Application of Chitosan and Boehmite as Ecological Fire Retardants in PVC Compositions—Preparation and Thermal Study
Abstract
1. Introduction
2. Results and Discussion
2.1. Modification of Boehmite
2.2. PVC and PVC Composites
3. Materials and Methods
3.1. Chemicals and Measurements
- v—linear burning rate, expressed in millimeters per minute (mm/min),
- L—length of the burned part of the sample, in millimeters (mm),
- t—time of combustion, in seconds (s).
3.2. Modification of Boehmite
3.3. Preparation of Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, A.B.; Gilman, J.W. An Overview of Flame Retardancy of Polymeric Materials: Application, Technology, and Future Directions. Fire Mater. 2013, 37, 259–279. [Google Scholar] [CrossRef]
- Al-Mosawi, A. Flame Retardants, Their Beginning, Types, and Environmental Impact: A Review. Építőanyag—J. Silic. Based Compos. Mater. 2022, 74, 2–8. [Google Scholar] [CrossRef]
- Dukarski, W.; Rykowska, I.; Krzyżanowski, P.; Gonsior, M. Flame Retardant Additives Used for Polyurea-Based Elastomers—A Review. Fire 2024, 7, 50. [Google Scholar] [CrossRef]
- Shen, J.; Liang, J.; Lin, X.; Lin, H.; Yu, J.; Wang, S. The Flame-Retardant Mechanisms and Preparation of Polymer Composites and Their Potential Application in Construction Engineering. Polymers 2022, 14, 82. [Google Scholar] [CrossRef]
- Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, S.V.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-Containing Flame Retardant Epoxy Thermosets: Recent Advances and Future Perspectives. Prog. Polym. Sci. 2021, 114, 101366. [Google Scholar] [CrossRef]
- Giri, R.; Nayak, L.; Rahaman, M. Flame and Fire Retardancy of Polymer-Based Composites. Mater. Res. Innov. 2020, 25, 104–132. [Google Scholar] [CrossRef]
- Mensah, R.A.; Shanmugam, V.; Narayanan, S.; Renner, S.J.; Babu, K.; Neisiany, E.R.; Forsth, M.; Sas, G.; Das, O. A Review of Sustainable and Environment-Friendly Flame Retardants Used in Plastics. Polym. Test. 2022, 108, 107511. [Google Scholar] [CrossRef]
- Coman, A.E.; Gabor, A.R.; Stoian, S.; Nicolae, A.C.; Raditoiu, V.; Gifu, I.C.; Iordache, T.V.; Hubca, G. New Formulations of Flame-Retardant Flexible Polyvinylchloride Composites. Mater. Plast. 2019, 3, 568–577. [Google Scholar] [CrossRef]
- Marosfoi, B.B.; Garas, S.; Bodzay, B.; Zubonyai, F.; Marosi, G. Flame Retardancy Study on Magnesium Hydroxide Associated with Clays of Different Morphology in Polypropylene Matrix. Polym. Adv. Technol. 2008, 19, 693–700. [Google Scholar] [CrossRef]
- Roda, E.; Galletti, F.; Truscello, A.; Gambarotti, C. Flame Behaviour of Magnesium and Aluminium Hydroxide-Filled Polymer Composites Used in Power and Telecom Cables. Plast. Rubber Compos. 2021, 51, 1–11. [Google Scholar] [CrossRef]
- Sun, T.; Zhuo, Q.; Chen, Y.; Wu, Z. Synthesis of Boehmite and Its Effect on Flame Retardancy of Epoxy Resin. High Perform. Polym. 2014, 27, 100–104. [Google Scholar] [CrossRef]
- Dawidek, K.M.; Gryzińska, A.; Dziuba, K.F.; Puszka, A. Palność i wybrane właściwości kompozytów PVC z dodatkiem boehmitu. Polimery 2025, 70, 124–129. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.; Yoon, H. Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers. Polymers 2021, 13, 540. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Zhang, Z.; Wang, Q. Preparation of Ammonium Polyphosphate and Dye Co-Intercalated LDH/Polypropylene Composites with Enhanced Flame Retardant and UV Resistance Properties. Chemosphere 2021, 285, 1313070. [Google Scholar] [CrossRef]
- Sabee, M.M.S.; Itam, Z.; Beddu, S.; Zahari, N.M.; Kamal, N.L.M.; Mohamad, D.; Zulkepli, N.A.; Shafiq, M.D.; Abdul Hamid, Z.A. Flame Retardant Coatings: Additives, Binders, and Fillers. Polymers 2022, 14, 2911. [Google Scholar] [CrossRef] [PubMed]
- Rezvani Ghomi, E.; Khosravi, F.; Mossayebi, Z.; Saedi Ardahaei, A.; Morshedi Dehaghi, F.; Khorasani, M.; Neisiany, R.E.; Das, O.; Marani, A.; Mensah, R.A.; et al. The Flame Retardancy of Polyethylene Composites: From Fundamental Concepts to Nanocomposites. Molecules 2020, 25, 5157. [Google Scholar] [CrossRef] [PubMed]
- Khodavandegar, S.; Fatehi, P. Fully Biobased Flame-Retardant Lignin-Incorporated Chitosan-Derived Aerogel. Chem. Eng. J. 2025, 515, 163745. [Google Scholar] [CrossRef]
- Tawiah, B.; Ofori, E.A.; Bin, F. Scientometric Review of Sustainable Fire-Resistant Polysaccharide-Based Composite Aerogels. Sustainability 2023, 15, 12185. [Google Scholar] [CrossRef]
- Malucelli, G. Flame-Retardant Systems Based on Chitosan and Its Derivatives: State of the Art and Perspectives. Molecules 2020, 25, 4046. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Yang, J.; Huang, Y.; Cao, K. Aluminum–Organophosphorus Hybrid Nanorods for Simultaneously Enhancing the Flame Retardancy and Mechanical Properties of Epoxy Resin. J. Mater. Chem. 2012, 22, 2007–2017. [Google Scholar] [CrossRef]
- Pantelaki, I.; Voutsa, D. Organophosphate Flame Retardants (OPFRs): A Review on Analytical Methods and Occurrence in Wastewater and Aquatic Environment. Sci. Total Environ. 2019, 649, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Xiang, Y.; Zhang, Z.; Zhang, J.; He, M.; Qin, S.; Yu, J. Impact of Diisobutyl Aluminum Hypophosphite on Flame-Retarded Thermoplastic Polyester Elastomers Composites and Its Mechanism. J. Vinyl Addit. Technol. 2025, 31, 886–903. [Google Scholar] [CrossRef]
- Wang, X.; Xing, W.; Song, L.; Yu, B.; Shi, Y.; Yang, W.; Hu, Y. Flame Retardancy and Thermal Properties of Novel UV-Curing Epoxy Acrylate Coatings Modified by Phosphorus-Containing Hyperbranched Macromonomer. J. Polym. Res. 2013, 20, 165–175. [Google Scholar] [CrossRef]
- Florjańczyk, Z.; Wolak, A.; Dębowski, M.; Plichta, A. Organically Modified Aluminophosphates: Transformation of Boehmite into Nanoparticles and Fibers Containing Aluminodiethylphosphate Tectons. Chem. Mater. 2007, 19, 5645–5652. [Google Scholar] [CrossRef]
- Florjańczyk, Z.; Dębowski, M.; Wolak, A.; Malesa, M.; Płecha, J. Dispersions of Organically Modified Boehmite Particles and a Carboxylated Styrene-Butadiene Latex: A Simple Way to Nanocomposites. J. Appl. Polym. Sci. 2007, 105, 80–88. [Google Scholar] [CrossRef]
- Kowalczyk, S.; Grochowska, N.; Dębowski, M.; Jurczyk-Kowalska, M.; Szewczyk-Łagodzińska, M.; Florjańczyk, Z.; Plichta, A. Poly(Urea-Urethane) Elastomers with Fire-Retardant and Tensile Properties Enhanced by a Built-In Phosphorus Derivative. ACS Appl. Polym. Mater. 2023, 5, 7155–7166. [Google Scholar] [CrossRef]
- Dziuba, K.; Wnuczek, K.; Wojtachnio, P.; Sonnier, R.; Podkościelna, B. New Polymer Composites with Aluminum Phosphates as Hybrid Flame Retardants. Materials 2023, 16, 426. [Google Scholar] [CrossRef]
- Abdelkader, A.; Hussien, B.M.; Fawzy, E.M.; Ibrahim, A.A. Boehmite Nanopowder Recovered from Aluminum Cans Waste as a Potential Adsorbent for the Treatment of Oilfield Produced Water. Appl. Petrochem. Res. 2021, 11, 137–146. [Google Scholar] [CrossRef]
- El-Katatny, E.A.; Halawy, S.A.; Mohamed, M.A.; Zaki, M.I. A Novel Synthesis of High-Area Alumina via H2O2-Precipitated Boehmite from Sodium Aluminate Solutions. J. Chem. Technol. Biotechnol. 1998, 72, 320–328. [Google Scholar] [CrossRef]
- Alex, T.C. An Insight into the Changes in the Thermal Analysis Curves of Boehmite with Mechanical Activation. J. Therm. Anal. Calorim. 2014, 117, 163–171. [Google Scholar] [CrossRef]
- Zhu, H.M.; Jiang, X.G.; Yan, J.H.; Chi, Y.; Cen, K.F. TG-FTIR Analysis of PVC Thermal Degradation and HCl Removal. J. Anal. Appl. Pyrolysis 2008, 82, 1–9. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, G.; Wang, S.; Zhang, H.; Xu, F. TG-FTIR and Py-GC/MS Study of the Pyrolysis Mechanism and Composition of Volatiles from Flash Pyrolysis of PVC. J. Energy Inst. 2020, 93, 2362–2370. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, H.; Tong, L. Experimental Study on the Fire Protection Properties of PVC Sheath for Old and New Cables. J. Hazard. Mater. 2010, 179, 373–381. [Google Scholar] [CrossRef]
- Armaya’u, U.; Uba Zango, Z.; Umar Masanawa, Z.; Gani Musa, S. Measurement of Thermal Stability of Polymeric Cable Wires Using Thermogravimetric Analytical Technique. Int. J. Energy Eng. 2020, 10, 16–21. [Google Scholar]
- Wang, Z.; Wei, R.; Wang, X.; He, J.; Wang, J. Pyrolysis and Combustion of Polyvinyl Chloride (PVC) Sheath for New and Aged Cables via Thermogravimetric Analysis–Fourier Transform Infrared (TG-FTIR) and Calorimeter. Materials 2018, 11, 1997. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, X.; Li, Z.; Yu, L.; Li, X.; Zhang, Z. Bismuth Oxychloride Nanosheets for Improvement of Flexible Poly(Vinyl Chloride) Flame Retardancy. J. Mater. Sci. 2020, 55, 631–643. [Google Scholar] [CrossRef]
- Lu, Y.H.; Chen, Z.L.; Lu, Y.W. Synthesis, Characterization and Thermal Behavior of Plasticized Poly(Vinyl Chloride) Doped with Folic Acid-Modified Titanium Dioxide. Sci. Rep. 2022, 12, 3379. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ma, H.; Huang, H.; Zhang, J.; Chen, Y. Experimental Investigation and Numerical Modeling of Oxidative Pyrolysis Mechanism of Mining PVC Cable Sheath. J. Therm. Anal. Calorim. 2022, 147, 14479–14490. [Google Scholar] [CrossRef]
- EN 60695-11-10:2014; Fire Hazard Testing—Part 11-10: Test Flames—50 W Horizontal and Vertical Flame Test Methods. International Electrotechnical Commission: Geneva, Switzerland, 2014.
- EN ISO 868:2003; Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). International Organization of Standardization: Geneva, Switzerland, 2003.
- ISO 527-2:2012; Plastics—Determination of Tensile Properties—Part 2. International Organization of Standardization: Geneva, Switzerland, 2012.













| Sample | Element | OK | AlK | PK | CK | Total |
|---|---|---|---|---|---|---|
| BEM | wt% | 56.71 | 43.29 | - | - | 100 |
| at% | 68.84 | 31.16 | - | - | 100 | |
| BEMB_T | wt% | 38.17 | 13.29 | 10.84 | 37.71 | 100 |
| at% | 37.47 | 7.73 | 5.49 | 49.31 | 100 | |
| BEMB_K | wt% | 33.12 | 5.10 | 14.59 | 47.19 | 100 |
| at% | 31.09 | 2.84 | 7.07 | 59.00 | 100 | |
| BEMB_M | wt% | 36.95 | 4.54 | 11.58 | 46.93 | 100 |
| at% | 34.17 | 2.49 | 5.53 | 57.81 | 100 |
| Sample | T1 1 (°C) | T5 2 (°C) | Tmax 3 (°C) | Residual Mass (%) |
|---|---|---|---|---|
| BEM | 110 | 279 | 81; 423 | 78.33 |
| BEMB | 238 | 273 | 294; 426 | 44.67 |
| Sample | T1 1 (°C) | T5 2 (°C) | Tmax 3 (°C) | Residual Mass (%) |
|---|---|---|---|---|
| Reference | 229 | 260 | 292; 448; 533; 594; 673 | 22.88 |
| CS 10% | 229 | 259 | 296; 446; 520; 589; 672 | 22.46 |
| CS 30% | 213 | 248 | 285; 440; 538; 597; 670 | 17.41 |
| CS 50% | 211 | 244 | 277; 442; 539; 591; 666 | 12.80 |
| BM 10% | 211 | 245 | 257; 296; 449; 554; 595; 669 | 20.88 |
| BM 30% | 213 | 246 | 256; 290; 303; 450; 582; 690 | 20.54 |
| BM 50% | 225 | 249 | 256; 287; 302; 436; 528; 658 | 19.08 |
| Sample | Tensile Strength (MPa) | Modulus of Elasticity (MPa) | Elongation at Break (%) |
|---|---|---|---|
| Reference | 13.36 ± 0.26 | 7.41 ± 0.15 | 314.85 ± 10.23 |
| CS 10% | 11.39 ± 0.67 | 6.84 ± 0.59 | 262.43 ± 27.20 |
| CS 30% | 9.50 ± 0.70 | 7.36 ± 0.62 | 203.69 ± 14.00 |
| CS 50% | 8.10 ± 0.36 | 7.92 ± 0.43 | 168.92 ± 21.65 |
| BM 10% | 11.50 ± 0.49 | 6.09 ± 0.26 | 279.21 ± 23.07 |
| BM 30% | 8.81 ± 0.23 | 5.68 ± 0.16 | 191.29 ± 15.86 |
| BM 50% | 7.04 ± 0.77 | 5.27 ± 0.24 | 158.35 ± 24.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziuba, K.; Puszka, A.; Dawidek, K.; Podkościelna, B. Application of Chitosan and Boehmite as Ecological Fire Retardants in PVC Compositions—Preparation and Thermal Study. Molecules 2025, 30, 4222. https://doi.org/10.3390/molecules30214222
Dziuba K, Puszka A, Dawidek K, Podkościelna B. Application of Chitosan and Boehmite as Ecological Fire Retardants in PVC Compositions—Preparation and Thermal Study. Molecules. 2025; 30(21):4222. https://doi.org/10.3390/molecules30214222
Chicago/Turabian StyleDziuba, Kamil, Andrzej Puszka, Katarzyna Dawidek, and Beata Podkościelna. 2025. "Application of Chitosan and Boehmite as Ecological Fire Retardants in PVC Compositions—Preparation and Thermal Study" Molecules 30, no. 21: 4222. https://doi.org/10.3390/molecules30214222
APA StyleDziuba, K., Puszka, A., Dawidek, K., & Podkościelna, B. (2025). Application of Chitosan and Boehmite as Ecological Fire Retardants in PVC Compositions—Preparation and Thermal Study. Molecules, 30(21), 4222. https://doi.org/10.3390/molecules30214222

