Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (177)

Search Parameters:
Keywords = polyureas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8317 KiB  
Article
Mechanical Properties and Ballistic Performance for Different Coatings on HARDOX 450 Steel for Defense Applications
by Cosmin Nicolescu, Tudor Viorel Tiganescu, Aurora Antoniac, Ovidiu Iorga, Brandusa Ghiban, Alexandru Pascu, Alexandru Streza and Iulian Antoniac
Crystals 2025, 15(8), 687; https://doi.org/10.3390/cryst15080687 - 29 Jul 2025
Viewed by 233
Abstract
The aim of the current study is to investigate the mechanical properties and ballistic performance of HARDOX 450 steel for defense applications in different conditions: uncoated, alumina-coated, and LINE X polyurea-coated. Tensile tests and Vickers microhardness measurements were conducted, along with fracture surface [...] Read more.
The aim of the current study is to investigate the mechanical properties and ballistic performance of HARDOX 450 steel for defense applications in different conditions: uncoated, alumina-coated, and LINE X polyurea-coated. Tensile tests and Vickers microhardness measurements were conducted, along with fracture surface analysis using stereomicroscopy, scanning electron microscopy, and computed tomography. Experimental results showed that uncoated HARDOX 450 steel exhibited the highest strength and hardness, with ductile fracture features. Polyurea-coated HARDOX 450 steel samples retained good mechanical properties and demonstrated effective ballistic protection, including the containment of fragments. In contrast, alumina-coated HARDOX 450 steel samples exhibited reduced strength and ballistic resistance, attributed to the microstructural changes in HARDOX 450 steel caused by the high-temperature deposition process of alumina. Numerical simulations performed with the 5.56 × 45 mm bullet used in the simulation, along with its ballistic impact interaction with the Hardox 450 target model, aligned well with experimental ballistic impact results for all the samples. Overall, LINE X polyurea coating on HARDOX 450 steel proved to be the more suitable coating for applications requiring a balance of mechanical strength and ballistic impact resistance. Full article
Show Figures

Figure 1

15 pages, 10114 KiB  
Article
Effect of Grain Size and Incidence Angle on Erosive Wear of Polyurea Coating
by Justyna Sokolska and Piotr Sokolski
Appl. Sci. 2025, 15(13), 7568; https://doi.org/10.3390/app15137568 - 5 Jul 2025
Viewed by 438
Abstract
This study investigated the erosive wear of a polyurea coating with a hardness of 95 ShA and a thickness of 3 mm applied to a 3 mm thick plate made of S235 steel. The process of erosive wear was carried out using a [...] Read more.
This study investigated the erosive wear of a polyurea coating with a hardness of 95 ShA and a thickness of 3 mm applied to a 3 mm thick plate made of S235 steel. The process of erosive wear was carried out using a stream of compressed air containing abrasive grains of aluminum oxide (Al2O3). The erosive wear was studied using different incidence angles (45°, 60° and 90°) and erosive grain sizes. Thus, the effects of the incidence angle and erosive grain size on the erosive wear of the polyurea coating were analyzed. Erosive wear was determined as linear wear: the depth of the wear trace was measured using an optical profilometer. This study showed a non-linear correlation between erosive wear, incidence angle and erosive particle size. In addition, a qualitative study of the surface of the coating after a wear test was carried out using a scanning electron microscope, which made it possible to describe the mechanisms of erosive wear of the polyurea coating. Full article
Show Figures

Figure 1

17 pages, 1866 KiB  
Article
Risk Management in the Analysis of Failures of Protective Coatings in Municipal Sewage Treatment Plant Tanks
by Janusz Banera, Marek Maj and Ahmad H. Musa
Buildings 2025, 15(13), 2254; https://doi.org/10.3390/buildings15132254 - 26 Jun 2025
Viewed by 262
Abstract
Polyurea failures in reinforced concrete tanks, such as swimming pools and sewage treatment plants, require a thorough analysis of the causes of failures during renovation. Urban agglomerations are increasingly relying on these facilities for maintaining city functioning, and the increasing concentration of pollutants [...] Read more.
Polyurea failures in reinforced concrete tanks, such as swimming pools and sewage treatment plants, require a thorough analysis of the causes of failures during renovation. Urban agglomerations are increasingly relying on these facilities for maintaining city functioning, and the increasing concentration of pollutants in these facilities necessitates urgent repairs due to frequent failures. More thorough analysis should be given to repeated failures on the same object or “twin” objects within a short period, causing high renovation costs and long shutdowns. The causes of failures can be found not only as a result of insufficient knowledge but also in a limited analysis of the entire project from the assumption phase to completion. The article analyzed water and sewage tanks on which failures of applied polyurea coatings occurred many times. The posteriori uses of the risk management analysis with the assessment of the impact and probability of occurrence of the planned activities that failed allows it to be applied a priori and treated as a necessary analysis. For this purpose, in selected repairs, those activities that had the greatest impact on failure and a relatively high probability of occurrence during implementation were distinguished from the entire project. Based on the risk management analysis, it was shown that the basic cause of the failure was the poor knowledge and insufficient experience of the entities performing the repairs, and the errors that occurred could be minimized by conducting good diagnostics of the facility, selecting professional designers and contractors, and constant monitoring of each important activity. Full article
Show Figures

Figure 1

17 pages, 5471 KiB  
Article
A Parallel Polyurea Method for Enhancing Damping Characteristics of Metal Lattice Structures in Vibration Isolation and Shock Resistance
by Zhongyi Cheng, Xinbin Zhang, Yizhong Zhuang, Yamin Zhao and Junning Cui
Appl. Sci. 2025, 15(13), 7116; https://doi.org/10.3390/app15137116 - 24 Jun 2025
Viewed by 226
Abstract
The inherent damping deficiency in metal lattice structures leads to inadequate attenuation of both resonant peaks and shock-induced vibrations, significantly limiting their effectiveness in vibration isolation and shock resistance applications. To address this limitation, we developed a novel parallel polyurea method that utilizes [...] Read more.
The inherent damping deficiency in metal lattice structures leads to inadequate attenuation of both resonant peaks and shock-induced vibrations, significantly limiting their effectiveness in vibration isolation and shock resistance applications. To address this limitation, we developed a novel parallel polyurea method that utilizes the viscoelastic energy dissipation mechanism of polyurea to substantially improve structural damping performance. The metal lattice–polyurea parallel vibration isolation system was designed with its theoretical model established to characterize damping properties, vibration isolation, and shock-resistant performance. An experimental setup was developed to validate theoretical predictions through controlled semi-sinusoidal shock and swept-frequency tests. Experimental results demonstrate excellent agreement with theoretical predictions. The introduction of the polyurea damping structure significantly enhances the system’s damping performance. Compared to the conventional metal lattice isolator, the proposed metal lattice–polyurea parallel composite structure shows remarkable damping improvements: under shock excitation, it achieves substantial attenuation of peak response amplitude with accelerated decay rate, while under frequency-sweep excitation, it maintains the original resonance frequency but reduces the transmissibility peak significantly. Full article
Show Figures

Figure 1

19 pages, 4332 KiB  
Article
Numerical Simulation and Experimental Validation of Masonry Walls Strengthened with Stiff-Type Polyurea Under Seismic Loads
by Tae-Hee Lee, Jong-Wook Kim, Sangwon Lee and Jang-Ho Jay Kim
Appl. Sci. 2025, 15(12), 6912; https://doi.org/10.3390/app15126912 - 19 Jun 2025
Viewed by 303
Abstract
The deterioration of aging masonry structures poses significant challenges to structural safety, particularly under seismic loading. In response to the growing need for effective retrofitting solutions, stiff-type polyurea (STPU) has emerged as a promising material due to its high tensile strength, durability, and [...] Read more.
The deterioration of aging masonry structures poses significant challenges to structural safety, particularly under seismic loading. In response to the growing need for effective retrofitting solutions, stiff-type polyurea (STPU) has emerged as a promising material due to its high tensile strength, durability, and rapid application characteristics. This study investigates the seismic performance of masonry walls retrofitted with STPU through both shaking table tests and finite element analysis (FEA). Three types of specimens (non-strengthened, STPU-strengthened, and STPU + GFRP-strengthened walls) were subjected to out-of-plane seismic loading with additional mass loading to simulate real-world conditions. Experimental results demonstrated that STPU significantly improved the ductility and seismic resistance of masonry walls, with the STPU + GFRP hybrid system showing the highest performance. A simplified micro-model using ABAQUS successfully captured the primary failure modes and load-bearing behavior observed in the experiments. Furthermore, a parametric study on STPU thickness identified 2 mm as the most efficient thickness considering both strengthening effect and material economy. These findings confirm the effectiveness of STPU as a retrofitting material and demonstrate the reliability of the proposed numerical modeling approach in predicting the seismic response of retrofitted masonry structures. Full article
(This article belongs to the Special Issue Simplified Seismic Analysis of Complex Civil Structures)
Show Figures

Figure 1

18 pages, 2086 KiB  
Article
Removal of Mercury from Aqueous Environments Using Polyurea-Crosslinked Calcium Alginate Aerogels
by Evangelia Sigala, Artemisia Zoi, Grigorios Raptopoulos, Elias Sakellis, Aikaterini Sakellari, Sotirios Karavoltsos and Patrina Paraskevopoulou
Gels 2025, 11(6), 437; https://doi.org/10.3390/gels11060437 - 6 Jun 2025
Viewed by 1143
Abstract
The removal of mercury(II) from aquatic environments using polyurea-crosslinked calcium alginate (X-alginate) aerogels was investigated through batch-type experiments, focusing on low mercury concentrations (50–180 μg·L−1), similar to those found in actual contaminated environments. Within this concentration range, the metal retention was [...] Read more.
The removal of mercury(II) from aquatic environments using polyurea-crosslinked calcium alginate (X-alginate) aerogels was investigated through batch-type experiments, focusing on low mercury concentrations (50–180 μg·L−1), similar to those found in actual contaminated environments. Within this concentration range, the metal retention was very high, ranging from 85% to quantitative (adsorbent dosage: 0.6 g L−1). The adsorption process followed the Langmuir isotherm model with a sorption capacity of 4.4 mmol kg−1 (883 mg kg−1) at pH 3.3. Post-adsorption analysis with EDS confirmed the presence of mercury in the adsorbent and the replacement of calcium in the aerogel matrix. Additionally, coordination/interaction with other functional groups on the adsorbent surface may occur. The adsorption kinetics were best described by the pseudo-first-order model, indicating a diffusion-controlled mechanism and relatively weak interactions. The adsorbent was regenerated via washing with a Na2EDTA solution and reused at least three times without substantial loss of sorption capacity. Furthermore, X-alginate aerogels were tested for mercury removal from an industrial wastewater sample (pH 7.75) containing 61 μg·L−1 mercury (and competing ions), achieving 71% metal retention. These findings, along with the stability of X-alginate aerogels in natural waters and wastewaters, highlight their potential for sustainable mercury removal applications. Full article
(This article belongs to the Special Issue Polymer Aerogels and Aerogel Composites)
Show Figures

Graphical abstract

15 pages, 2849 KiB  
Article
Multifunctional Meta-Aramid Fabrics Enhanced with Inherent Flame-Retardant Polyurea Coatings: Integration of Mechanical Strength, Puncture Resistance, and Self-Healing Properties
by Kang Yang, Yuncheng Zhao, Ke Shang and Bin Zhao
Polymers 2025, 17(11), 1529; https://doi.org/10.3390/polym17111529 - 30 May 2025
Viewed by 617
Abstract
In this study, a solvent-free, slow-curing, inherently flame-retardant polyurea coating was successfully developed through an optimized formulation. The novel polyurea was synthesized using mixed Schiff base latent curing agents derived from terminal polyether amines with different-number average molecular weights (D2000 and D400), methyl [...] Read more.
In this study, a solvent-free, slow-curing, inherently flame-retardant polyurea coating was successfully developed through an optimized formulation. The novel polyurea was synthesized using mixed Schiff base latent curing agents derived from terminal polyether amines with different-number average molecular weights (D2000 and D400), methyl isobutyl ketone, and polyethyl phosphate glycol ester (OP550). Subsequently, polyurea/meta-aramid (PUA/AF) composite fabrics were fabricated via a scraping coating technique. Thermogravimetric analysis revealed enhanced char formation and reduced decomposition temperatures due to the incorporation of OP550. Comprehensive flame retardant performance was demonstrated through vertical flame testing, limiting oxygen index, and micro-scale combustion calorimetry, with results showing significantly reduced heat release rates, lower total heat release, and increased residual char. Mechanical evaluations indicated marked improvements in tearing, tensile, single-yarn tensile, and bursting forces, attributed to strong fiber–polyurea interfacial interactions, as confirmed by detailed SEM morphological analyses. Moreover, the PUA/AF composites exhibited excellent static puncture resistance and effective self-healing capability. Collectively, these advancements highlight the potential of PUA/AF composite fabrics as promising candidates for advanced protective textiles, integrating superior flame retardancy, mechanical strength, puncture resistance, and self-repairing functionality. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 6431 KiB  
Article
Reactive Nanofiller Reinforced Hybrid Polyurea: The Role of CNC in Material Preparation and Characterization
by Kadir Duman, Madalina Ioana Necolau, Elena Iuliana Bîru, Anamaria Zaharia and Horia Iovu
Polymers 2025, 17(11), 1527; https://doi.org/10.3390/polym17111527 - 30 May 2025
Viewed by 559
Abstract
This study presents the development and analysis of hybrid polyurea composite materials. Neat polyurea was reinforced with cellulose nanocrystals (CNCs) and isocyanate-modified CNCs (CNC-ISOs) via a two-step prepolymer process. Introducing CNC considerably increased the mechanical strength and stiffness of the polyurea matrix. The [...] Read more.
This study presents the development and analysis of hybrid polyurea composite materials. Neat polyurea was reinforced with cellulose nanocrystals (CNCs) and isocyanate-modified CNCs (CNC-ISOs) via a two-step prepolymer process. Introducing CNC considerably increased the mechanical strength and stiffness of the polyurea matrix. The tensile strength increased by up to 16.4%, and the Young modulus improved by approximately 29% compared to the pure polyurea. When CNC was functionalized with isocyanate, the interfacial bonding was further improved, and superior dispersion and load transfer were achieved. At 1.5% CNC-ISO loading, the modulus increased by approximately 128% compared to the unmodified matrix. Comprehensive analyses using FT-IR, XPS, DSC, TGA, DMA, tensile testing, and SEM showed that CNC-ISO films not only achieved higher tensile strength and better thermal stability but also formed a denser polymer network as evidenced by the increased crosslinking density. These findings highlight the importance of tailored nanofiller modification to create advanced polyurea composites with enhanced performance suitable for demanding protective and structural applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

16 pages, 12805 KiB  
Article
Influence of Embedding Microcapsules on Tribological Properties of Alumina Ceramics Prepared by Gel Casting
by Ze Sun, Hui Chen, Xianglong Meng, Guangchun Xiao, Zhaoqiang Chen, Mingdong Yi, Jingjie Zhang, Wenyu Liu and Chonghai Xu
Materials 2025, 18(9), 2110; https://doi.org/10.3390/ma18092110 - 4 May 2025
Cited by 1 | Viewed by 516
Abstract
The continuous advancement of technology has led to escalating demands for superior tribological performance in industrial applications, necessitating the enhancement of ceramic materials’ frictional properties through innovative approaches. Solid-lubricant embedding is a widely employed lubrication strategy in metals. However, the challenge of machining [...] Read more.
The continuous advancement of technology has led to escalating demands for superior tribological performance in industrial applications, necessitating the enhancement of ceramic materials’ frictional properties through innovative approaches. Solid-lubricant embedding is a widely employed lubrication strategy in metals. However, the challenge of machining holes on ceramic surfaces remains a significant barrier to applying this lubrication technique to ceramics. Gel casting, as a near-net-shaping process, offers several advantages, including uniform green body density, low organic content, and the capability to fabricate components with complex geometries, making it a promising solution for addressing these challenges. In this study, alumina ceramics with small surface holes designed for embedding oil-containing microcapsules were fabricated via gel casting using an N-hydroxy methylacrylamide gel system, which demonstrates lower toxicity compared to conventional acrylamide systems. The fabricated alumina ceramic materials exhibited a high density of 98.2%, a hardness of 16 GPa, and a bending strength of 276 MPa. The oil-containing microcapsules were self-synthesized using hexafluorophosphate ionic liquid as the core material and polyurea-formaldehyde as the wall material. The research results show that under conditions of using an alumina ball, sliding speed of 10 cm/min, load of 5 N, and at room temperature, the material with a microcapsule content of 15 wt% and embedded hole diameter of 1.2 mm reduced the friction coefficient from 0.696 in an unlubricated condition to 0.317. Moreover, the embedding of microcapsules further improved the wear resistance of the alumina. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

14 pages, 1892 KiB  
Article
In Vivo Antimicrobial Activity of Nisin Z Against S. aureus and Polyurea Pharmadendrimer PUREG4OEI48 Against P. aeruginosa from Diabetic Foot Infections
by Isa Serrano, Dalila Mil-Homens, Rita F. Pires, Vasco D. B. Bonifácio, Joana F. Guerreiro, Eva Cunha, Sofia S. Costa, Luís Tavares and Manuela Oliveira
Antibiotics 2025, 14(5), 444; https://doi.org/10.3390/antibiotics14050444 - 28 Apr 2025
Cited by 1 | Viewed by 1025
Abstract
Background/Objectives: Diabetic foot infections (DFIs) are commonly associated with frequent hospitalizations, limb amputations, and premature death due to the profile of the bacteria infecting foot ulcers. DFIs are generally colonized by a polymicrobial net of bacteria that grows in biofilms, developing an increased [...] Read more.
Background/Objectives: Diabetic foot infections (DFIs) are commonly associated with frequent hospitalizations, limb amputations, and premature death due to the profile of the bacteria infecting foot ulcers. DFIs are generally colonized by a polymicrobial net of bacteria that grows in biofilms, developing an increased antimicrobial resistance to multiple antibiotics. DFI treatment is a hurdle, and the need to develop new therapies that do not promote resistance is urgent. Therefore, the antibacterial efficacy of Nisin Z (antimicrobial peptide), a core–shell polycationic polyurea pharmadendrimer (PUREG4OEI48) (antimicrobial polymer), and amlodipine (antihypertensive drug) was evaluated against S. aureus and P. aeruginosa isolated from a DFI and previously characterized. Methods: The antibacterial activity was analyzed in vitro by determining the minimal inhibitory concentration (MIC) and in vivo in a Galleria mellonella model by assessing the larvae survival and health index. Results: The results indicate that Nisin Z exhibited antibacterial activity against S. aureus in vivo, allowing larvae full survival, and no antibacterial activity against P. aeruginosa. Nisin Z may have reduced the antibacterial effectiveness of both PUREG4OEI48 and amlodipine. PUREG4OEI48 significantly increased the survival of the larvae infected with P. aeruginosa, while amlodipine showed no activity against both bacteria in vivo. Conclusions: These findings suggest that both Nisin Z and PUREG4OEI48 could potentially be used individually as adjunct treatments for mild DFIs. However, further studies are needed to confirm these findings and assess the potential toxicity and efficacy of PUREG4OEI48 in more complex models. Full article
(This article belongs to the Special Issue Strategies to Combat Antibiotic Resistance and Microbial Biofilms)
Show Figures

Figure 1

15 pages, 3554 KiB  
Article
Ozone Nanobubble-Assisted Pretreatment of Lignocellulose: Enhancing Wood Liquefaction and Bio-Polyurea Development
by Go Masuda, Christian Ebere Enyoh, Weiqian Wang, Satoshi Anzai and Qingyue Wang
Appl. Sci. 2025, 15(9), 4618; https://doi.org/10.3390/app15094618 - 22 Apr 2025
Viewed by 465
Abstract
Nanobubbles have emerged as a novel technology, yet their applications remain largely limited to cleaning and oxidation. This study explores the potential of ozone nanobubbles as a pretreatment method for liquefied wood. Wood meal was treated with ozone nanobubbles in tap water under [...] Read more.
Nanobubbles have emerged as a novel technology, yet their applications remain largely limited to cleaning and oxidation. This study explores the potential of ozone nanobubbles as a pretreatment method for liquefied wood. Wood meal was treated with ozone nanobubbles in tap water under three different conditions: room temperature, 50 °C, and room temperature followed by ultrasonic treatment. The treated samples were then compared with untreated wood meal through component analysis, FT-IR functional group evaluation, and X-Ray diffraction (XRD) analysis of cellulose crystallinity. In the liquefaction process, residue rates, FT-IR analysis, hydroxyl numbers, and viscosity were examined. Additionally, the mechanical properties of synthesized polyurea films were evaluated via tensile testing. The results showed a reduction in amorphous cellulose from 62.3% to 56.6% and hemicellulose from 42.8% to 35.9%, leading to liquefied wood with a high hydroxyl value from 341 KOH/mg to 387 KOH/mg and significantly lower viscosity from 684 cP to 264 cP. Furthermore, the polyurea films synthesized from the treated liquefied wood exhibited no deterioration in physical properties. These findings highlight ozone nanobubble pretreatment as a promising and industrially valuable process for producing low-residue, low-viscosity liquefied wood without compromising material performance. Full article
(This article belongs to the Special Issue Industrial Chemical Engineering and Organic Chemical Technology)
Show Figures

Figure 1

19 pages, 6501 KiB  
Article
Numerical Evaluation of Seismic Performance of RC Columns Strengthened with Stiff-Type Polyurea
by Tae-Hee Lee, Soo-Ho Han and Jang-Ho Jay Kim
Materials 2025, 18(8), 1839; https://doi.org/10.3390/ma18081839 - 17 Apr 2025
Viewed by 349
Abstract
After developing the experimental database of RC column specimens retrofitted with stiff-type polyurea (STPU), this study implemented STPU in finite-element (FE) modeling. The numerical analysis aimed to evaluate seismic performance factors by establishing a structural analysis model based on the experimental data. The [...] Read more.
After developing the experimental database of RC column specimens retrofitted with stiff-type polyurea (STPU), this study implemented STPU in finite-element (FE) modeling. The numerical analysis aimed to evaluate seismic performance factors by establishing a structural analysis model based on the experimental data. The model was calibrated and validated against experimental results, showing consistency in maximum displacement and strain within acceptable deviations. The key findings indicate that the dissipation energy and crack propagation were significantly reduced in reinforced specimens compared to unreinforced ones, demonstrating the effectiveness of STPU and glass fiber-reinforced polyurea (GFPU). The FE model further confirmed that circular specimens exhibited superior reinforcement effects compared to rectangular specimens due to their continuous surface geometry. These results enhance the understanding of STPU’s seismic reinforcement capabilities and provide a foundation for its practical application. The study results are discussed in detail in the paper. Full article
(This article belongs to the Special Issue Strengthening, Repair, and Retrofit of Reinforced Concrete)
Show Figures

Figure 1

12 pages, 4296 KiB  
Article
Effects of Gold Mine Tailings as an Additive on the Tribological Performance of Lubricating Polyurea Grease
by Xiaodong Liu, Heping Wang, Rongshe Wang, Binglong Zhang, Jiqing Wang, Wei Wang and Xihong He
Lubricants 2025, 13(4), 159; https://doi.org/10.3390/lubricants13040159 - 2 Apr 2025
Viewed by 424
Abstract
Lubricating greases with varying proportions of gold mine tailings or SiO2 as additives were prepared, and their friction and wear performance were evaluated using a four-ball tribometer. Scanning electron microscopy and three-dimensional surface profilometry were employed to analyze the thickener properties and [...] Read more.
Lubricating greases with varying proportions of gold mine tailings or SiO2 as additives were prepared, and their friction and wear performance were evaluated using a four-ball tribometer. Scanning electron microscopy and three-dimensional surface profilometry were employed to analyze the thickener properties and wear patterns on the steel balls. The results indicated that the addition of gold mine tailings significantly improved the friction-reducing and wear-resistant properties of the base grease compared with SiO2. At the optimal concentration of 3 wt%, the addition of gold mine tailings reduced the coefficient of friction and wear scar diameter of the base grease by 43.2% and 21.1%, respectively, yielding the best performance among the 11 tested samples. Further analysis revealed that silicate and calcium carbonate particles in the gold mine tailings were deposited on the surface, forming a protective layer. This layer, along with the grease film, contributed to substantial reductions in both friction and wear. Full article
Show Figures

Figure 1

14 pages, 3243 KiB  
Article
Study on the Load-Bearing and Mechanical Properties of Coal Specimens Under Uniaxial Compression with Polyurea Spraying
by Shuwen Cao, Jinhong Yang and Dingyi Hao
Appl. Sci. 2025, 15(7), 3486; https://doi.org/10.3390/app15073486 - 22 Mar 2025
Viewed by 297
Abstract
Polyurea spraying is a new temporary support technology that can significantly enhance the mechanical properties of coal. However, the mechanism of interactions between the polymer coating and coal is unclear. In this study, the No. 4 non-stick coal from Mengcun Coal Mine and [...] Read more.
Polyurea spraying is a new temporary support technology that can significantly enhance the mechanical properties of coal. However, the mechanism of interactions between the polymer coating and coal is unclear. In this study, the No. 4 non-stick coal from Mengcun Coal Mine and polyurea material were used to conduct experiments and numerical simulations. The tests and simulations were used to examine the role of the sprayed coating in the formation of residual strength and the unloading and rebound mechanism after brittle failure of the coal. The results showed that the presence of the polyurea coating had a significant impact on the mechanical behavior of the coal. The specimens sprayed with polyurea were affected by the confining pressure applied by the coating and the internal friction of the coal; consequently, the specimens exhibited certain plastic characteristics and maintained their residual strength after experiencing brittle failure. The polyurea coating not only effectively prevents the loosening and slippage of the coal but also improves the stability of the coal by altering its mechanical behavior during the loading process. This study lays the foundation for popularizing and applying polyurea spraying technology in coal mine support while providing rich data to support further theoretical research. Full article
Show Figures

Figure 1

15 pages, 2517 KiB  
Article
Hydrogen Bonding of Trialkyl-Substituted Urea in Organic Environment
by Zuzana Morávková, Jiří Podešva, Valeriia Shabikova, Sabina Abbrent and Miroslava Dušková-Smrčková
Molecules 2025, 30(7), 1410; https://doi.org/10.3390/molecules30071410 - 21 Mar 2025
Viewed by 965
Abstract
Urea groups appear in many biomolecules and polymers. They have a significant impact on the properties of the materials because of their inherent strength and for their ability to participate in hydrogen bonds. Typically, in classical urea-based polymer materials, the urea groups occur [...] Read more.
Urea groups appear in many biomolecules and polymers. They have a significant impact on the properties of the materials because of their inherent strength and for their ability to participate in hydrogen bonds. Typically, in classical urea-based polymer materials, the urea groups occur in their N,N′-disubstituted state. Recently, bis-aspartates have been introduced as a novel type of hindered amine resins providing, upon crosslinking with (poly)isocyanates, the polyurea–polyaspartate thermosets (PU-ASPE) for coatings, sealants, polyelectrolytes, and other applications. These materials contain N,NN′-trisubstituted urea linkages in their structures. However, the infrared (IR) characterization of trisubstituted urea groups has not been documented in sufficient detail. Consequently, studies on the structure of aspartate-based polyurea materials often rely on data from N,N′-disubstituted ureas, which can lead to inaccurate conclusions. This study presents a detailed evaluation of the possible urea H-bonding states, focusing on the difference between the di- and trisubstituted species. Particularly, the attributions of the IR spectra to urea-based hydrogen bonding states are presented both in neat materials and their solutions. To systematize this study, we initially focus on a simple trisubstituted urea model system, tributyl urea (3BUA), and compare its spectral response with disubstituted N-butyl-N′-cyclohexyl urea (1B1CHUA) and trisubstituted N-butyl-N′,N′-dicyclohexyl urea (1B2CHUA), to elucidate their hydrogen-bonding fingerprints. This research provides a thorough understanding of the IR response of the di- and trisubstituted urea species and their structural characteristics in urea-containing materials. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Figure 1

Back to TopTop