Cross-Linked Supramolecular Polyurea Elastomers with Mechanical Robustness and Recyclability
Abstract
1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of SPUEs
2.2. Mechanical and Thermal Performance of SPUEs
2.3. Solvent Resistance of SPUEs
2.4. Dynamic Properties and Recyclability of SPUEs
3. Materials and Methods
3.1. Materials
3.2. Synthesis
3.2.1. Synthesis of the Supramolecular Diamine Monomer (UPy-NH2)2
3.2.2. Synthesis of Supramolecular Polyurea Elastomers (SPUEs)
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pascault, J.P.; Williams, R.J.J. Chapter 1—Overview of thermosets: Present and future. In Thermosets, 2nd ed.; Guo, Q., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–34. [Google Scholar]
- Osborne, P.B.; Skelton, J. Survey of undergraduate esthetic courses in U.S. and Canadian dental schools. J. Dent. Educ. 2002, 66, 421–425. [Google Scholar] [CrossRef]
- Podgórski, M.; Fairbanks, B.D.; Kirkpatrick, B.E.; McBride, M.; Martinez, A.; Dobson, A.; Bongiardina, N.J.; Bowman, C.N. Toward Stimuli-Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs). Adv. Mater. 2020, 32, e1906876. [Google Scholar] [CrossRef]
- Scheutz, G.M.; Lessard, J.J.; Sims, M.B.; Sumerlin, B.S. Adaptable Crosslinks in Polymeric Materials: Resolving the Intersection of Thermoplastics and Thermosets. J. Am. Chem. Soc. 2019, 141, 16181–16196. [Google Scholar] [CrossRef]
- Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chem. Rev. 2021, 121, 1716–1745. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.M.; Robertson, M.L. The future of plastics recycling. Science 2017, 358, 870–872. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef]
- Millican, J.M.; Agarwal, S. Plastic Pollution: A Material Problem? Macromolecules 2021, 54, 4455–4469. [Google Scholar] [CrossRef]
- Pinheiro, H.T.; MacDonald, C.; Santos, R.G.; Ali, R.; Bobat, A.; Cresswell, B.J.; Francini-Filho, R.; Freitas, R.; Galbraith, G.F.; Musembi, P.; et al. Plastic pollution on the world’s coral reefs. Nature 2023, 619, 311–316. [Google Scholar] [CrossRef]
- Chen, X.; Dam, M.A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S.R.; Sheran, K.; Wudl, F. A Thermally Re-mendable Cross-Linked Polymeric Material. Science 2002, 295, 1698–1702. [Google Scholar] [CrossRef]
- Scott, T.F.; Schneider, A.D.; Cook, W.D.; Bowman, C.N. Photoinduced Plasticity in Cross-Linked Polymers. Science 2005, 308, 1615–1617. [Google Scholar] [CrossRef] [PubMed]
- Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Science 2011, 334, 965–968. [Google Scholar] [CrossRef]
- Billiet, S.; De Bruycker, K.; Driessen, F.; Goossens, H.; Van Speybroeck, V.; Winne, J.M.; Du Prez, F.E. Triazolinediones enable ultrafast and reversible click chemistry for the design of dynamic polymer systems. Nat. Chem. 2014, 6, 815–821. [Google Scholar] [CrossRef]
- Dodge, J. Synthetic Methods in Step-Growth Polymers; Wiley: Hoboken, NJ, USA, 2003; pp. 197–263. [Google Scholar]
- Sun, Y.-x.; Wang, X.; Ji, C.; Zhao, C.-x.; Liu, P.-l.; Meng, L.; Zhang, K.; Jiang, T. Experimental investigation on anti-penetration performance of polyurea-coated ASTM1045 steel plate subjected to projectile impact. Def. Technol. 2021, 17, 1496–1513. [Google Scholar] [CrossRef]
- Iqbal, N.; Tripathi, M.; Parthasarathy, S.; Kumar, D.; Roy, P.K. Polyurea coatings for enhanced blast-mitigation: A review. RSC Adv. 2016, 6, 109706–109717. [Google Scholar] [CrossRef]
- Wu, Y.-C.M.; Hu, W.; Sun, Y.; Veysset, D.; Kooi, S.E.; Nelson, K.A.; Swager, T.M.; Hsieh, A.J. Unraveling the high strain-rate dynamic stiffening in select model polyurethanes—the role of intermolecular hydrogen bonding. Polymer 2019, 168, 218–227. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, L.; Zhai, J.; Yang, R.; Guo, X. Analysis of the mechanical behavior of polyurethane thermoset elastomers based on hydrogen bonding between different crosslinking point structures. Polymer 2023, 285, 126356. [Google Scholar] [CrossRef]
- Guo, Z.; Lu, X.; Wang, X.; Li, X.; Li, J.; Sun, J. Engineering of Chain Rigidity and Hydrogen Bond Cross-Linking toward Ultra-Strong, Healable, Recyclable, and Water-Resistant Elastomers. Adv. Mater. 2023, 35, 2300286. [Google Scholar] [CrossRef]
- Zhang, Y.; Ying, H.; Hart, K.R.; Wu, Y.; Hsu, A.J.; Coppola, A.M.; Kim, T.A.; Yang, K.; Sottos, N.R.; White, S.R.; et al. Malleable and Recyclable Poly(urea-urethane) Thermosets bearing Hindered Urea Bonds. Adv. Mater. 2016, 28, 7646–7651. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gangarapu, S.; Escorihuela, J.; Fei, G.; Zuilhof, H.; Xia, H. Dynamic covalent urea bonds and their potential for development of self-healing polymer materials. J. Mater. Chem. A 2019, 7, 15933–15943. [Google Scholar] [CrossRef]
- Liu, W.-X.; Yang, Z.; Qiao, Z.; Zhang, L.; Zhao, N.; Luo, S.; Xu, J. Dynamic multiphase semi-crystalline polymers based on thermally reversible pyrazole-urea bonds. Nat. Commun. 2019, 10, 4753. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Tan, J.; Li, Y.; Ni, X.; Zeng, Z.; Qin, B. Mechanically Robust and Recyclable Polyurea Networks Enabled by Dynamic Caprolactam–Urea Bonds. Chem. Eur. J. 2025, 31, e202500569. [Google Scholar] [CrossRef]
- Brunsveld, L.; Folmer, B.J.; Meijer, E.W.; Sijbesma, R.P. Supramolecular polymers. Chem. Rev. 2001, 101, 4071–4098. [Google Scholar] [CrossRef]
- Burnworth, M.; Tang, L.; Kumpfer, J.R.; Duncan, A.J.; Beyer, F.L.; Fiore, G.L.; Rowan, S.J.; Weder, C. Optically healable supramolecular polymers. Nature 2011, 472, 334–337. [Google Scholar] [CrossRef]
- Yan, X.; Wang, F.; Zheng, B.; Huang, F. Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 2012, 41, 6042–6065. [Google Scholar] [CrossRef]
- Zhang, S.; Qin, B.; Huang, Z.; Xu, J.F.; Zhang, X. Supramolecular Emulsion Interfacial Polymerization. ACS Macro Lett. 2019, 8, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Fouquey, C.; Lehn, J.-M.; Levelut, A.-M. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater. 1990, 2, 254–257. [Google Scholar] [CrossRef]
- Aida, T.; Meijer, E.W.; Stupp, S.I. Functional Supramolecular Polymers. Science 2012, 335, 813–817. [Google Scholar] [CrossRef]
- Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions. Chem. Rev. 2015, 115, 7196–7239. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, Y.; Gao, J.; Wang, Z.; Zhang, X. Water-Soluble Supramolecular Polymerization Driven by Multiple Host-Stabilized Charge-Transfer Interactions. Angew. Chem. Int. Ed. 2010, 49, 6576–6579. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, M.; Zhang, Q.; Qu, D.; Tian, H. Construction of Polypseudorotaxane from Low-Molecular Weight Monomers via Dual Noncovalent Interactions. Macromolecules 2011, 44, 4092–4097. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, L.; Liu, Y.; Wang, Z.; Scherman, O.A.; Zhang, X. Supramolecular Polymerization Promoted and Controlled through Self-Sorting. Angew. Chem. Int. Ed. 2014, 53, 5351–5355. [Google Scholar] [CrossRef]
- Ushakov, E.N.; Martyanov, T.P.; Vedernikov, A.I.; Pikalov, O.V.; Efremova, A.A.; Kuz’mina, L.G.; Howard, J.A.K.; Alfimov, M.V.; Gromov, S.P. Self-assembly through hydrogen bonding and photochemical properties of supramolecular complexes of bis(18-crown-6)stilbene with alkanediammonium ions. J. Photochem. Photobiol. A Chem. 2017, 340, 80–87. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Zhang, Y.; Zhang, C.-W.; Chen, L.-J.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H.-B. Cross-Linked Supramolecular Polymer Gels Constructed from Discrete Multi-pillar[5]arene Metallacycles and Their Multiple Stimuli-Responsive Behavior. J. Am. Chem. Soc. 2014, 136, 8577–8589. [Google Scholar] [CrossRef]
- Leone, G.; Palucci, B.; Zanchin, G.; Vignali, A.; Ricci, G.; Bertini, F. Dynamically Cross-Linked Polyolefins via Hydrogen Bonds: Tough yet Soft Thermoplastic Elastomers with High Elastic Recovery. ACS Appl. Polym. Mater 2022, 4, 3770–3778. [Google Scholar] [CrossRef]
- Chino, K. Structure of Multinetwork Elastomer: Comparison with Hydrogen Bond Cross-Linking Elastomer. ACS Omega 2022, 7, 37520–37531. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Dong, X. Dynamic polymeric materials via hydrogen-bond cross-linking: Effect of multiple network topologies. Prog. Polym. Sci. 2024, 158, 101890. [Google Scholar] [CrossRef]
- Zhang, D.; Nakagawa, S.; Houjou, H.; Yoshie, N. Preparation of a Tough Elastomer by the Introduction of Multiple Flexible Hydrogen Bonds via Simple Modification. Macromolecules 2025, 58, 10361–10369. [Google Scholar] [CrossRef]
- Guan, T.; Wang, X.; Zhu, Y.-L.; Qian, L.; Lu, Z.; Men, Y.; Li, J.; Wang, Y.; Sun, J. Mechanically Robust Skin-like Poly(urethane-urea) Elastomers Cross-Linked with Hydrogen-Bond Arrays and Their Application as High-Performance Ultrastretchable Conductors. Macromolecules 2022, 55, 5816–5825. [Google Scholar] [CrossRef]
- Yang, T.; Lu, X.; Wang, X.; Li, Y.; Wei, X.; Wang, W.; Sun, J. Healable, Recyclable, and Scratch-Resistant Polyurethane Elastomers Cross-Linked with Multiple Hydrogen Bonds. ACS Appl. Polym. Mater 2023, 5, 2830–2839. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J.; Huang, J.; Yang, S. Robust, Stretchable, and Self-Healable Supramolecular Elastomers Synergistically Cross-Linked by Hydrogen Bonds and Coordination Bonds. ACS Appl. Mater. Interfaces 2019, 11, 7387–7396. [Google Scholar] [CrossRef]
- Duan, X.; Cao, W.; He, X.; Wang, M.; Cong, R.; Zhang, Z.; Ning, C.; Wang, C.; Zhao, S.; Li, Z.; et al. Realization of dual crosslinked network robust, high toughness self-healing polyurethane elastomers for electronics applications. Chem. Eng. J. 2023, 476, 146536. [Google Scholar] [CrossRef]
- Lu, L.; Xu, J.; Li, J.; Xing, Y.; Zhou, Z.; Zhang, F. High-Toughness and Intrinsically Self-Healing Cross-Linked Polyurea Elastomers with Dynamic Sextuple H-Bonds. Macromolecules 2024, 57, 2100–2109. [Google Scholar] [CrossRef]
- Tian, C.; Zhao, F.; Yang, N.; Jiang, Y.; Huang, L.; Zhou, F.; Yuan, D.; Cai, X. Durable, Super-Resilient, and Ultra-Strong Polyurethane Elastomers Via a Dense Hydrogen Bond Cross-Linking Strategy. Macromolecules 2025, 58, 2905–2916. [Google Scholar] [CrossRef]
- Sijbesma, R.P.; Beijer, F.H.; Brunsveld, L.; Folmer, B.J.B.; Hirschberg, J.H.K.K.; Lange, R.F.M.; Lowe, J.K.L.; Meijer, E.W. Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. Science 1997, 278, 1601–1604. [Google Scholar] [CrossRef] [PubMed]
- Jeon, L.S.; Kim, S.-Y.; Kim, S.J.; Lee, Y.-G.; Kang, M.-S.; Kang, Y.S. Supramolecular electrolytes with multiple hydrogen bonds for solid state dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 2010, 212, 88–93. [Google Scholar] [CrossRef]
- Zhao, Y.-P.; Zhao, C.-C.; Wu, L.-Z.; Zhang, L.-P.; Tung, C.-H.; Pan, Y.-J. First Fluorescent Sensor for Fluoride Based on 2-Ureido-4[1H]-pyrimidinone Quadruple Hydrogen-Bonded AADD Supramolecular Assembly. J. Org. Chem. 2006, 71, 2143–2146. [Google Scholar] [CrossRef]
- Peng, H.-Q.; Sun, C.-L.; Niu, L.-Y.; Chen, Y.-Z.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z. Supramolecular Polymeric Fluorescent Nanoparticles Based on Quadruple Hydrogen Bonds. Adv. Funct. Mater. 2016, 26, 5483–5489. [Google Scholar] [CrossRef]
- Liu, X.; Qin, B.; Xu, J.-F.; Wang, Z.; Zhang, X. Cross-linked supramolecular polymers synthesized by photo-initiated thiol-ene click reaction of supramonomers. J. Photochem. Photobiol. A Chem. 2018, 355, 414–418. [Google Scholar] [CrossRef]
- Qin, B.; Zhang, S.; Sun, P.; Tang, B.; Yin, Z.; Cao, X.; Chen, Q.; Xu, J.-F.; Zhang, X. Tough and Multi-Recyclable Cross-Linked Supramolecular Polyureas via Incorporating Noncovalent Bonds into Main-Chains. Adv. Mater. 2020, 32, 2000096. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, C.; Qin, B. Cross-Linked Supramolecular Polyurea Elastomers with Mechanical Robustness and Recyclability. Molecules 2025, 30, 4061. https://doi.org/10.3390/molecules30204061
Li Y, Wang C, Qin B. Cross-Linked Supramolecular Polyurea Elastomers with Mechanical Robustness and Recyclability. Molecules. 2025; 30(20):4061. https://doi.org/10.3390/molecules30204061
Chicago/Turabian StyleLi, Yanping, Chong Wang, and Bo Qin. 2025. "Cross-Linked Supramolecular Polyurea Elastomers with Mechanical Robustness and Recyclability" Molecules 30, no. 20: 4061. https://doi.org/10.3390/molecules30204061
APA StyleLi, Y., Wang, C., & Qin, B. (2025). Cross-Linked Supramolecular Polyurea Elastomers with Mechanical Robustness and Recyclability. Molecules, 30(20), 4061. https://doi.org/10.3390/molecules30204061