rettberg, N.; Pinson, S.R.M.; McClung, A.M.; Luthra, K.; Atungulu, G.G.; Sha, X.; de Guzman, C.; Lafontaine, S. Investigating the malting suitability and brewing quality of different rice cultivars. Beverages 2024, 10, 16. [Google Scholar] [CrossRef]
- Mayer, H.; Ceccaroni, D.; Marconi, O.; Sileoni, V.; Perretti, G.; Fantozzi, P. Development of an all-rice malt beer: A gluten-free alternative. LWT-Food Sci. Technol. 2016, 67, 67–73. [Google Scholar] [CrossRef]
- Global Market Insights Inc. Gluten-Free Products Market Size—By Product Type, Source, Distribution Channel, Consumer Group Analysis, Share, Growth Forecast, 2025–2034; Global Market Insights Inc.: Selbyville, DE, USA, 2025; Available online: https://www.gminsights.com/industry-analysis/gluten-free-products-market (accessed on 13 August 2025).
- Dhillon, G.K.; Kour, A.; Salazar, B.M. Potential of Pleurotus ostreatus as a novel protein source in rice-millet-based gluten-free muffins. Cogent Food Agric. 2023, 9, 2191888. [Google Scholar] [CrossRef]
- Gonu, H.; Zarnkow, M.; Oppong, G.K.; Withayagiat, U. The race for gluten free malt extract and beer—The role of polished broken rice and rice malt. In Functional Food—Upgrading Natural and Synthetic Sources; Campos, J., Vilela, A., Eds.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Dhiman, S.; Kaur, S.; Thakur, B.; Singh, P.; Tripathi, M. Nutritional enhancement of plant-based fermented foods: Microbial innovations for a sustainable future. Fermentation 2025, 11, 346. [Google Scholar] [CrossRef]
- Summpunn, P.; Panpipat, W.; Manurakchinakorn, S.; Bhoopong, P.; Cheong, L.-Z.; Chaijan, M. Comparative analysis of antioxidant compounds and antioxidative properties of Thai indigenous rice: Effects of rice variety and processing condition. Molecules 2022, 27, 5180. [Google Scholar] [CrossRef]
- Farooq, M.A.; Yu, J. Starches in rice: Effects of rice variety and processing/cooking methods on their glycemic index. Foods 2025, 14, 2022. [Google Scholar] [CrossRef]
- Voramisara, V. Chai Nat 1, a New Approved Rice Variety. Thai Agric. Res. J. 1994, 12, 81–93. [Google Scholar] [CrossRef]
- Puangwerakul, Y. Malt and Wort Characteristics of 42 Cereal Rice Varieties Cultivated in Thailand. Agric. Nat. Resour. 2007, 41, 15–20. [Google Scholar]
- European Brewery Convention. Analytica-EBC: Methods of the European Brewery Convention, 4th ed.; Verlag Hans Carl Getränke-Fachverlag: Zürich, Switzerland, 1987. [Google Scholar]
- Puangwerakul, Y. Effect of soaking, germination and roasting on thiamine content in Pathum Thani 1 rice malt. Rangsit J. Arts Sci. 2013, 3, 45–51. [Google Scholar]
- Gunathunga, C.; Senanayake, S.; Jayasinghe, M.A.; Brennan, C.S.; Truong, T.; Marapana, U.; Chandrapala, J. Germination effects on nutritional quality: A comprehensive review of selected cereals and pulses. J. Food Compos. Anal. 2024, 128, 106024. [Google Scholar] [CrossRef]
- Manzocco, L.; Calligaris, S.; Nicoli, M.C. Methods for Food Shelf Life Determination and Prediction. In Oxidation in Foods and Beverages and Antioxidant Applications; Decker, E.A., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2010; pp. 196–222. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Z.; Liu, Q.; Luo, H.; Zheng, W. Spectrophotometric determination of vitamin B1 in a pharmaceutical formulation using triphenylmethane acid dyes. J. Pharm. Biomed. Anal. 2002, 30, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Puangwerakul, Y.; Lekpan, M.; Khamhaeng, N. Effect of different mashing on non-alcoholic beer quality from Thai rice malt. Rangsit J. Arts Sci. 2014, 4, 133–143. [Google Scholar] [CrossRef]
- Wunnakup, T.; Songsak, T.; Vipunngeun, N.; Sueree, L. Quantitative Thin Layer Chromatography Analysis, Antioxidant, and Anti-Inflammatory Activities of Polyherbal Formulation (Ammarit-Osot) Extracts. J. Curr. Sci. Technol. 2024, 14, 65. [Google Scholar] [CrossRef]
- Wang, Y.; Ou, X.; Al-Maqtari, Q.A.; He, H.-J.; Othman, N. Evaluation of amylose content: Structural and functional properties, analytical techniques, and future prospects. Compr. Rev. Food Sci. Food Saf. 2024, 23, 9393–9421. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Puangwerakul, Y.; Soithongsuk, S. Innovation for Plant-Based Foods: Allergen-Free Vegan Meat and Egg Products from Rice Processing By-Products. J. Curr. Sci. Technol. 2022, 12, 358–371. [Google Scholar] [CrossRef]
- Loikaeo, T. Quality characteristics of healthy bread produced from germinated brown rice, germinated mung bean, and germinated white kidney bean. J. Curr. Sci. Technol. 2024, 14, 5. [Google Scholar] [CrossRef]
- Wijngaard, H.H.; Ulmer, H.M.; Neumann, M.; Arendt, E. The effect of steeping time on the final malt quality of buckwheat. J. Inst. Brew. 2005, 111, 275–281. [Google Scholar] [CrossRef]
- Orsuwan, A.; Wongrat, W.; Apisittiwong, T.; Chaiyadech, K.; Jiaranaikhajorn, P. Characterization of red cabbage extracts incorporated in green based gelatin active films. J. Curr. Sci. Technol. 2024, 14, 31. [Google Scholar] [CrossRef]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2017.
- Wongwailikhit, K.; Soithongsuk, S.; Puangwerakul, Y. Long shelf-life ready-to-eat plant-based whole hard-boiled eggs: Low allergenic and regular formulas. Foods 2025, 14, 2220. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, R.; Karimi, K.; Zilouei, H. Development and Validation of the HPLC Method for Simultaneous Quantification of Glucose and Xylose in Sugar Cane Bagasse Extract. J. Chromatogr. Sci. 2024, 62, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Haug, W.; Lantzsch, H.-J. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
- Kamjijam, B.; Suwannaporn, P.; Bednarz, H.; Na Jom, K.; Niehaus, K. Elevation of gamma-aminobutyric acid (GABA) and essential amino acids in germinated rice traced by MALDI imaging. Food Chem. 2021, 365, 130399. [Google Scholar] [CrossRef]
- Islam, M.Z.; Kang, S.-W.; Koo, N.-G.; Kim, Y.-J.; Kim, J.K.; Lee, Y.-T. Changes in antioxidant bioactive compounds of Cassia tora Linn. seed during germination. Cogent Food Agric. 2023, 9, 2202027. [Google Scholar] [CrossRef]
- Kayisoglu, C.; Altikardes, E.; Guzel, N.; Uzel, S. Germination: A Powerful Way to Improve the Nutritional, Functional, and Molecular Properties of White- and Red-Colored Sorghum Grains. Foods 2024, 13, 662. [Google Scholar] [CrossRef]
- Choi, B.-H.; Shin, S. Association between dietary monounsaturated fatty acid intake and metabolic syndrome among Korean adults. Nutrients 2025, 17, 1629. [Google Scholar] [CrossRef]
- Tao, Y.; Wu, M.; Su, B.; Lin, H.; Li, Q.; He, Y.; Zhong, T.; Xiao, Y.; Yu, X. Host–Gut Microbiota Interactions: Exploring the Potential Role of Vitamin B1 and B2 in the Microbiota–Gut–Brain Axis and Anxiety, Stress, and Sleep Quality. Nutrients 2025, 17, 1894. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 22nd ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Sullivan, D.M.; Carpenter, D.E. (Eds.) Methods of Analysis for Nutrition Labeling; AOAC International: Arlington, VA, USA, 1993; p. 106. [Google Scholar]
- Puangwerakul, Y.; Chaisakdanukul, C.; Soithongsuk, S.; Sajjaut, S.; Pewlong, W. Comparative Effects of HPP and Irradiation on Plant-Based Whole Hard-Boiled Eggs. J. Curr. Sci. Technol. 2024, 14, 66. [Google Scholar] [CrossRef]
- Weeragul, K.; Nantaragsa, N.; Siripanwattana, C.; Gaowmanee, T.; Poonnakasem, N. Bioactive compounds and nutrition of Thai sauces in retort pouch and physicochemical kinetics during storage. J. Curr. Sci. Technol. 2024, 14, 28. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 152/2009 of 27 January 2009 Laying Down the Methods of Sampling and Analysis for the Official Control of Feed. Off. J. Eur. Union 2009, L54, 1–130. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009R0152 (accessed on 25 July 2025).
- Bork, L.V.; Rohn, S.; Kanzler, C. Characterization of colorants formed by non-enzymatic browning reactions of hydroxycinnamic acid derivatives. Molecules 2022, 27, 7564. [Google Scholar] [CrossRef]
- ISO 7932:2004; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Presumptive Bacillus cereus—Colony-Count Technique at 30 °C. International Organization for Standardization: Geneva, Switzerland, 2004.
- Tallent, S.M.; Knolhoff, A.; Rhodehamel, E.J.; Harmon, S.M.; Bennett, R.W. BAM Chapter 14: Bacillus cereus. In Bacteriological Analytical Manual Online, 8th ed.; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2020. [Google Scholar]
- ISO 15213-2:2023; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Clostridium spp.—Part 2: Enumeration of Clostridium perfringens by Colony-Count Technique. International Organization for Standardization: Geneva, Switzerland, 2023.
- Lipps, W.C.; Braun-Howland, E.; Baxter, T.E. (Eds.) Standard Methods for the Examination of Water and Wastewater, 24th ed.; APHA Press: Washington, DC, USA, 2023. [Google Scholar]
- ISO 6579-1:2017/Amd 1:2020; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2020.
- Mititelu, M.; Neacșu, S.M.; Busnatu, Ș.S.; Scafa-Udriște, A.; Andronic, O.; Lăcraru, A.-E.; Ioniță-Mîndrican, C.-B.; Lupuliasa, D.; Negrei, C.; Olteanu, G. Assessing heavy metal contamination in food: Implications for human health and environmental safety. Toxics 2025, 13, 333. [Google Scholar] [CrossRef]
- Ndhlala, A.R.; Ngobeni, G.T.; Mulaudzi, R.; Lebelo, S.L. Different Temperature Storage Conditions and Packaging Types Affect Colour Parameters, Amino Acid Composition, Microbial Contamination, and Key Bioactive Molecules of Moringa oleifera Lam. Powder. Molecules 2025, 30, 4048. [Google Scholar] [CrossRef]
- McCormick, D.B. The fate of water-soluble vitamins in foods. J. Agric. Food Chem. 1989, 37, 10–13. [Google Scholar]
- Zhao, M.; Yang, B.; Wang, W.; Liu, H.; Yu, L.; Jiang, Y. Antioxidant properties of extracts from various plants. Int. Food Res. J. 2013, 20, 1649–1655. [Google Scholar]
- Pothinuch, P.; Jongrattanavit, K.; Leelajaruwan, K.; Prichapan, N. Effects of Anaerobic Germination and Enzymatic Saccharification on Chemical Compositions of Functional Drink from Riceberry Rice. J. Curr. Sci. Technol. 2024, 14, 2. [Google Scholar] [CrossRef]
- Kreimeyer, H.; Sydor, S.; Buchholz, L.; Toskal, C.; Özcürümez, M.; Schnabl, B.; Syn, W.-K.; Sowa, J.-P.; Manka, P.; Canbay, A. Non-alcoholic beer influences glucose and lipid metabolism and changes body composition in healthy, young, male adults. Nutrients 2025, 17, 1625. [Google Scholar] [CrossRef]
- Analytica-EBC. Method 8.5: Measurement of Beer and Wort Color; European Brewery Convention; Fachverlag Hans Carl: Nürnberg, Germany, 2010. [Google Scholar]
- Bamforth, C.W. Beer: Tap into the Art and Science of Brewing; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Moll, M.; Esslinger, H.M. Handbook of Brewing: Processes, Technology, Markets; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2013. [Google Scholar]




| Component | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 (Control) |
|---|---|---|---|---|---|---|---|---|---|---|
| Malt Extract Powder from Chainat 1 | 3.0 g | 3.0 g | 5.0 g | 10.0 g | 6.0 g | 8.0 g | 13.0 g | 11.0 g | 21.0 g | |
| Conventional malt extract | 3.0 g | 3.0 g | 3.0 g | 3.0 g | ||||||
| Yeast Extract | 3.0 g | 3.0 g | 3.0 g | 3.0 g | 3.0 g | 3.0 g | ||||
| Peptone | 5.0 g | 5.0 g | 5.0 g | 5.0 g | 5.0 g | 5.0 g | ||||
| Dextrose (Glucose) | 10.0 g | 10.0 g | 10.0 g | 10.0 g | 10.0 g | 10.0 g | 10.0 g | |||
| Agar | 15.0 g | 15.0 g | 15.0 g | 15.0 g | 15.0 g | 15.0 g | 15.0 g | 15.0 g | 15.0 g | 15.0 g |
| Parameter | Unmalted (Chainat 1) | Malted (Chainat 1) |
|---|---|---|
| Amylose (%) | 29.31 ± 1.20 a | 27.88 ± 0.21 b |
| Moisture (%) | 9.08 ± 0.20 a | 5.49 ± 0.10 b |
| Water activity | 0.476 ± 0.003 a | 0.284 ± 0.002 b |
| Energy (Kcal/100 g) | 354.7 ± 2.4 a | 350.0 ± 2.8 a |
| GABA (mg/100 g) | 2.05 ± 0.17 b | 10.63 ± 0.22 a |
| Carbohydrates (g/100 g) | 78.31 ± 0.85 a | 75.70 ± 0.55 b |
| Protein (g/100 g) | 6.95 ± 0.05 b | 8.88 ± 0.00 a |
| Fat (g/100 g) | 1.52 ± 0.50 a | 1.30 ± 0.55 a |
| Crude fiber (g/100 g) | 2.00 ± 0.56 b | 5.78 ± 0.55 a |
| Total sugars (g/100 g) | 2.02 ± 0.25 b | 11.54 ± 2.60 a |
| Reducing sugars (g/100 g) | 0.04 ± 0.00 b | 4.73 ± 0.32 a |
| Glucose (g/100 g) | NT | 1.37 |
| Fructose (g/100 g) | NT | 0.06 |
| Sucrose (g/100 g) | NT | 2.54 |
| Maltose (g/100 g) | NT | 3.30 |
| Sodium (mg/100 g) | NT | 3.78 |
| Iron (mg/100 g) | NT | 0.400 |
| Calcium (mg/100 g) | NT | 16.81 |
| Vitamin B1 (mg/100 g) | 0.12 ± 0.00 b | 0.21 ± 0.00 a |
| Vitamin B2 (mg/100 g) | NT | 0.08 |
| Vitamin B3 (µg/100 g) | NT | 10,240 |
| Vitamin B5 (mg/100 g) | NT | 1.71 |
| Vitamin B6 (µg/100 g) | NT | 520.45 |
| Vitamin B9 (mg/100 g) | NT | 0.04 |
| Ash (g/100 g) | 2.11 ± 0.16 b | 3.09 ± 0.25 a |
| Sample | Reducing Sugar Content of Chainat 1 Rice Wort (g/100 g) | |||
|---|---|---|---|---|
| 50 °C 30 min | 50 °C 60 min | 65 °C 30 min | 65 °C 60 min | |
| Unmalted | 0.83 ± 0.06 ns | 0.84 ± 0.06 ns | 0.87 ± 0.06 ns | 0.84 ± 0.05 ns |
| Malted | 6.53 ± 0.05 b | 7.30 ± 0.02 a | 5.43 ± 0.39 c | 5.48 ± 0.40 c |
| Sample | Reducing Sugar Content of Chainat 1 Rice Wort (g/100 g) | |||
|---|---|---|---|---|
| 55 °C 30 min | 55 °C 60 min | 75 °C 30 min | 75 °C 60 min | |
| Unmalted | 0.87 ± 0.06 ns | 0.87 ± 0.04 ns | 0.86 ± 0.07 ns | 0.87 ± 0.05 ns |
| Malted | 7.41 ± 0.98 d | 8.10 ± 0.91 c | 12.45 ± 1.50 b | 14.89 ± 0.13 a |
| Parameter | Protease/β-Amylase Rest Phase | α-Amylase Rest Phase | ||
|---|---|---|---|---|
| T1 (Endogenous Enzymes Only) | T2 (Added Protease & β-Amylase, 50 °C) | T3 (Added Protease & β-Amylase, no α-Amylase, 75 °C) | T4 (Full Enzyme Supplementation, with α-Amylase, 75 °C) | |
| Soluble protein (mg/mL) | 1.45 ± 0.10 b | 2.94 ± 0.20 a | 2.90 ± 0.23 a | 2.87 ± 0.23 a |
| Maltose (g/100 g) | 5.16 ± 0.21 c | 12.48 ± 0.26 b | 12.45 ± 0.20 b | 14.62 ± 0.15 a |
| Glucose (g/100 g) | 1.75 ± 0.05 c | 1.70 ± 0.06 c | 3.82 ± 0.10 b | 5.01 ± 0.10 a |
| Sucrose (g/100 g) | ND | ND | ND | 0.48 ± 0.02 |
| Fructose (g/100 g) | ND | ND | ND | 0.02 ± 0.00 |
| Xylose (g/100 g) | 0.39 ± 0.09 b | 0.40 ± 0.05 b | 0.45 ± 0.02 b | 1.46 ± 0.02 a |
| Items | Unit | Results (1) | Reference Method | Results * (2) | LOD |
|---|---|---|---|---|---|
| Energy (kcal) | kcal/100 g | 284.2 ± 25.0 | Calculation | 395.70 ** | |
| Carbohydrate | g/100 g | 88.9 ± 6.4 | Calculation | 92.60 ** | |
| Protein | g/100 g | 5.20 ± 0.55 | AOAC (2000) 981.10 [23] | 5.20 | - |
| Total fat | g/100 g | 0.48 ± 0.50 | AOAC (2000) 922.06 [23] | 0.50 | - |
| Saturated fat | g/100 g | NT | AOAC (2023) 996.06 [37] | 0.22 | |
| Cholesterol | mg/100 g | NT | 0.00 | 0.50 | |
| Ash | g/100 g | 0.367 ± 0.150 | AOAC (2000) 920.153 [23] | 0.39 | - |
| Moisture | g/100 g | 1.74 ± 0.05 | AOAC (2000) 925.45(A) [23] | 1.65 | - |
| Total Sugar | g/100 g | 64.77 ± 4.55 | 59.62 | 0.03 | |
| Maltose | g/100 g | NT | 43.85 | 0.30 | |
| Glucose | g/100 g | NT | 14.31 | 0.30 | |
| Sucrose | g/100 g | NT | 1.46 | 0.30 | |
| Fructose | g/100 g | NT | <0.30 | 0.30 | |
| Lactose | g/100 g | NT | ND | 0.30 | |
| Xylose | g/100 g | 4.38 ± 0.50 | NT | ||
| GABA | mg/100 g | 245.20 ± 2.55 | [8,11] | NT | |
| Total Phenolic | mgGAE/100 g | 25.59 ± 0.26 | [21,22] | NT | |
| Phytic acid | mg/100 g | 2105.60 ± 11.4 | [8] | NT | |
| Vitamin B1 | mg/100 g | 0.64 ± 0.07 | [16] | NT | |
| Potassium | mg/100 g | 73.85 ± 4.15 | [12] | 78.24 *** | |
| Sodium | mg/100 g | 39.46 ± 5.02 | [12] | 43.55 | - |
| Magnesium | mg/100 g | 91.96 ± 5.55 | [12] | NT | |
| Calcium | mg/100 g | 161.76 ± 15.2 | [12] | NT |
| Amino Acid | Amount (mg/100 g) | LOD (mg/100 g) | Reference Method |
|---|---|---|---|
| Aspartic acid | 474.91 | 100.00 | CH-372 based on Official Journal of The European Communities Directive 98/64/EC L257(1998), Annex Part A [41] |
| Threonine | <200.00 | 100.00 | |
| Serine | 259.43 | 100.00 | |
| Glutamic acid | 863.49 | 50.00 | |
| Glycine | 214.51 | 50.00 | |
| Alanine | 264.68 | 50.00 | |
| Cystine | <200.00 | 100.00 | |
| Valine | 285.24 | 50.00 | |
| Methionine | <100.00 | 100.00 | |
| Isoleucine | 166.59 | 50.00 | |
| Leucine | 358.62 | 50.00 | |
| Tyrosine | <250.00 | 100.00 | |
| Phenylalanine | <250.00 | 100.00 | |
| Histidine | <100.00 | 100.00 | |
| Hydroxylysine | ND | 100.00 | |
| Lysine | 185.79 | 50.00 | |
| Tryptophan | ND | ||
| Arginine | 388.36 | 100.00 | |
| Proline | 214.30 | 100.00 |
| Item | Result | Unit | Reference Method |
|---|---|---|---|
| Staphylococcus aureus | <10 est. | CFU/g | AOAC 2023 2003.07 [37] |
| Yeast and Mold | <10 est. | CFU/g | AOAC 2023 997.02 [37] |
| Bacillus cereus | <10 | CFU/g | ISO 7932:2004 [43] and FDA BAM Online, 2020 (Chapter 14) [44] |
| Clostridium perfringens | <10 | CFU/g | ISO 15213-2:2023 [45] |
| Coliforms | 2.2 | MPN/100 mL | In-house method TE–MI-171 based on Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 24th Ed., 2023. Part 9221B [46] |
| Escherichia coli | ND | per 100 mL | In-house method TE–MI-171 based on Standard Methods, Part 9221B, and 9221F [46] |
| Salmonella spp. | ND | per 25 g | ISO 6579-1:2017/Amd1:2020 [47] |
| Item | Result | Unit | LOD | Reference Method |
|---|---|---|---|---|
| Aflatoxin B1 | ND | µg/kg | 0.25 | In-house method TE-CHI-025 based on AOAC (2023) 991.31 and 994.08 [37] |
| Aflatoxin B2 | ND | µg/kg | 0.25 | |
| Aflatoxin G1 | ND | µg/kg | 0.25 | |
| Aflatoxin G2 | ND | µg/kg | 0.25 | |
| Total Aflatoxin | ND | µg/kg | ||
| Gluten Allergen (Gliadin) | ND | mg/kg | 0.85 | MloBS Wheat/Gluten (Gliadin) ELISA Kit II Cat.#M2114 |
| Arsenic | ND | mg/kg | 0.025 | In-house method TE-CH-134 based on AOAC (2023) 986.15 [37] by ICP-MS |
| Cadmium | <0.010 | mg/kg | 0.005 | In-house method TE-CH-134 based on AOAC (2023) 999.10 [37] by ICP-MS |
| Lead | <0.015 | mg/kg | 0.010 | In-house method TE-CH-134 based on AOAC (2023) 999.10 [37] by ICP-MS |
| Mercury | ND | mg/kg | 0.005 | In-house method TE-CH-134 based on AOAC (2023) 974.10 [37] by ICP-MS |
| Tin | ND | mg/kg | 3.000 | In-house method TE-CH-134 based on AOAC (2023) 985.16 [37] by ICP-MS |
| Color (L*) | |||
|---|---|---|---|
| Day | 30 °C | 45 °C | 55 °C |
| 0 | 89.8 ± 1.05 aA | 89.8 ± 1.05 aA | 89.8 ± 1.05 aA |
| 27 | 90.1 ± 0.85 aA | 89.9 ± 1.08 aA | 88.5 ± 1.04 aA |
| 54 | 88.7 ± 1.20 aA | 89.6 ± 1.01 aA | 77.2 ± 1.00 bB |
| 81 | 88.8 ± 1.14 aA | 88.9 ± 1.25 aA | 77.5 ± 1.35 bB |
| 108 | 89.2 ± 0.95 aA | 87.8 ± 1.50 aA | 76.2 ± 1.00 bB |
| 135 | 88.8 ± 1.06 aA | 77.5 ± 1.21 bB | 77.6 ± 1.30 bB |
| 153 | 88.5 ± 1.00 aA | 77.5 ± 1.25 bB | 77.5 ± 1.00 bB |
| Vitamin B1 | |||
|---|---|---|---|
| Day | 30 °C | 45 °C | 55 °C |
| 0 | 0.64 ± 0.07 aA | 0.64 ± 0.07 aA | 0.64 ± 0.07 aA |
| 27 | 0.64 ± 0.02 aA | 0.63 ± 0.08 aA | 0.50 ± 0.04 aA |
| 54 | 0.68 ± 0.02 aA | 0.63 ± 0.04 aA | 0.44 ± 0.05 bB |
| 81 | 0.68 ± 0.02 aA | 0.62 ± 0.02 aA | 0.42 ± 0.05 bB |
| 135 | 0.67 ± 0.05 aA | 0.62 ± 0.05 aA | 0.45 ± 0.03 bB |
| 171 | 0.65 ± 0.05 aA | 0.61 ± 0.04 aA | 0.43 ± 0.04 bB |
| 180 | 0.63 ± 0.02 aA | 0.60 ± 0.06 aA | 0.40 ± 0.04 bB |
| Fungal Strain | Colony Count (CFU/mL) on Medium | |
|---|---|---|
| Prepared Rice Malt Extract | with Commercial Malt Extract | |
| Candida albicans TISTR5554 | (2.63 ± 0.15) × 102 ns | (2.87 ± 0.12) × 102 ns |
| Saccharomyces cerevisiae TISTR5774 | (2.78 ± 0.20) × 102 ns | (2.85 ± 0.10) × 102 ns |
| Saccharomyces cerevisiae TISTR5240 | (2.65 ± 0.32) × 102 ns | (2.87 ± 0.15) × 102 ns |
| Geotrichum candidum TISTR3422 | (1.00 ± 0.50) × 102 ns | (1.30 ± 0.05) × 102 ns |
| Rhodotorula mucilaginosa TISTR5864 | (2.94 ± 0.28) × 102 ns | (3.02 ± 0.10) × 102 ns |
| Pennicillium roquefortii TISTR3511 | (1.50 ± 0.20) × 103 b | (3.00 ± 0.50) × 103 a |
| Aspergillus niger TISTR1867 | (1.97 ± 0.85) × 103 b | (3.93 ± 0.51) × 103 a |
| Trichoderma harzianum TISTR3553 | (1.20 ± 0.50) × 103 b | (2.32 ± 0.80) × 103 a |
| Formula | Microorganism | |||
|---|---|---|---|---|
| Aspergillus niger TISTR5161 | Saccharomyces cerevisiae TISTR5161 | Bacillus subtilis TISTR 001 | Escherichia coli TISTR780 | |
| F1 | (1.72 ± 0.38) × 102 ns | (2.55 ± 0.18) × 102 ns | (1.80 ± 0.27) × 102 ns | (1.80 ± 0.10) × 102 a |
| F2 | (1.62 ± 0.41) × 102 ns | (2.30 ± 0.25) × 102 ns | (1.71 ± 0.31) × 102 ns | (1.68 ± 0.25) × 102 ab |
| F3 | (1.51 ± 0.44) × 102 ns | (2.22 ± 0.31) × 102 ns | (1.65 ± 0.30) × 102 ns | (1.63 ± 0.22) × 102 ab |
| F4 | (1.83 ± 0.50) × 102 ns | (2.66 ± 0.25) × 102 ns | (1.82 ± 0.25) × 102 ns | (1.98 ± 0.11) × 102 a |
| F5 | (1.45 ± 0.42) × 102 ns | (2.53 ± 0.20) × 102 ns | (1.62 ± 0.30) × 102 ns | (1.77 ± 0.20) × 102 ab |
| F6 | (1.71 ± 0.36) × 102 ns | (2.32 ± 0.16) × 102 ns | (1.53 ± 0.26) × 102 ns | (1.64 ± 0.24) × 102 ab |
| F7 | (1.80 ± 0.35) × 102 ns | (2.50 ± 0.13) × 102 ns | (1.87 ± 0.34) × 102 ns | (1.67 ± 0.15) × 102 ab |
| F8 | (1.66 ± 0.41) × 102 ns | (2.47 ± 0.18) × 102 ns | (1.77 ± 0.27) × 102 ns | (1.52 ± 0.35) × 102 ab |
| F9 | (1.80 ± 0.55) × 102 ns | (2.28 ± 0.28) × 102 ns | (1.74 ± 0.35) × 102 ns | (1.06 ± 0.15) × 102 b |
| F10 (Control) | (1.75 ± 0.45) × 102 ns | (2.62 ± 0.21) × 102 ns | (1.85 ± 0.32) × 102 ns | (1.75 ± 0.15) × 102 a |
| Analyze | Wort | Beer | ||
|---|---|---|---|---|
| Wort from the Rice Malt Extract Powder | EBC Criteria of Wort [54] | Beer from the Rice Malt Extract Powder | EBC Criteria of Beer [55,56] | |
| Pale Malt Color (°EBC) | 1.74 ± 0.05 | 4–12 | 2.82 ± 0.15 | ≤8 (pale), 8–25 (amber), >25 (dark) |
| Turbidity (EBC Helm) | 4.42 ± 0.26 | ≤5.0 NTU (bright wort) | 2.00 ± 0.22 | ≤1.5 NTU (bright beer) |
| Mass (°Plato) | 8.0 ± 0.11 | 10–15°P | 2.5 ± 0.15 | 2–6°P (light), >12°P (strong) |
| pH | 5.76 ± 0.14 | 5.2–5.6 | 4.08 ± 0.17 | 4.2–4.6 |
| FAN (mg/L) | 112.81 ± 11.63 | 150–250 mg/L | 69.42 ± 10.10 | 120–220 mg/L |
| % Extract | 59.62 ± 2.50 | 75–82% | - | Varies by beer style |
| Specific gravity | 1.0318 ± 0.0012 | 1.040–1.060 | 1.011 ± 0.001 | 1.008–1.016 |
| % Alcohol by Vol. | 0.0 ± 0.0 | 0.0% | 2.58 ± 0.10 | 3.5–7.5% (typical beers) |
| Bitterness (BU) | 0.00 ± 0.00 | No standard | 18.50 ± 0.55 | 15–35 BU |
| Analyze | Commercial Beer * | Produced Beer |
|---|---|---|
| Protein (g/100 g) | 0.96 ± 0.07 a | 0.47 ± 0.05 b |
| Reducing sugar (g/100 g) | 0.45 ± 0.15 b | 1.32 ± 0.15 a |
| Thiamin (mg/100 g) | 0.32 ± 0.02 ns | 0.35 ± 0.07 ns |
| Total Polyphenol (mgGAE/100 g) | 0.71 ± 0.05 a | 0.50 ± 0.06 b |
| GABA (mg/100 g) | 4.37 ± 0.05 a | 4.07 ± 0.05 b |
| Soluble Fiber (g/100 g) | 0.62 ± 0.05 ns | 0.67 ± 0.05 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puangwerakul, Y.; Soithongsuk, S.; Wongwailikhit, K. Gluten-Free Rice Malt Extract Powder: Pilot-Scale Production, Characterization, and Food Applications. Molecules 2025, 30, 4279. https://doi.org/10.3390/molecules30214279
Puangwerakul Y, Soithongsuk S, Wongwailikhit K. Gluten-Free Rice Malt Extract Powder: Pilot-Scale Production, Characterization, and Food Applications. Molecules. 2025; 30(21):4279. https://doi.org/10.3390/molecules30214279
Chicago/Turabian StylePuangwerakul, Yupakanit, Suvimol Soithongsuk, and Kanda Wongwailikhit. 2025. "Gluten-Free Rice Malt Extract Powder: Pilot-Scale Production, Characterization, and Food Applications" Molecules 30, no. 21: 4279. https://doi.org/10.3390/molecules30214279
APA StylePuangwerakul, Y., Soithongsuk, S., & Wongwailikhit, K. (2025). Gluten-Free Rice Malt Extract Powder: Pilot-Scale Production, Characterization, and Food Applications. Molecules, 30(21), 4279. https://doi.org/10.3390/molecules30214279

