Recent Advances in Bioactive Compounds, Health Functions, and Utilization of Rose (Rosa spp.)
Abstract
1. Introduction
2. Bioactive Compounds in Rosa spp.
3. Bioactivities
3.1. Antioxidant Effect
3.2. Anti-Inflammatory Activity
3.3. Antibacterial Activity
3.4. Anti-Diabetic Effect
3.5. Anti-Cancer Effect
3.6. Neuroprotection
3.7. Gastrointestinal Protection
3.8. Hepatorenal Protection
3.9. Skin Protection
4. Cascade Utilization of Rosa spp.
4.1. Utilization of Raw Materials
4.2. Utilization of Rose Essential Oil and Rose Hydrosol
4.3. Applications of High-Value Compounds Extracted from Rosa spp. By-Products
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalisz, A.; Włodarczyk, Z.; Bieniasz, M.; Smoleń, S.; Neugebauerová, J.; Szewczyk Taranek, B.; Pawłowska, B. Petals of different ornamental rose cultivars as a rich source of bioactive compounds for functional foods. Sci. Hortic. 2023, 321, 112240. [Google Scholar] [CrossRef]
- Noh, Y.M.; Ait Hida, A.; Raymond, O.; Comte, G.; Bendahmane, M. The scent of roses, a bouquet of fragrance diversity. J. Exp. Bot. 2024, 75, 1252–1264. [Google Scholar] [CrossRef]
- Gandhi, G.R.; Hillary, V.E.; Antony, P.J.; Zhong, L.L.; Yogesh, D.; Krishnakumar, N.M.; Ceasar, S.A.; Gan, R.Y. A systematic review on anti-diabetic plant essential oil compounds: Dietary sources, effects, molecular mechanisms, and safety. Crit. Rev. Food Sci. Nutr. 2024, 64, 6526–6545. [Google Scholar] [CrossRef]
- Haghparasti, A.; Sichani, M.M.; Tavakoli, M. Chemical composition and antibacterial activity of wild rose (Rosa canina L.) gall extracts against gram-negative pathogenic bacteria. J. Adv. Biomed. Sci. 2023, 13, 13–22. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Li, C.L.; Luo, Y.; Zhang, W.; Cai, Q.; Wu, X.; Tan, Z.; Chen, R.; Chen, Z.; Wang, S.; Zhang, L. A comparative study on chemical compositions and biological activities of four essential oils: Cymbopogon citratus (DC.) Stapf, Cinnamomum cassia (L.) Presl, Salvia japonica Thunb. and Rosa rugosa Thunb. J. Ethnopharmacol. 2021, 280, 114472. [Google Scholar] [CrossRef]
- An, B.F.; Chen, C.Y.; Qiao, G.F. Research progress on the extraction and application of rose essential oil. J. Anhui Agric. Sci. 2024, 52, 6–10. [Google Scholar]
- Gidik, B.; Akar, Z.; Can, Z.; Sefali, A.; Erturk, O. Determination of antioxidant, antimicrobial activities, phenolic compounds of wild Rosa L. species Bayburt Turkey. Fresenius Environ. Bull. 2019, 28, 9973–9982. [Google Scholar]
- Xiao, Z.; Luo, J.; Niu, Y.; Wu, M. Characterization of key aroma compounds from different rose essential oils using gas chromatography-mass spectrometry, gas chromatography-olfactometry and partial least squares regression. Nat. Prod. Res. 2018, 32, 1567–1572. [Google Scholar] [CrossRef]
- Elhawary, E.A.; Mostafa, N.M.; Labib, R.M.; Singab, A.N. Metabolomic profiles of essential oils from selected Rosa varieties and their antimicrobial activities. Plants 2021, 10, 1721. [Google Scholar] [CrossRef]
- Oz, M.; Deniz, I.; Okan, O.T.; Baltaci, C.; Karatas, S.M. Determination of the chemical composition, antioxidant and antimicrobial activities of different parts of Rosa canina L. and Rosa pimpinellifolia L. essential oils. J. Essent. Oil Bear. Plants 2021, 24, 519–537. [Google Scholar] [CrossRef]
- Tao, Y.X.; An, B.F.; Chen, C.Y.; Qiao, G.F.; Feng, Z.S. Detection and component analysis of essential oils of four different varieties of roses. China Condiment 2024, 49, 149–154. [Google Scholar]
- Rathore, S.; Kundlas, K.; Kumar, R. Variability in essential oil content and constituent profile of damask rose (Rosa damascena Mill.) at altered intervals of harvest in the Indian Western Himalaya. J. Appl. Res. Med. Aromat. Plants 2024, 39, 100537. [Google Scholar] [CrossRef]
- Zhai, Y.M.; Li, Y.Y.; Liu, L.X.; Liu, Y.G. Extraction methods, physiological activities, and applications of rose residue and its bioactive components: A comprehensive review. J. Food Meas. Charact. 2025, 19, 5183–5196. [Google Scholar] [CrossRef]
- Liu, W.; Chen, L.; Huang, Y.; Fu, L.; Song, L.; Wang, Y.; Bai, Z.; Meng, F.; Bi, Y. Antioxidation and active constituents analysis of flower residue of Rosa damascena. Chin. Herb. Med. 2020, 12, 336–341. [Google Scholar] [CrossRef]
- Boso, S.; Gago, P.; Santiago, J.L.; Alvarez-Acero, I.; Bartolomé, M.A.M.; Martínez, M.C. Polyphenols in the waste water produced during the hydrodistillation of ‘Narcea Roses’ cultivated in the cibea river valley (northern Spain). Horticulturae 2022, 8, 376. [Google Scholar] [CrossRef]
- Yu, Y.; Lv, Y. Degradation kinetic of anthocyanins from rose (Rosa rugosa) as prepared by microencapsulation in freeze-drying and spray-drying. Int. J. Food Prop. 2019, 22, 2009–2021. [Google Scholar] [CrossRef]
- Slavov, A.; Panchev, I.; Kovacheva, D.; Vasileva, I. Physico-chemical characterization of water-soluble pectic extracts from Rosa damascena, Calendula officinalis and Matricaria chamomilla wastes. Food Hydrocoll. 2016, 61, 469–476. [Google Scholar] [CrossRef]
- Wu, M.; Li, W.; Zhang, Y.; Shi, L.; Xu, Z.; Xia, W.; Zhang, W. Structure characteristics, hypoglycemic and immunomodulatory activities of pectic polysaccharides from Rosa setate x Rosa rugosa waste. Carbohydr. Polym. 2021, 253, 117190. [Google Scholar] [CrossRef]
- Liu, Y.; Ao, H.; Zheng, J.; Liang, Y.; Ren, D. Improved functional properties of dietary fiber from Rosa roxburghii Tratt residue by steam explosion. J. Food Process. Preserv. 2021, 46, e16119. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Bui Thị Thu, V.; Vo Thi Minh, T.; Huynh Vinh, K.; Lam Vy, N.; Nguyen Hoang Thuy, V.; Luu Pham, T.; Xuan Nguyen, T.; Thi Thuy, D.; Huynh, H.D.; et al. UPLC-QTOF-MS/MS-Guided phytochemical characterization and molecular docking of Rosa rusoga extract for Keap1-Nrf2 modulation. Nat. Prod. Res. 2025, 1–9. [Google Scholar] [CrossRef]
- Laila, A.; Alyensi, F.; Pertiwi, R. Effect of natural antioxidant supplementation of rose cider (Rosa damascena) on oxidative stress in high-risk pregnant women: An analysis of malondialdehyde (MDA) biomarkers. J. Health Nutr. Res. 2025, 4, 633–640. [Google Scholar] [CrossRef]
- Bak, S.G.; Chandimali, N.; Park, E.J.; Lee, S.W.; Bae, J.; Rho, M.C.; Lee, S.J. Effectiveness of ethanol extract of Rosa rugosa Thunb. on ear edema. Mol. Nutr. Food Res. 2025, e70214. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Choi, S.H.; Lee, I.S.; Kim, Y.; An, E.J.; Jang, H.J. Anti-inflammatory effect of Rosa laevigata extract on in vitro and in vivo model of allergic asthma via the suppression of IgE and related cytokines. Mol. Cell. Toxicol. 2020, 16, 119–127. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, F.; Wang, L.; Hao, M.; Yang, X.; Li, N.; Ji, H.; Xu, P. Flavonoids of Rosa roxburghii Tratt offers protection against radiation induced apoptosis and inflammation in mouse thymus. Apoptosis 2018, 23, 470–483. [Google Scholar] [CrossRef]
- Wang, C.; Kim, I.J.; Seong, H.R.; Noh, C.H.; Park, S.; Kim, T.M.; Jeong, H.S.; Kim, K.Y.; Kim, S.T.; Yuk, H.G.; et al. Antioxidative and anti-inflammatory activities of rosebud extracts of newly crossbred roses. Nutrients 2023, 15, 2376. [Google Scholar] [CrossRef]
- Alves, M.M.; Batista, C.; Mil-Homens, D.; Grenho, L.; Fernandes, M.H.; Santos, C.F. Enhanced antibacterial activity of Rosehip extract-functionalized Mg(OH)2 nanoparticles: An in vitro and in vivo study. Colloids Surf. B Biointerfaces 2022, 217, 112643. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, C.; Huang, Q.; Fu, X. Polysaccharide from Rosa roxburghii Tratt fruit attenuates hyperglycemia and hyperlipidemia and regulates colon microbiota in diabetic db/db mice. J. Agric. Food Chem. 2020, 68, 47–159. [Google Scholar] [CrossRef]
- Liu, L.; Yasen, M.; Tang, D.; Ye, J.; Aisa, H.A.; Xin, X. Polyphenol-enriched extract of Rosa rugosa Thunb regulates lipid metabolism in diabetic rats by activation of AMPK pathway. Biomed. Pharmacother. 2018, 100, 29–35. [Google Scholar] [CrossRef]
- Rahimi, M.; Sajadimajd, S.; Mahdian, Z.; Hemmati, M.; Malekkhatabi, P.; Bahrami, G.; Mohammadi, B.; Miraghaee, S.; Hatami, R.; Mansouri, K.; et al. Characterization and anti-diabetic effects of the oligosaccharide fraction isolated from Rosa canina in STZ-Induced diabetic rats. Carbohydr. Res. 2020, 489, 107927. [Google Scholar] [CrossRef]
- Guo, X.; Nie, F.; Jiang, H.; Che, S.; Liao Hb Xu, J.; Guo, Y. A bioactive polysaccharide derived from Rosa laevigata fruits: Structural properties, antitumor efficacy, and potential mechanisms. Int. J. Biol. Macromol. 2025, 304, 140382. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, L.; Wang, T.; Liu, Z.; Tang, S.; Huang, H.; Wu, L.; Sun, Y. The herbal combination Shu Gan Jie Yu regulates the SNCG/ER-a/AKT-ERK pathway in DMBA-induced breast cancer and breast cancer cell lines based on RNA-Seq and IPA analysis. Integr. Cancer Ther. 2024, 23, 15347354241233258. [Google Scholar] [CrossRef]
- Beigom Hejaziyan, L.; Hosseini, S.M.; Taravati, A.; Asadi, M.; Bakhshi, M.; Moshaei Nezhad, P.; Gol, M.; Mououdi, M. Effect of Rosa damascena extract on rat model Alzheimer’s disease: A histopathological, behavioral, enzyme activities, and oxidative stress study. Evid.-Based Complement. Altern. Med. 2023, 12, 4926151. [Google Scholar] [CrossRef]
- Hamdamian, S.; Nazarpour, S.; Simbar, M.; Hajian, S.; Mojab, F.; Talebi, A. Effects of aromatherapy with Rosa damascena on nulliparous women’s pain and anxiety of labor during first stage of labor. J. Integr. Med. 2018, 16, 120–125. [Google Scholar] [CrossRef]
- Dagli, R.; Avcu, M.; Metin, M.; Kiymaz, S.; Ciftci, H. The effects of aromatherapy using rose oil (Rosa damascena Mill.) on preoperative anxiety: A prospective randomized clinical trial. Eur. J. Integr. Med. 2019, 26, 37–42. [Google Scholar] [CrossRef]
- Peng, S.; Lu, X.; Lin, F.; Mao, N.; Yu, L.; Zhu, T.; He, J.; Yang, Y.; Liu, Z.; Wang, D. Rosa laevigata polysaccharides ameliorate sextran sulfate sodium-induced ulcerative colitis of beagles through regulating gut microbiota. Chem. Biodivers. 2024, 21, e202302102. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, P.; Chen, J.; Li, C.; Tian, Y.; Xu, F. Prebiotic properties of the polysaccharide from Rosa roxburghii Tratt fruit and its protective effects in high-fat diet-induced intestinal barrier dysfunction: A fecal microbiota transplantation study. Food Res. Int. 2023, 164, 112400. [Google Scholar] [CrossRef]
- Zhan, J.; Liu, M.; Pan, L.; He, L.; Guo, Y. Oxidative stress and TGF-β1/smads signaling are involved in Rosa roxburghii fruit extract alleviating renal fibrosis. Evid.-Based Complement. Altern. Med. 2019, 2019, 4946580. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, W.; Wang, L.; Zhang, H.; Wang, Y.; Pan, B.; Li, H.; Ma, Z.; Xu, K.; Cui, H.; et al. Rosa laevigata Michx. polysaccharide ameliorates diabetic nephropathy in mice through inhibiting ferroptosis and PI3K/AKT pathway-mediated apoptosis and modulating tryptophan metabolism. J. Diabetes Res. 2023, 2023, 9164883. [Google Scholar] [CrossRef]
- Dong, L.; Han, X.; Tao, X.; Xu, L.; Xu, Y.; Fang, L.; Yin, L.; Qi, Y.; Li, H.; Peng, J. Protection by the total flavonoids from Rosa laevigata Michx fruit against lipopolysaccharide-induced liver injury in mice via modulation of FXR signaling. Foods 2018, 7, 88. [Google Scholar] [CrossRef]
- Liu, S.T.; Yin, R.F.; Wei, Y.Y.; Xia, X.; Li, Y.Q. Study on the effect of Rosa roxburghii tratt on preventing skin aging induced by D-galactose in mice. Food Res. Dev. 2020, 41, 1–5. [Google Scholar]
- Chen, M.; Peng, Y.; Zhu, R.; Luo, X.; Yang, X.; Chen, J.; Chen, H.; Zhou, W.; Du, Z. Therapeutic potential of Rosa rugosa polysaccharide and its nanofiber membrane in psoriasis via PI3K-AKT/mTOR pathway inhibition. Int. J. Biol. Macromol. 2025, 320, 145724. [Google Scholar] [CrossRef]
- Bian, Y.L.; Pan, J.J.; Gao, D.L.; Feng, Y.Z.; Zhang, B.J.; Song, L.; Wang, L.; Ma, X.G.; Liang, L. Bioactive metabolite profiles and quality of Rosa rugosa during its growing and flower-drying process. Food Chem. 2024, 450, 139388. [Google Scholar] [CrossRef]
- Cendrowski, A.; Ścibisz, I.; Mitek, M.; Kieliszek, M. Influence of harvest seasons on the chemical composition and antioxidant activity in Rosa rugosa petals. Agrochimica 2018, 62, 157–165. [Google Scholar]
- Xiang, H.; Xing, H.H.; Li, J.; Ye, L.; Kong, W.S.; Liu, X.; Li, Y.P.; Jiang, C.Q.; Wang, M.F.; Hu, Q.F.; et al. Two new isoflavones from the flowers of Rosa damascena and their biological activities. Chem. Nat. Compd. 2019, 55, 449–452. [Google Scholar] [CrossRef]
- Ni, M.; Chen, J.; Fu, M.; Li, H.; Bu, S.; Hao, X.; Gu, W. UPLC-ESI-MS/MS-based analysis of various edible Rosa fruits concerning secondary metabolites and evaluation of their antioxidant activities. Foods 2024, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Cho, J.; Lim, D.; Choi, M.; Park, Y.; Cheong, Y.; Kang, Y.; Kang, I.; Kim, S.; Kim, D. The biological effects of Rosa rugosa extract on keratinocyte differentiation and enhancement of skin barrier function. Adv. Tradit. Med. 2025, 25, 451–457. [Google Scholar] [CrossRef]
- Kerasioti, E.; Apostolou, A.; Kafantaris, I.; Chronis, K.; Kokka, E.; Dimitriadou, C.; Tzanetou, E.N.; Priftis, A.; Koulocheri, S.D.; Haroutounian, S.A.; et al. Polyphenolic composition of Rosa canina, Rosa sempervivens and Pyrocantha coccinea extracts and assessment of their antioxidant activity in human endothelial cells. Antioxidants 2019, 8, 92. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, F.; Li, R.; Wu, Y.; Liu, S.; Liang, Q. Purification, characterization, antioxidant and moisture-preserving activities of polysaccharides from Rosa rugosa petals. Int. J. Biol. Macromol. 2019, 124, 938–945. [Google Scholar] [CrossRef]
- Chen, G.; Kan, J. Characterization of a novel polysaccharide isolated from Rosa roxburghii Tratt fruit and assessment of its antioxidant in vitro and in vivo. Int. J. Biol. Macromol. 2018, 107, 166–174. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, Y.J.; Jang, H.J.; Lee, S.J.; Lee, S.; Yun, B.S.; Lee, S.W.; Rho, M.C. Rugosic acid A, derived from Rosa rugosa Thunb., is novel inhibitory agent for NF-κB and IL-6/STAT3 axis in acute lung injury model. Phytother. Res. 2020, 34, 3200–3210. [Google Scholar] [CrossRef]
- Lee Mh Nam, T.G.; Lee, I.; Shin, E.J.; Han Ar Lee, P.; Lee, S.Y.; Lim, T.G. Skin anti-inflammatory activity of rose petal extract (Rosa gallica) through reduction of MAPK signaling pathway. Food Sci. Nutr. 2018, 6, 2560–2567. [Google Scholar]
- Roloff, S.J.; Scholten, J.D.; Chuang, J.; Hu, C.; Fast, D.J. Traditional Chinese medicine ingredients Rosa damascena and Poria cocos promote phagocytosis and a dendritic cell phenotype in THP-1 cells. Pharmacogn. Mag. 2018, 14, 567. [Google Scholar] [CrossRef]
- Yeddes, W.; Reguez, S.; Rebey, I.B.; Wannes, W.A.; Majdi, H.; Dakhlaoui, S.; Sawsen, S.; Msaada, K.; Tounsi, M.S. Valorisation of hydrodistillation by-products from Damask Rose (Rosa damascena): Extraction, characterization, and bioactivity of phenolic compounds with biological properties. Int. J. Environ. Health Res. 2025, 1–9. [Google Scholar] [CrossRef]
- Peng, S.; Gu, P.F.; Mao, N.N.; Yu, L.; Zhu, T.Y.; He, J.; Yang, Y.; Liu, Z.G.; Wang, D.Y. Structural characterization and in vitro anti-inflammatory activity of polysaccharides isolated from the fruits of Rosa laevigata. Int. J. Mol. Sci. 2024, 25, 2133. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Xue, P.; Sun, X.; Zhao, G. Determination of the volatile and polyphenol constituents and the antimicrobial, antioxidant, and tyrosinase inhibitory activities of the bioactive compounds from the by-product of Rosa rugosa Thunb. var. plena Regal tea. BMC Complement. Altern. Med. 2018, 18, 307. [Google Scholar] [CrossRef] [PubMed]
- Akin, M.; Saki, N. Antimicrobial, DPPH scavenging and tyrosinase inhibitory activities of Thymus vulgaris, Helichrysum arenarium and Rosa damascena mill. ethanol extracts by using TLC bioautography and chemical screening methods. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 204–216. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Zhang, H.; Sun, W.; Li, Z.; Zhang, F.; Zhang, H.; Chen, F.; Zhang, H.; An, J.; et al. Antimicrobial mechanism of strictinin isomers extracted from the root of Rosa roxburghii Tratt (Ci Li Gen). J. Ethnopharmacol. 2020, 250, 112498. [Google Scholar] [CrossRef]
- Khare, S.; Gupta, M.; Cheema, H.S.; Maurya, A.K.; Rout, P.; Darokar, M.P.; Pal, A. Rosa damascena restrains Plasmodium falciparum progression in vitro and impedes malaria pathogenesis in murine model. Biomed. Pharmacother. 2018, 97, 1654–1662. [Google Scholar] [CrossRef]
- Cendrowski, A.; Kraśniewska, K.; Przybył, J.L.; Zielińska, A.; Kalisz, S. Antibacterial and antioxidant activity of extracts from rose fruits (Rosa rugosa). Molecules 2020, 25, 1365. [Google Scholar] [CrossRef]
- Maželienė, Ž.; Kirvaitienė, J.; Kaklauskienė, K.; Volskienė, R.; Aleksandravičienė, A. Antifungal and antibacterial activity of aqueous and ethanolic extracts of different Rosa rugosa parts. Microbiol. Res. 2025, 16, 26. [Google Scholar] [CrossRef]
- Demirbolat, I.; Ekinci, C.; Nuhoğlu, F.; Kartal, M.; Yıldız, P.; Geçer, M.Ö. Effects of orally consumed Rosa damascena Mill. hydrosol on hematology, clinical chemistry, Lens enzymatic activity, and lens pathology in streptozotocin-Induced diabetic Rats. Molecules 2019, 24, 4069. [Google Scholar] [CrossRef]
- Javid, H.; Sajadimajd, S.; Bahrami, M.; Bahrami, G.; Mohammadi, B.; Khazayel, S.; Miraghaee, S.S. Rosa canina extract relieves methylation alterations of pancreatic genes in STZ-induced diabetic rats: Gene methylation in diabetic rats treated with an extract. Mol. Biol. Rep. 2024, 51, 711. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Ren, Z.; Cong, Z.; Chen, M.; Shi, L.; Han, X.; Pei, J. Optimization of the microwave-assisted enzymatic extraction of Rosa roxburghii Tratt. polysaccharides using response surface methodology and its antioxidant and α-d-glucosidase inhibitory activity. Int. J. Biol. Macromol. 2018, 112, 473–482. [Google Scholar] [CrossRef]
- Wang, L.; Li, C.; Huang, Q.; Fu, X. Biofunctionalization of selenium nanoparticles with a polysaccharide from Rosa roxburghii fruit and their protective effect against H2O2-induced apoptosis in INS-1 cells. Food Funct. 2019, 10, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, B.; Wang, B.; Li, C.; Fu, X.; Huang, Q. In-vitro inhibitory effects of flavonoids in Rosa roxburghii and R. sterilis fruits on α-glucosidase: Effect of stomach digestion on flavonoids alone and in combination with acarbose. J. Funct. Foods 2019, 54, 13–21. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Xiao, J.; Huang, Q.; Li, C.; Fu, X. Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit. Food Chem. 2018, 249, 127–135. [Google Scholar] [CrossRef]
- Jin, H.; Wang, L.; Bernards, R. Rational combinations of targeted cancer therapies: Background, advances and challenges. Nat. Rev. Drug Discov. 2023, 22, 213–234. [Google Scholar] [CrossRef]
- Olech, M.; Nowacka-Jechalke, N.; Masłyk, M.; Martyna, A.; Pietrzak, W.; Kubiński, K.; Załuski, D.; Nowak, R. Polysaccharide-rich fractions from Rosa rugosa Thunb.—Composition and chemopreventive potential. Molecules 2019, 24, 1354. [Google Scholar] [CrossRef]
- Kilinc, K.; Demir, S.; Turan, I.; Mentese, A.; Orem, A.; Sonmez, M.; Aliyazicioglu, Y. Rosa canina extract has antiproliferative and proapoptotic effects on human lung and prostate cancer cells. Nutr. Cancer 2020, 72, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Grajzer, M.; Wiatrak, B.; Gębarowski, T.; Matkowski, A.; Grajeta, H.; Rój, E.; Kulma, A.; Prescha, A. Chemistry, oxidative stability and bioactivity of oil extracted from Rosa rugosa (Thunb.) seeds by supercritical carbon dioxide. Food Chem. 2021, 335, 127649. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.C.; El-Shazly, M.; Shih, S.P.; Du, Y.C.; Hsu, Y.M.; Lin, H.Y.; Chen, Y.C.; Wu, Y.C.; Yang, S.C.; et al. The antioxidant from ethanolic extract of Rosa cymosa fruits activates phosphatase and tensin homolog in vitro and in vivo: A new insight on its antileukemic effect. Int. J. Mol. Sci. 2019, 20, 1935. [Google Scholar] [CrossRef]
- Heydarirad, G.; Keyhanmehr, A.S.; Mofid, B.; Nikfarjad, H.; Mosavat, S.H. Efficacy of aromatherapy with Rosa damascena in the improvement of sleep quality of cancer patients: A randomized controlled clinical trial. Complement. Ther. Clin. Pract. 2019, 35, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.U.; Akram, M.; Daniyal, M.; Zainab, R. Awareness and current knowledge of parkinson’s disease: A neurodegenerative disorder. Int. J. Neurosci. 2019, 129, 55–93. [Google Scholar] [CrossRef]
- Si, Z.; Sun, L.; Wang, X. Evidence and perspectives of cell senescence in neurodegenerative diseases. Biomed. Pharmacother. 2021, 137, 111327. [Google Scholar] [CrossRef]
- Gao, P.; Han, T.; Jin, M.; Li, D.; Jiang, F.; Zhang, L.; Liu, X. Extraction and isolation of polyhydroxy triterpenoids from Rosa laevigata Michx. fruit with anti-acetylcholinesterase and neuroprotection properties. RSC Adv. 2018, 8, 38131–38139. [Google Scholar] [CrossRef]
- Tarbiat, S.; Türütoğlu, A.S.; Ekingen, M. Acetylcholinesterase inhibitory potential and antioxidant activities of five cultivars of Rosa Damascena Mill. from Isparta, Turkey. Curr. Top. Nutraceutical Res. 2020, 18, 354–359. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, S.; Kim, S.N. Effects of acupuncture on gastrointestinal diseases and its underlying mechanism: A literature review of animal studies. Front. Med. 2023, 10, 1167356. [Google Scholar] [CrossRef]
- Wang, L.; Li, C.; Huang, Q.; Fu, X.; Liu, R.H. In vitro digestibility and prebiotic potential of a novel polysaccharide from Rosa roxburghii Tratt fruit. J. Funct. Foods 2019, 52, 408–417. [Google Scholar] [CrossRef]
- Valcheva-Kuzmanova, S.; Denev, P.; Eftimov, M.; Georgieva, A.; Kuzmanova, V.; Kuzmanov, A.; Kuzmanov, K.; Tzaneva, M. Protective effects of Aronia melanocarpa juices either alone or combined with extracts from Rosa canina or Alchemilla vulgaris in a rat model of indomethacin-induced gastric ulcers. Food Chem. Toxicol. 2019, 132, 110739. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, Y.; Guan, Y.; Rui, X.; Zhang, Y.; Dong, M.; Ma, W. An aqueous polyphenol extract from Rosa rugosa tea has antiaging effects on Caenorhabditis elegans. J. Food Biochem. 2019, 43, e12796. [Google Scholar] [CrossRef]
- Shin, E.J.; Han, A.; Lee, M.H.; Song, Y.R.; Lee, K.M.; Nam, T.G.; Lee, P.; Lee, S.Y.; Lim, T.G. Extraction conditions for Rosa gallica petal extracts with anti-skin aging activities. Food Sci. Biotechnol. 2019, 28, 1439–1446. [Google Scholar] [CrossRef]
- Song, Y.R.; Lim, W.C.; Han, A.; Lee, M.H.; Shin, E.J.; Lee, K.M.; Nam, T.G.; Lim, T.G. Rose petal extract (Rosa gallica) exerts skin whitening and anti-skin wrinkle effects. J. Med. Food 2020, 23, 870–878. [Google Scholar] [CrossRef]
- Zhao, L.; Qiu, J.; Yin, X.; Zhang, N.; Wu, W.; Wang, C.; Ji, B.; Zhang, L.; Zhou, F. Blossom and bee pollen from Rosa rugosa as potential intervention for acne caused by excessive androgen secretion in golden hamster acne model. Food Agric. Immunol. 2019, 30, 1174–1188. [Google Scholar] [CrossRef]
- Kwak, C.S.; Yang, J.; Shin, C.Y.; Chung, J.H. Rosa multiflora Thunb flower extract attenuates ultraviolet-induced photoaging in skin cells and hairless mice. J. Med. Food 2020, 23, 988–997. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, C.; Cheng, B.; Wan, H.; Luo, L.; Pan, H.; Zhang, Q. Volatile compound analysis and aroma evaluation of tea-scented roses in China. Ind. Crops Prod. 2020, 155, 112735. [Google Scholar] [CrossRef]
- Xia, A.; Tang, X.; Dong, G.; Lei, S.; Liu, Y.; Tian, X. Quality assessment of fermented rose jams based on physicochemical properties, HS-GC-MS and HS-GC-IMS. LWT 2021, 151, 112153. [Google Scholar]
- Xia, A.; Liu, L.; Tang, X.; Lei, S.; Meng, X.; Liu, Y. Dynamics of microbial communities, physicochemical factors and flavor in rose jam during fermentation. LWT 2022, 155, 112920. [Google Scholar] [CrossRef]
- Amrouche, T.A.; Yang, X.; Capanoglu, E.; Huang, W.; Chen, Q.; Wu, L.; Zhu, Y.; Liu, Y.; Wang, Y.; Lu, B. Contribution of edible flowers to the Mediterranean diet: Phytonutrients, bioactivity evaluation and applications. Food Front. 2022, 3, 92–630. [Google Scholar] [CrossRef]
- Zhao, G.; Kuang, G.; Li, J.; Hadiatullah, H.; Chen, Z.; Wang, X.; Yao, Y.; Pan, Z.; Wang, Y. Characterization of aldehydes and hydroxy acids as the main contribution to the traditional Chinese rose vinegar by flavor and taste analyses. Food Res. Int. 2020, 129, 108879. [Google Scholar] [CrossRef]
- Özdemir, N.; Budak, N.H. Bioactive compounds and volatile aroma compounds in rose (Rosa damascena Mill.) vinegar during the aging period. Food Biosci. 2022, 50, 102062. [Google Scholar] [CrossRef]
- Ma, T.; Sam, F.E.; Didi, D.A.; Atuna, R.A.; Amagloh, F.K.; Zhang, B. Contribution of edible flowers on the aroma profile of dealcoholized pinot noir rose wine. LWT 2022, 170, 114034. [Google Scholar] [CrossRef]
- Cendrowski, A.; Królak, M.; Kalisz, S. Polyphenols, L-ascorbic acid, and antioxidant activity in wines from rose fruits (Rosa rugosa). Molecules 2021, 26, 2561. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, L.X.; Han, Q.D.; Dong, G.Z.; Wang, B.; Zhang, J.F.; Lei, S.M.; Liu, Y.G. Quality assessment of rose tea with different drying methods based on physicochemical properties, HS–SPME–GC–MS, and GC–IMS. J. Food Sci. Technol. 2023, 88, 1378–1391. [Google Scholar] [CrossRef]
- Mileva, M.; Ilieva, Y.; Jovtchev, G.; Gateva, S.; Zaharieva, M.M.; Georgieva, A.; Dimitrova, L.; Dobreva, A.; Angelova, T.; Vilhelmova-Ilieva, N.; et al. Rose flowers-A delicate perfume or a natural healer? Biomolecules 2021, 11, 127. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Shi, J.; Zhang, R.; Tang, H.; Xie, C.; Wang, F.; Han, J.; Jiang, L. Chitosan/esterified chitin nanofibers nanocomposite films incorporated with rose essential oil: Structure, physicochemical characterization, antioxidant and antibacterial properties. Food Chem. X 2023, 18, 100714. [Google Scholar] [CrossRef]
- Koreti, D.; Kosre, A.; Mahish, P.K.; Chandrawanshi, N.K.; Kunjam, S.R. Application of essential oils in alternative medicine. In Essential Oils: Sources, Production and Applications; De Gruyter: Berlin, Germany, 2023; pp. 237–252. [Google Scholar]
- Tanjga, B.B.; Lončar, B.; Aćimović, M.; Kiprovski, B.; Šovljanski, O.; Tomić, A.; Travičić, V.; Cvetković, M.; Raičević, V.; Zeremski, T. Volatile profile of garden rose (Rosa hybrida) hydrosol and evaluation of its biological activity in vitro. Horticulturae 2022, 8, 895. [Google Scholar] [CrossRef]
- Bayhan, G.I.; Gumus, T.; Alan, B.; Savas, I.K.; Cam, S.A.; Sahin, E.A.; Arslan, S.O. Influence of Rosa damascena hydrosol on skin flora (contact culture) after hand-rubbing. GMS Hyg. Infect. Control 2020, 15, Doc21. [Google Scholar] [PubMed]
- De Nijs, E.; Maas, L.; Bol, R.; Tietema, A. Assessing the potential of co-composting rose waste as a sustainable waste management strategy: Nutrient availability and disease control. J. Clean. Prod. 2023, 399, 136685. [Google Scholar] [CrossRef]
- Dubey, S.; Chen, C.-W.; Haldar, D.; Tambat, V.S.; Kumar, P.; Tiwari, A.; Singhania, R.R.; Dong, C.-D.; Patel, A.K. Advancement in algal bioremediation for organic, inorganic, and emerging pollutants. Environ. Pollut. 2023, 317, 120840. [Google Scholar] [CrossRef] [PubMed]
Constituent | Study Type | Animal Model/Subjects | Dosages | Potential Mechanisms | Ref. |
---|---|---|---|---|---|
Antioxidant effect | |||||
R. rugosa extract | In vivo | Nrf2-knockout zebrafish | 600–1000 µg/mL | Enhanced oxidative stress resistance; upregulated the antioxidant genes | [21] |
R. damascena | clinical trial | high-risk pregnant women | 250 mL | The intervention MDA decreased by 1.87 ± 0.45 μmol/L, the control reduction was 0.42 ± 0.31 μmol/L | [22] |
Anti-inflammatory activity | |||||
50% ethanol extract R. rugosa | In vivo | 1-chloro-2,4-dinitrobenzene-induced ear edema mouse model | 50, 100, and 200 mg/kg | Decreased the elevated levels of IgE/IgG; suppressed pro-inflammatory cytokines and chemokines in ear tissues | [23] |
R. laevigata extract | In vivo | BALB/c mice | 50 and 100 mg/kg | Attenuated allergic airway inflammation by reducing inflammatory cells, the secretion of IgE and related cytokines | [24] |
R. roxburghii flavonoids | In vivo | Male Kunming mice | 30 and 60 mg/kg | Inhibited the radiation-induced apoptosis by reducing the cleavage of these caspases in a dose-dependent manner | [25] |
Rosebud extract | Male Sprague Dawley rats | 10, 30, and 100 mg/kg | Decreased λ-carrageenan-induced tissue exudation, inflammatory cytokines and cell infiltration; inhibited prostaglandin E2 | [26] | |
Antibacterial activity | |||||
Rosehip extract -functionalized nanoparticles | In vivo | Galleria mellonella invertebrate animal model | 225 mg/kg | Disrupted cellular structures (bacterial cell wall and cytoplasmic membrane) and damaged the bacterial cell | [27] |
Anti-diabetic activity | |||||
R. roxburghii fruit polysaccharide | In vivo | Male obese diabetic db/db mice | 300, 600, and 900 mg/kg/d for 8 weeks | Attenuated hyperlipidemia by regulating the gene expression of lipid metabolism; reversed gut dysbiosis; enhanced beneficial bacteria abundances | [28] |
R. rugosa polyphenol -enriched extract | In vivo | Male rat dyslipidemia model (high-fat diet + STZ injection) | 37.5, 75, and 150 mg/kg for 4 weeks | Improved hepatic steatosis and liver function via the induction of AMPK signaling activity | [29] |
R. canina fruits oligosaccharide | In vivo | Male STZ-induced diabetic Wistar rats | 8–40 mg/kg for 3 weeks | Improved pancreatic β-cells and tissue pathological changes by increasing the expression of Ngn3, Nkx6.1, and insulin | [30] |
Anti-cancer activity | |||||
R. laevigata fruits polysaccharide | In vivo | Zebrafish model | 100, 200, and 400 μg/mL | Inhibited HepG2 cell migration by regulating the FAK signaling pathway | [31] |
R. rugosa herbal combinatory | In vivo | A breast cancer rat model | 1.25, 2.5, 5, 10, and 20 mg/mL | Down-regulated the level of serum estradiol and suppressed the protein expression in the SNCG/ER-alpha/AKT-ERK pathway | [32] |
Neuroprotection | |||||
R. damascena extract | In vivo | Aluminum chloride-induced Alzheimer’s model of Wister rats | 500 and 1000 mg/kg | Increased the levels of catalase and glutathione; attenuated MDA levels; regulated AChE activity | [33] |
R. damascena oil | clinical trial | Randomized clinical trial of nulliparous women | 0.08 mL essence | Reduced the severity of pain and anxiety in the first stage of labor | [34] |
R. damascena oil | clinical trial | Patients underwent septorhinoplasty/rhinoplasty surgery | 0.2 mL | Reduced preoperative anxiety of patients undergoing septorhinoplasty/rhinoplasty | [35] |
Gastrointestinal protection | |||||
R. laevigata polysaccharides | In vivo | Sodium dextran sulfate-induced beagles | 400 mg/kg | Alleviated colitis by preserving the intestinal barrier and regulating the gut microbiota composition | [36] |
R. roxburghii fruit polysaccharide | In vivo | Male C57BL/6J mice colitis model induced by high-fat diet | 400 mg/kg | Ameliorated HFD-induced colitis in mice by modulating gut microbiota | [37] |
Hepatorenal protection | |||||
R. roxburghii fruit freeze-dried powder | In vivo | Rat model of unilateral ureteral obstruction | 3 and 6 g/kg | Prevented renal fibrosis and impairment, associated with the inhibition of oxidative stress and TGF-β1/Smads signaling | [38] |
R. laevigata polysaccharide | In vivo | Diabetic nephropathy mouse model | 40 and 80 mg/kg | Modulated tryptophan metabolism and inhibited ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney | [39] |
R. laevigata total flavonoids | In vivo | LPS-induced liver injury mice | 50, 100, and 200 mg/kg | Exhibited liver-protective effects by altering FXR-mediated oxidative stress, inflammation, and lipid metabolism | [40] |
Skin protection | |||||
R. roxburghii extract | In vivo | D-galactose-induced mice skin aging | 0.5, 1, and 2 g/kg | Enhanced the activity of SOD in skin tissue, reduced the accumulation of MDA; increased the level of HYP and HA | [41] |
R. rugosa polysaccharide | In vivo | Imiquimod-induced psoriasis mouse model | 10, 50, and 100 mg/kg | Suppressed the PI3K-AKT/mTOR pathway | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Jiang, Y.; Qiao, M.; Lin, F.; Miao, B. Recent Advances in Bioactive Compounds, Health Functions, and Utilization of Rose (Rosa spp.). Molecules 2025, 30, 3869. https://doi.org/10.3390/molecules30193869
Zhao X, Jiang Y, Qiao M, Lin F, Miao B. Recent Advances in Bioactive Compounds, Health Functions, and Utilization of Rose (Rosa spp.). Molecules. 2025; 30(19):3869. https://doi.org/10.3390/molecules30193869
Chicago/Turabian StyleZhao, Xinxin, Yuqin Jiang, Mingfeng Qiao, Fangjun Lin, and Baohe Miao. 2025. "Recent Advances in Bioactive Compounds, Health Functions, and Utilization of Rose (Rosa spp.)" Molecules 30, no. 19: 3869. https://doi.org/10.3390/molecules30193869
APA StyleZhao, X., Jiang, Y., Qiao, M., Lin, F., & Miao, B. (2025). Recent Advances in Bioactive Compounds, Health Functions, and Utilization of Rose (Rosa spp.). Molecules, 30(19), 3869. https://doi.org/10.3390/molecules30193869