Abstract
Supercapacitors (SCs) are widely acknowledged for their high-power density as energy storage devices; designing electrode materials with both high efficiency and exceptional energy density remains a significant challenge. In this study, a flower-like iron-doped molybdenum sulfide on graphene nanosheets (FMS/G) was synthesized through a simple, efficient, and scalable solvothermal approach. The FMS/G composite demonstrated exceptional performance when employed as both positive and negative electrodes, owing to the effective incorporation of iron into the MoS2 crystal lattice. This doping induces defects and facilitates abundant redox reactions, ultimately boosting electrochemical performance. The FMS/G composite demonstrates an ultrahigh specific capacitance of 931 F g−1 at 1 A g−1, along with excellent rate capability, retaining 582 F g−1 at 20 A g−1. It also exhibits remarkable cycling stability, maintaining 90.5% of its initial capacitance after 10,000 cycles. Furthermore, the assembled FMS/G-3//FMS/G-3 supercapacitor device achieves a superior energy density of 64.7 Wh kg−1 at a power density of 0.8 kW kg−1 with outstanding cycling stability, retaining 92% of its capacitance after 10,000 cycles. The remarkable capabilities of the flower-like FMS/G composite underscore its noteworthy potential for promoting effective energy storage systems.