Robust Anionic Framework Based on Sodium–Cerium Terephthalate
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. X-Ray Crystal Structure
2.3. Periodic DFT Calculations
2.4. Thermal Behavior
2.5. Specific Surface Area and Pore Size Distribution
2.6. CO Oxidation
| System | Temperature of 50% CO Conversion (T50), °C | Activation Procedure | Reference |
|---|---|---|---|
| HKUST-1 | 235 | In reaction atmosphere during the first catalytic run | [38] |
| Ce-BTC | 310 | None | [44] |
| Cu@Na[Ce(BDC)2(DMF)2] | 253 | 450 °C for 20 min in reaction atmosphere | This work |
| MIL-53(Ce) | 275 | None | [45] |
3. Materials and Methods
3.1. Synthesis of Na[Ce(BDC)2(DMF)2]
3.2. Preparation of Na[Ce(BDC)2]
3.3. Modification of Na[Ce(BDC)2(DMF)2] with Copper Ions
3.4. Catalytic Performance in Carbon Monoxide Oxidation
3.5. X-Ray Crystallography
3.6. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P.M.; Weselinski, L.J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P.N.; Emwas, A.H.; et al. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage. J. Am. Chem. Soc. 2015, 137, 13308–13318. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Asinger, P.A.; Lee, M.J.; Han, G.; Rodriguez, K.M.; Lin, S.; Benedetti, F.M.; Wu, A.X.; Chi, W.S.; Smith, Z.P. MOF-Based Membranes for Gas Separations. Chem. Rev. 2020, 120, 8161–8266. [Google Scholar] [CrossRef]
- Cao, J.; Li, X.; Tian, H. Metal-Organic Framework (MOF)-Based Drug Delivery. Curr. Med. Chem. 2020, 27, 5949–5969. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.; Tang, Z.; Niu, H.; Cai, Y.; Meng, W.; Wu, F.; Giesy, J.P. Synthesis of Magnetic Metal-Organic Framework (MOF) for Efficient Removal of Organic Dyes from Water. Sci. Rep. 2015, 5, 11849. [Google Scholar] [CrossRef]
- Zhao, D.; Rao, X.; Yu, J.; Cui, Y.; Yang, Y.; Qian, G. Design and Synthesis of an MOF Thermometer with High Sensitivity in the Physiological Temperature Range. Inorg. Chem. 2015, 54, 11193–11199. [Google Scholar] [CrossRef]
- Jo, Y.; Jo, Y.K.; Lee, J.; Jang, H.W.; Hwang, I.; Yoo, D.J. MOF-Based Chemiresistive Gas Sensors: Toward New Functionalities. Adv. Mater. 2023, 35, 2370308. [Google Scholar] [CrossRef]
- Doonan, C.J.; Sumby, C.J. Metal–Organic Framework Catalysis. CrystEngComm 2017, 19, 4044–4048. [Google Scholar] [CrossRef]
- Machida, M.; Murata, Y.; Kishikawa, K.; Zhang, D.; Ikeue, K. On the Reasons for High Activity of CeO2 Catalyst for Soot Oxidation. Chem. Mater. 2008, 20, 4489–4494. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef]
- Thammachart, M.; Meeyoo, V.; Risksomboon, T.; Osuwan, S. Catalytic Activity of CeO2–ZrO2 Mixed Oxide Catalysts Prepared via Sol–Gel Technique: CO Oxidation. Catal. Today 2001, 68, 53–61. [Google Scholar] [CrossRef]
- Jacobsen, J.; Wegner, L.; Reinsch, H.; Stock, N. Ce-MIL-140: Expanding the Synthesis Routes for Cerium(IV) Metal–Organic Frameworks. Dalton Trans. 2020, 49, 11396–11402. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef] [PubMed]
- Lammert, M.; Wharmby, M.T.; Smolders, S.; Bueken, B.; Lieb, A.; Lomachenko, K.A.; Vos, D.D.; Stock, N. Cerium-Based Metal Organic Frameworks with UiO-66 Architecture: Synthesis, Properties and Redox Catalytic Activity. Chem. Commun. 2015, 51, 12578–12581. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.-F.; Wang, Y.-H.; Lee, C.-S. New Metal-Organic Frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)]⋅H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2]⋅4H2O. J. Solid State Chem. 2012, 188, 77–83. [Google Scholar] [CrossRef]
- Atzori, C.; Lomachenko, K.A.; Øien-Ødegaard, S.; Lamberti, C.; Stock, N.; Barolo, C.; Bonino, F. Disclosing the Properties of a New Ce(III)-Based MOF: Ce2(NDC)3(DMF)2. Cryst. Growth Des. 2019, 19, 787–796. [Google Scholar] [CrossRef]
- Han, Y.-F.; Zhou, X.-H.; Zheng, Y.-X.; Shen, Z.; Song, Y.; You, X.-Z. Syntheses, Structures, Photoluminescence, and Magnetic Properties of Nanoporous 3D Lanthanide Coordination Polymers with 4,4′-Biphenyldicarboxylate Ligand. CrystEngComm 2008, 10, 1237. [Google Scholar] [CrossRef]
- Jacobsen, J.; Ienco, A.; D’Amato, R.; Costantino, F.; Stock, N. The Chemistry of Ce-Based Metal–Organic Frameworks. Dalton Trans. 2020, 49, 16551–16586. [Google Scholar] [CrossRef]
- Gil-Hernández, B.; Maclaren, J.K.; Höppe, H.A.; Pasán, J.; Sanchiz, J.; Janiak, C. Homochiral Lanthanoid(III) Mesoxalate Metal–Organic Frameworks: Synthesis, Crystal Growth, Chirality, Magnetic and Luminescent Properties. CrystEngComm 2012, 14, 2635. [Google Scholar] [CrossRef]
- Qi, J.-L.; Zheng, Y.-Q.; Xu, W.; Zhu, H.-L.; Lin, J.-L.; Chang, H.-S. New Ce(Iii) Sulfate–Tartrate-Based MOFs: An Insight into the Controllable Self-Assembly of Acentric Metal–Organic Complexes. CrystEngComm 2013, 15, 10618. [Google Scholar] [CrossRef]
- Han, Y.; Li, X.; Li, L.; Ma, C.; Shen, Z.; Song, Y.; You, X. Structures and Properties of Porous Coordination Polymers Based on Lanthanide Carboxylate Building Units. Inorg. Chem. 2010, 49, 10781–10787. [Google Scholar] [CrossRef]
- D’Arras, L.; Sassoye, C.; Rozes, L.; Sanchez, C.; Marrot, J.; Marre, S.; Aymonier, C. Fast and Continuous Processing of a New Sub-Micronic Lanthanide-Based Metal–Organic Framework. New J. Chem. 2014, 38, 1477–1483. [Google Scholar] [CrossRef]
- Lin, A.; Ibrahim, A.A.; Arab, P.; El-Kaderi, H.M.; El-Shall, M.S. Palladium Nanoparticles Supported on Ce-Metal–Organic Framework for Efficient CO Oxidation and Low-Temperature CO2 Capture. ACS Appl. Mater. Interfaces 2017, 9, 17961–17968. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, J.; Li, Z.; Wang, X.; Wang, Z. Synthesis, Structure and Properties of Pd@MOF-808. J. Mater. Sci. 2019, 54, 12911–12924. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to Metal−Organic Framework. J. Am. Chem. Soc. 2009, 131, 11302–11303. [Google Scholar] [CrossRef]
- Qian, L.; Zhen, Z.; Jian, L.; Yue-Chang, W.; Gui-Yuan, J.; Ai-Jun, D. Pd Nanoparticles Deposited on Metal-Organic Framework of MIL-53(Al): An Active Catalyst for CO Oxidation. Acta Phys.-Chim. Sin. 2014, 30, 129–134. [Google Scholar] [CrossRef]
- Bai, C.; Li, A.; Yao, X.; Liu, H.; Li, Y. Efficient and Selective Aerobic Oxidation of Alcohols Catalysed by MOF-Derived Co Catalysts. Green Chem. 2016, 18, 1061–1069. [Google Scholar] [CrossRef]
- Gong, X.; Wang, W.-W.; Fu, X.-P.; Wei, S.; Yu, W.-Z.; Liu, B.; Jia, C.-J.; Zhang, J. Metal-Organic-Framework Derived Controllable Synthesis of Mesoporous Copper-Cerium Oxide Composite Catalysts for the Preferential Oxidation of Carbon Monoxide. Fuel 2018, 229, 217–226. [Google Scholar] [CrossRef]
- Al-Maythalony, B.A.; Shekhah, O.; Swaidan, R.; Belmabkhout, Y.; Pinnau, I.; Eddaoudi, M. Quest for Anionic MOF Membranes: Continuous Sod-ZMOF Membrane with CO2 Adsorption-Driven Selectivity. J. Am. Chem. Soc. 2015, 137, 1754–1757. [Google Scholar] [CrossRef]
- Li, P.; Vermeulen, N.A.; Gong, X.; Malliakas, C.D.; Stoddart, J.F.; Hupp, J.T.; Farha, O.K. Design and Synthesis of a Water-Stable Anionic Uranium-Based Metal–Organic Framework (MOF) with Ultra Large Pores. Angew. Chem. 2016, 128, 10514–10518. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Chakraborty, A.; Jayaramulu, K.; Hazra, A.; Maji, T.K. A Bimodal Anionic MOF: Turn-off Sensing of Cu II and Specific Sensitization of Eu III. Chem. Commun. 2014, 50, 13567–13570. [Google Scholar] [CrossRef]
- Aphirakaramwong, C.; Akintola, O.; Plass, C.T.; Sawangphruk, M.; Plass, W.; Balducci, A. Improving the Performance of an Anionic MOF by Counter Cation Replacement as Electrode Material in a Full Cell Setup of a Potassium Ion Capacitor. RSC Adv. 2023, 13, 12277–12284. [Google Scholar] [CrossRef]
- Hou, T.; Xu, W. Deep Dive into Anionic Metal-Organic Frameworks Based Quasi-Solid-State Electrolytes. J. Energy Chem. 2023, 81, 313–320. [Google Scholar] [CrossRef]
- Sun, H.-X.; Wang, H.-N.; Fu, Y.-M.; Meng, X.; He, Y.-O.; Yang, R.-G.; Zhou, Z.; Su, Z.-M. A Multifunctional Anionic Metal–Organic Framework for High Proton Conductivity and Photoreduction of CO2 Induced by Cation Exchange. Dalton Trans. 2022, 51, 4798–4805. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Bhattacharyya, S.; Hazra, A.; Ghosh, A.C.; Maji, T.K. Post-Synthetic Metalation in an Anionic MOF for Efficient Catalytic Activity and Removal of Heavy Metal Ions from Aqueous Solution. Chem. Commun. 2016, 52, 2831–2834. [Google Scholar] [CrossRef]
- Grebenyuk, D.; Shaulskaya, M.; Shevchenko, A.; Zobel, M.; Tedeeva, M.; Kustov, A.; Sadykov, I.; Tsymbarenko, D. Tuning the Cerium-Based Metal–Organic Framework Formation by Template Effect and Precursor Selection. ACS Omega 2023, 8, 48394–48404. [Google Scholar] [CrossRef] [PubMed]
- Long, L.-S.; Hu, J.-Y.; Ren, Y.-P.; Sun, Z.-G.; Huang, R.-B.; Zheng, L.-S. Crystal structure of a 3D coordination polymer: Sodium lanthanide terephthalate N, N-dimethylformamide solvate. Main Group Met. Chem. 2002, 25, 749–750. [Google Scholar] [CrossRef]
- Willems, T.F.; Rycroft, C.H.; Kazi, M.; Meza, J.C.; Haranczyk, M. Algorithms and Tools for High-Throughput Geometry-Based Analysis of Crystalline Porous Materials. Micropor. Mesopor. Mat. 2012, 149, 134–141. [Google Scholar] [CrossRef]
- Zamaro, J.M.; Pérez, N.C.; Miró, E.E.; Casado, C.; Seoane, B.; Téllez, C.; Coronas, J. HKUST-1 MOF: A Matrix to Synthesize CuO and CuO–CeO2 Nanoparticle Catalysts for CO Oxidation. Chem. Eng. J. 2012, 195–196, 180–187. [Google Scholar] [CrossRef]
- Stawowy, M.; Jagódka, P.; Matus, K.; Samojeden, B.; Silvestre-Albero, J.; Trawczyński, J.; Łamacz, A. HKUST-1-Supported Cerium Catalysts for CO Oxidation. Catalysts 2020, 10, 108. [Google Scholar] [CrossRef]
- Rojas-Buzo, S.; Salusso, D.; Le, T.-H.T.; Ortuño, M.A.; Lomachenko, K.A.; Bordiga, S. Unveiling the Role and Stabilization Mechanism of Cu + into Defective Ce-MOF Clusters during CO Oxidation. J. Phys. Chem. Lett. 2024, 15, 3962–3967. [Google Scholar] [CrossRef]
- Martínez-Arias, A.; Fernández-García, M.; Gálvez, O.; Coronado, J.M.; Anderson, J.A.; Conesa, J.C.; Soria, J.; Munuera, G. Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts. J. Catal. 2000, 195, 207–216. [Google Scholar] [CrossRef]
- Hossain, S.T.; Azeeva, E.; Zhang, K.; Zell, E.T.; Bernard, D.T.; Balaz, S.; Wang, R. A Comparative Study of CO Oxidation over Cu-O-Ce Solid Solutions and CuO/CeO2 Nanorods Catalysts. Appl. Surf. Sci. 2018, 455, 132–143. [Google Scholar] [CrossRef]
- Shang, H.; Zhang, X.; Xu, J.; Han, Y. Effects of Preparation Methods on the Activity of CuO/CeO2 Catalysts for CO Oxidation. Front. Chem. Sci. Eng. 2017, 11, 603–612. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, F.; Li, H.; Yang, Y.; Wang, Y.; Liu, N.; Yang, Y. A Strawsheave-like Metal Organic Framework Ce-BTC Derivative Containing High Specific Surface Area for Improving the Catalytic Activity of CO Oxidation Reaction. Micropor. Mesopor. Mat. 2018, 259, 211–219. [Google Scholar] [CrossRef]
- Tan, H.-Y.; Zhou, Y.; Yan, Y.-F.; Wu, D.-Y.; Hu, W.-B.; Shi, X.-Y. Metal Organic Framework Cu/MIL-53(Ce)-Mediated Synthesis of Highly Active and Stable CO Oxidation Catalysts. Inorg. Chem. Commun. 2017, 79, 74–77. [Google Scholar] [CrossRef]
- Grebenyuk, D.; Zobel, M.; Polentarutti, M.; Ungur, L.; Kendin, M.; Zakharov, K.; Degtyarenko, P.; Vasiliev, A.; Tsymbarenko, D. A Family of Lanthanide Hydroxo Carboxylates with 1D Polymeric Topology and Ln4 Butterfly Core Exhibits Switchable Supramolecular Arrangement. Inorg. Chem. 2021, 60, 8049–8061. [Google Scholar] [CrossRef]
- Tsymbarenko, D.; Grebenyuk, D.; Burlakova, M.; Zobel, M. Quick and Robust PDF Data Acquisition Using a Laboratory Single-Crystal X-Ray Diffractometer for Study of Polynuclear Lanthanide Complexes in Solid Form and in Solution. J. Appl. Crystallogr. 2022, 55, 890–900. [Google Scholar] [CrossRef]
- Tsymbarenko, D. FormagiX v.0.9.9b. 2D XRD Processing Software. 2025. Available online: https://formagix.org/. (accessed on 20 April 2025).
- Juhás, P.; Davis, T.; Farrow, C.L.; Billinge, S.J.L. PDFgetX3: A Rapid and Highly Automatable Program for Processing Powder Diffraction Data into Total Scattering Pair Distribution Functions. J. Appl. Crystallogr. 2013, 46, 560–566. [Google Scholar] [CrossRef]
- Juhás, P.; Farrow, C.L.; Yang, X.; Knox, K.R.; Billinge, S.J.L. Complex Modeling: A Strategy and Software Program for Combining Multiple Information Sources to Solve Ill Posed Structure and Nanostructure Inverse Problems. Acta Crystallogr. A Found. Adv. 2015, 71, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Boultif, A.; Louër, D. Indexing of Powder Diffraction Patterns for Low-Symmetry Lattices by the Successive Dichotomy Method. J. Appl. Crystallogr. 1991, 24, 987–993. [Google Scholar] [CrossRef]
- Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General Features. Z. Kristallogr. Cryst. Mater. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Palatinus, L.; Chapuis, G. SUPERFLIP–A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Vega, D.; Almeida, D. AIM-UC: An Application for QTAIM Analysis. J. Comput. Methods Sci. Eng. 2014, 14, 131–136. [Google Scholar] [CrossRef]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen Bond Strengths Revealed by Topological Analyses of Experimentally Observed Electron Densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]









| Na[Ce(BDC)2(DMF)2] | Na[Ce(BDC)2] | ||||
|---|---|---|---|---|---|
| Contact | XRD Distance, Å | DFT | DFT | ||
| Distance, Å | EBond kJ/mol | Distance, Å | EBond kJ/mol | ||
| Ce1–O1, Ce1–O1i | 2.47(3) | 2.547 | 59.3 | 2.479 | 74.6 |
| Ce1–O2ii, Ce1–O2iii | 2.67(3) | 2.647 | 43.6 | 2.657 | 43.1 |
| Ce1–O3, Ce1–O3i | 2.55(3) | 2.593 | 51.5 | 2.537 | 62.9 |
| Ce1–O4, Ce1–O4i | 2.61(3) | 2.622 | 46.7 | 2.564 | 57.0 |
| Ce1–O5, Ce1–O5i | 2.62(3) | 2.614 | 44.2 | — | |
| Na1–O2ii, Na1–O2v | 2.231(14) | 2.383 | 20.3 | 2.270 | 31.4 |
| Na1–O4, Na1–O4iv | 2.23(4) | 2.219 | 35.5 | 2.222 | 35.5 |
| Na1–O5, Na1–O5iv | 2.54(4) | 2.458 | 15.5 | — | |
| Na[Ce(BDC)2(DMF)2] | |
|---|---|
| Formula | C22H22CeN2NaO10 |
| Formula weight (g·mol−1) | 637.53 |
| Diffractometer | Tongda TD-3700 |
| Wavelength (Å) | 1.54187 (Cu Kα) |
| Data collection method | θ-θ scan |
| Temperature (K) | 293 |
| Crystal system | Monoclinic |
| Space group | C2/c |
| a (Å) | 16.9144(10) |
| b (Å) | 11.6992(6) |
| c (Å) | 12.6978(9) |
| β (°) | 100.928(5) |
| V (Å3) | 2467.1(3) |
| Z | 4 |
| Color, habit | White, powder |
| Sample dimensions (mm) | 30 × 30 × 0.5 |
| Dcalc (g·cm−3) | 1.7164 |
| μ (mm−1) | 14.952 |
| 2θ range (º) | 7–80 |
| Observed reflections | 769 |
| Parameters, restrains | 71, 57 |
| RBragg, Rp, ωRp | 0.0338, 0.0269, 0.0360 |
| Goodness-of-fit 1 | 3.09 |
| Absorption correction | not required |
| ρmin, ρmax (eÅ−3) | −0.74, 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikandrov, N.; Spasskaya, S.; Tedeeva, M.; Kustov, A.; Tsymbarenko, D. Robust Anionic Framework Based on Sodium–Cerium Terephthalate. Molecules 2025, 30, 4195. https://doi.org/10.3390/molecules30214195
Nikandrov N, Spasskaya S, Tedeeva M, Kustov A, Tsymbarenko D. Robust Anionic Framework Based on Sodium–Cerium Terephthalate. Molecules. 2025; 30(21):4195. https://doi.org/10.3390/molecules30214195
Chicago/Turabian StyleNikandrov, Nikita, Sofya Spasskaya, Marina Tedeeva, Alexander Kustov, and Dmitry Tsymbarenko. 2025. "Robust Anionic Framework Based on Sodium–Cerium Terephthalate" Molecules 30, no. 21: 4195. https://doi.org/10.3390/molecules30214195
APA StyleNikandrov, N., Spasskaya, S., Tedeeva, M., Kustov, A., & Tsymbarenko, D. (2025). Robust Anionic Framework Based on Sodium–Cerium Terephthalate. Molecules, 30(21), 4195. https://doi.org/10.3390/molecules30214195

