A Study on the Photothermal Catalytic Performance of Pt@MnO2 for O-Xylene Oxidation
Abstract
1. Introduction
2. Results and Discussion
2.1. Structure Characterization
2.2. Surface Chemical Properties Analysis
2.3. Detection of Optical Properties
2.4. Catalytic Activity
2.5. Intermediates and Reaction Mechanism
3. Experimental Section
3.1. Chemicals and Reagents
3.2. Catalysts Preparation
3.3. Structural Characterization
3.4. Catalytic Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Chen, J.; Hu, H.; Huang, J.; Wei, J.; Bi, F.; Zhang, X. Impact of Residual Ions on Catalyst Structure and Catalytic Performance: A Review. Chin. Chem. Lett. 2025, in press. [CrossRef]
- Bi, F.; Feng, X.; Huang, J.; Wei, J.; Wang, H.; Du, Q.; Liu, N.; Xu, J.; Liu, B.; Huang, Y.; et al. Unveiling the Influence Mechanism of Impurity Gases on Cl-Containing Byproducts Formation during VOC Catalytic Oxidation. Environ. Sci. Technol. 2025, 59, 15526–15537. [Google Scholar] [CrossRef]
- Bi, F.; Wei, J.; Zhou, Z.; Zhang, Y.; Gao, B.; Liu, N.; Xu, J.; Liu, B.; Huang, Y.; Zhang, X. Insight into the Synergistic Effect of Binary Nonmetallic Codoped Co3O4 Catalysts for Efficient Ethyl Acetate Degradation under Humid Conditions. JACS Au 2025, 5, 363–380. [Google Scholar] [CrossRef]
- Yang, Y.; Bi, F.; Wei, J.; Han, X.; Gao, B.; Qiao, R.; Xu, J.; Liu, N.; Zhang, X. Boosting the Photothermal Oxidation of Multicomponent VOCs in Humid Conditions: Synergistic Mechanism of Mn and K in Different Oxygen Activation Pathways. Environ. Sci. Technol. 2025, 59, 11341–11352. [Google Scholar] [CrossRef]
- Feng, Y.; Chu, P.; Hou, Z.; Wu, L.; Liu, Y.; Deng, J.; Dai, H. Single-Atom Catalysts in the Photothermal Catalysis: Fundamentals, Mechanisms, and Applications in VOCs Oxidation. Chem. Synth. 2025, 5, 64. [Google Scholar] [CrossRef]
- Duan, X.; Qu, Z.; Dong, C.; Qin, Y. Enhancement of toluene oxidation performance over Pt/MnO2@Mn3O4 catalyst with unique interfacial structure. Appl. Surf. Sci. 2020, 503, 144161. [Google Scholar] [CrossRef]
- Hu, J.; Gao, X.; Fan, Q.; Gao, X. Facial Controlled Synthesis of Pt/MnO2 Catalysts with High Efficiency for VOCs Combustion. RSC Adv. 2021, 11, 16547–16556. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, D.; Di, S.; Xu, L.; Wu, Z.; Yao, S. Construction of Pt-MnO2 Interface with Strong Electron Coupling Effect for Plasma Catalytic Oxidation of Aromatic VOCs. Colloids Surf. Physicochem. Eng. Asp. 2023, 665, 131248. [Google Scholar] [CrossRef]
- Ru, X.; Li, W.; Wang, X.; Shi, Z.; Wen, X.; Mo, S.; Zhang, Q.; Mo, D. Regulating the Surface Local Environment of MnO2 Materials via Metal-Support Interaction in Pt/MnO2 Hetero-Catalysts for Boosting Methanol Oxidation. Chem. Eng. Sci. 2023, 281, 119079. [Google Scholar] [CrossRef]
- Li, A.; Zhang, Q.; Zhao, S.; Chong, Y.; Wu, P.; Li, Y.; Jin, X.; Chen, G.; Qiu, Y.; Yang, S.; et al. A Dual Plasmonic Core—Shell Pt/[TiN@TiO2] Catalyst for Enhanced Photothermal Synergistic Catalytic Activity of VOCs Abatement. Nano Res. 2022, 15, 7071–7080. [Google Scholar] [CrossRef]
- Fan, S.; Luo, S.; Wang, Y.; Yue, X.; Zheng, D.; Zhang, Z.; Fu, X.; Dai, W. TiO2-Based Pd/Fe Bimetallic Modification for the Efficient Photothermal Catalytic Degradation of Toluene: The Synergistic Effect of ∙O2– and ∙OH Species. Sep. Purif. Technol. 2024, 336, 126256. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Q.; Li, D.; Zhang, Z.; Liu, Y.; Guo, X.; Li, X.; Liu, Z.; Wang, L.; Ma, J.; et al. Boosting Photothermocatalytic Oxidation of Toluene Over Pt/N-TiO2: The Gear Effect of Light and Heat. Environ. Sci. Technol. 2024, 58, 7662–7671. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Zou, T.; Jing, Y.; Song, Y.; Wang, G.; Liu, F.; Jiang, G. Ni-Doped α-MnO2 Catalyst for Photothermal Synergistic Oxidation of Propane: Investigation of Catalytic Activity and Mechanism. Sep. Purif. Technol. 2025, 376, 133936. [Google Scholar] [CrossRef]
- Wang, Y.; Bi, Y.; Ji, G.; Jing, Y.; Zhao, J.; Sun, E.; Wang, Y.; Chang, H.; Liu, F. Acid-Activated α-MnO2 for Photothermal Co-Catalytic Oxidative Degradation of Propane: Activity and Reaction Mechanism. J. Hazard. Mater. 2024, 478, 135447. [Google Scholar] [CrossRef]
- Bi, Y.; Ji, G.; Wang, Y.; Sun, E.; Feng, C.; Han, F.; Liu, F.; Liu, Y. In-Situ Modulation of α-MnO2 Surface Oxygen Vacancies for Photothermal Catalytic Oxidation of Propane: Insights into Activity and Synergistic Mechanism. Chem. Eng. J. 2023, 473, 145474. [Google Scholar] [CrossRef]
- Yu, E.; Li, J.; Chen, J.; Chen, J.; Hong, Z.; Jia, H. Enhanced Photothermal Catalytic Degradation of Toluene by Loading Pt Nanoparticles on Manganese Oxide: Photoactivation of Lattice Oxygen. J. Hazard. Mater. 2020, 388, 121800. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, J.; Wang, M.; Qi, F.; Jin, X.; Zhang, L. Enhanced Toluene Oxidation by Photothermal Synergetic Catalysis on Manganese Oxide Embedded with Pt Single-Atoms. J. Colloid Interface Sci. 2023, 636, 577–587. [Google Scholar] [CrossRef]
- Li, L.; Jing, Y.; Zhang, J.; Guo, J. Photocatalytic Degradation of NO by MnO2 Catalyst: The Decisive Relationship between Crystal Phase, Morphology and Activity. J. Hazard. Mater. 2025, 487, 137228. [Google Scholar] [CrossRef]
- Gangwar, D.; Rath, C. Structural, Optical and Magnetic Properties of α- and β-MnO2 Nanorods. Appl. Surf. Sci. 2021, 557, 149693. [Google Scholar] [CrossRef]
- Xu, H.; Qu, Z.; Zhao, S.; Mei, J.; Quan, F.; Yan, N. Different Crystal-Forms of One-Dimensional MnO2 Nanomaterials for the Catalytic Oxidation and Adsorption of Elemental Mercury. J. Hazard. Mater. 2015, 299, 86–93. [Google Scholar] [CrossRef]
- Huang, N.; Qu, Z.; Dong, C.; Qin, Y.; Duan, X. Superior Performance of A@β-MnO2 for the Toluene Oxidation: Active Interface and Oxygen Vacancy. Appl. Catal. Gen. 2018, 560, 195–205. [Google Scholar] [CrossRef]
- Feng, C.; Bi, Y.; Chen, C.; Li, S.; Wang, Z.; Xin, H.; Pan, Y.; Liu, F.; Lu, Y.; Liu, Y.; et al. Urea-H2O2 Defect Engineering of δ-MnO2 for Propane Photothermal Oxidation: Structure-Activity Relationship and Synergetic Mechanism Determination. J. Colloid Interface Sci. 2023, 641, 48–58. [Google Scholar] [CrossRef]
- Yang, W.; Su, Z.; Xu, Z.; Yang, W.; Peng, Y.; Li, J. Comparative Study of α-, β-, γ- and δ-MnO2 on Toluene Oxidation: Oxygen Vacancies and Reaction Intermediates. Appl. Catal. B Environ. 2020, 260, 118150. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, J.; Zhuge, X.; Wang, Y.; Du, K. Mn-Ce Solid Solution Growth on Mn2O3 Surface to Form Heterostructure Catalysts with Multiple Active Sites for Toluene Degradation. Sep. Purif. Technol. 2025, 354, 129386. [Google Scholar] [CrossRef]
- Jin, H.; Yuan, J.; Hao, H.; Ji, Z.; Liu, M.; Hou, S. The Exploration of a New Adsorbent as MnO2 Modified Expanded Graphite. Mater. Lett. 2013, 110, 69–72. [Google Scholar] [CrossRef]
- Worku, A.K.; Ayele, D.W.; Habtu, N.G.; Teshager, M.A.; Workineh, Z.G. Enhancing Oxygen Reduction Reaction Activity of ε-MnO2 Nanoparticles via Iron Doping. J. Phys. Chem. Solids 2021, 157, 110207. [Google Scholar] [CrossRef]
- Gao, T.; Fjellvåg, H.; Norby, P. A Comparison Study on Raman Scattering Properties of α- and β-MnO2. Anal. Chim. Acta 2009, 648, 235–239. [Google Scholar] [CrossRef]
- Wang, T.; Chen, S.; Wang, H.; Liu, Z.; Wu, Z. In-Plasma Catalytic Degradation of Toluene over Different MnO2 Polymorphs and Study of Reaction Mechanism. Chin. J. Catal. 2017, 38, 793–803. [Google Scholar] [CrossRef]
- Liu, X.; Su, S.; Yin, H.; Zhang, S.; Isimjan, T.T.; Huang, J.; Yang, X.; Cai, D. Precise Anchoring of Fe Sites by Regulating Crystallinity of Novel Binuclear Ni-MOF for Revealing Mechanism of Electrocatalytic Oxygen Evolution. Small 2024, 20, 2306085. [Google Scholar] [CrossRef]
- Wu, X.Q.; Zong, R.L.; Zhu, Y.F. Enhanced MnO2 Nanorods to CO and Volatile Organic Compounds Oxidative Activity by Platinum Nanoparticles. Acta Phys.-Chim. Sin. 2012, 28, 437–444. [Google Scholar]
- Ndayiragije, S.; Zhang, Y.; Zhou, Y.; Song, Z.; Wang, N.; Majima, T.; Zhu, L. Mechanochemically Tailoring Oxygen Vacancies of MnO2 for Efficient Degradation of Tetrabromobisphenol A with Peroxymonosulfate. Appl. Catal. B Environ. Energy 2022, 307, 121168. [Google Scholar]
- Xie, M.; Wei, G.; Wang, L.; Yao, W.; Yang, X.; Gao, Z.; Huang, Z.; Lu, J.; Kang, Z.; Yao, Y. Low-temperature catalytic oxidation of ethyl acetate over MnO2–CeOx composite catalysts: Structure–activity relationship and empirical modeling. J. Environ. Chem. Eng. 2025, 13, 117808. [Google Scholar] [CrossRef]
- Dong, C.; Wang, H.; Ren, Y.; Qu, Z. Layer MnO2 with oxygen vacancy for improved toluene oxidation activity. Surf. Interfaces 2021, 22, 100897. [Google Scholar]
- Wang, Y.; Zhou, J.; Chen, Z.; Zhuge, X.; Wang, Z. Tailoring Oxygen Vacancies by Synergy of Dual Metal Cations in LaCo0.8M0.2O3 (M = Cu, Ni, Fe, Mn) towards Catalytic Oxidation of Toluene. J. Environ. Chem. Eng. 2024, 12, 113555. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Liu, J.; Zhou, B.; Tang, Y.; Ju, J.; Guo, M. Enhanced Catalytic Oxidation of Toluene over Manganese-Based Multi-Metal Oxides Synthesized by Ozone Driving Redox Reaction. Sep. Purif. Technol. 2022, 300, 121904. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, L.; Xiao, W.; Zeng, C.; Li, N.; Lv, T.; Zhu, H. Oriented Growth of Layered-MnO2 Nanosheets over α-MnO2 Nanotubes for Enhanced Room-Temperature HCHO Oxidation. Appl. Catal. B Environ. 2017, 207, 233–243. [Google Scholar] [CrossRef]
- Zhang, N.; Li, L.; Wu, R.; Song, L.; Zheng, L.; Zhang, G.; He, H. Activity Enhancement of Pt/MnOx Catalyst by Novel β-MnO2 for Low-Temperature CO Oxidation: Study of the CO–O2 Competitive Adsorption and Active Oxygen Species. Catal. Sci. Technol. 2019, 9, 347–354. [Google Scholar]
- Zhang, L.; Zhu, Z.; Tan, W.; Ji, J.; Cai, Y.; Tong, Q.; Xiong, Y.; Wan, H.; Dong, L. Thermal-Driven Optimization of the Strong Metal–Support Interaction of a Platinum–Manganese Oxide Octahedral Molecular Sieve to Promote Toluene Oxidation: Effect of the Interface Pt2+–Ov–Mnδ+. ACS Appl. Mater. Interfaces 2022, 14, 56790–56800. [Google Scholar]
- Andana, T.; Piumetti, M.; Bensaid, S.; Veyre, L.; Thieuleux, C.; Russo, N.; Fino, D.; Quadrelli, E.A.; Pirone, R. CuO Nanoparticles Supported by Ceria for NOx-Assisted Soot Oxidation: Insight into Catalytic Activity and Sintering. Appl. Catal. B Environ. 2017, 216, 41–58. [Google Scholar]
- Han, L.; Song, W.; Ji, J.; Zou, W.; Sun, J.; Tang, C.; Xu, B.; Dong, L. The Construction of MnOx with Rich Oxygen Vacancy for Robust Low-Temperature Denitration. Chem. Phys. Impact 2023, 6, 100227. [Google Scholar]
- Ge, H.; Dong, S.; Bian, Z. Enhancing the Photocatalytic Removal of Toluene by Modified Porous TiO2 with Internal Hydrophobic Interface. Environ. Funct. Mater. 2023, 2, 25–35. [Google Scholar] [CrossRef]
- Yan, B.-H.; Xu, B.-R.; Jin, Y.; Xiao, H.; Luo, S.-C.; Duan, R.-H.; Li, H.; Yan, X.-Q.; Lin, B.; Yang, G.-D. AuAg Plasmonic Nanoalloys with Asymmetric Charge Distribution on CeO2 Nanorods for Selective Photocatalytic CO2-to-CH4 Conversion. cMat 2024, 1, e28. [Google Scholar] [CrossRef]
- Lin, C.; Fan, G.; Luo, J.; Cai, C.; Cao, X.; Xu, K.-Q. Synergistic Piezoelectric Effect and Oxygen Vacancies in MoS2/BiOIO3 Heterojunctions Boosting Photocatalytic Degradation of 17β-Estradiol. Chem. Eng. J. 2025, 520, 166094. [Google Scholar]
- Di, J.; Liu, Y.-L.; Zhang, Y.; Guo, S.-S.; Wang, S.-W.; Jiang, W.; Li, H.-M.; Xia, J.-X. In Situ N-Doped Bi3O4Br/(BiO)2CO3 Ultrathin Nanojunctions with Matched Energy Band Structure for Nonselective Photocatalysis Pollutant Removal. cMat 2024, 1, e23. [Google Scholar] [CrossRef]
- Li, G.; Zhang, M.; Chen, J.; Li, Q.; Jia, H. Combined Effects of Pt Nanoparticles and Oxygen Vacancies to Promote Photothermal Catalytic Degradation of Toluene. J. Hazard. Mater. 2023, 449, 131041. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Wang, L.; Zhang, C.; He, H. Catalytic Oxidation of Formaldehyde over Manganese Oxides with Different Crystal Structures. Catal. Sci. Technol. 2015, 5, 2305–2313. [Google Scholar] [CrossRef]








| Samples | Average Grain Size (nm) a | SBET (m2/g) b | Vtotal (cc/g) c | D (nm) d | Pt0/Pttotal e | (Mn2+ + Mn3+)/Mntotal f | Oads/Olatt g | AOS h |
|---|---|---|---|---|---|---|---|---|
| Pt@Mn[α] | 18.9 | 50.3 | 0.29 | 1.4–4.9 | 0.61 | 0.77 | 0.49 | 3.54 |
| Pt@Mn[β] | 25.6 | 13.9 | 0.06 | 1.7–5.6 | 0.46 | 0.78 | 0.78 | 3.73 |
| Pt@Mn[γ] | 15.1 | 54.1 | 0.31 | 1.4–4.9 | 0.56 | 0.74 | 0.91 | 3.69 |
| Pt@Mn[δ] | 10.3 | 59.7 | 0.23 | 1.2–4.9 | 0.63 | 0.81 | 0.92 | 3.20 |
| Samples | T10 (°C) | T50 (°C) | T90 (°C) |
|---|---|---|---|
| Pt@Mn[α] | 57 | 95 | 110 |
| Pt@Mn[β] | 70 | 100 | 118 |
| Pt@Mn[γ] | 73 | 110 | 130 |
| Pt@Mn[δ] | 55 | 94 | 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, R.; Wang, Y.; Chen, J.; Hu, H.; Wei, J.; Bi, F.; Zheng, Y.; Zhang, X. A Study on the Photothermal Catalytic Performance of Pt@MnO2 for O-Xylene Oxidation. Molecules 2025, 30, 4193. https://doi.org/10.3390/molecules30214193
Qiao R, Wang Y, Chen J, Hu H, Wei J, Bi F, Zheng Y, Zhang X. A Study on the Photothermal Catalytic Performance of Pt@MnO2 for O-Xylene Oxidation. Molecules. 2025; 30(21):4193. https://doi.org/10.3390/molecules30214193
Chicago/Turabian StyleQiao, Rong, Yanxuan Wang, Jiani Chen, Haotian Hu, Jiafeng Wei, Fukun Bi, Ye Zheng, and Xiaodong Zhang. 2025. "A Study on the Photothermal Catalytic Performance of Pt@MnO2 for O-Xylene Oxidation" Molecules 30, no. 21: 4193. https://doi.org/10.3390/molecules30214193
APA StyleQiao, R., Wang, Y., Chen, J., Hu, H., Wei, J., Bi, F., Zheng, Y., & Zhang, X. (2025). A Study on the Photothermal Catalytic Performance of Pt@MnO2 for O-Xylene Oxidation. Molecules, 30(21), 4193. https://doi.org/10.3390/molecules30214193

