Comparative Studies on Synthesis Methods of BiVO4 for Photoelectrochemical Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis, Structure, and Morphology of Different BiVO4 Samples
2.2. Photoelectrochemical Characterization
2.3. Mechanism of Photocurrent Generation
3. Materials and Methods
3.1. Synthesis of Materials
3.2. Preparation of Working Electrode
3.3. Characterization Techniques
3.4. Photoelectrochemical Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Noman, M.; Khan, Z.; Jan, S.T. A comprehensive review on the advancements and challenges in perovskite solar cell technology. RSC Adv. 2024, 14, 5085–5131. [Google Scholar] [CrossRef] [PubMed]
- Mdallal, A.; Yasin, A.; Mahmoud, M.; Abdelkareem, M.A.; Alami, A.H.; Olabi, A.G. A comprehensive review on solar photovoltaics: Navigating generational shifts, innovations, and sustainability. Sustain. Horiz. 2025, 13, 100137. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, S.; Cui, Y.; Wang, J.; Cheng, S.; Hou, J. Molecular design for low-cost organic photovoltaic materials. Nat. Rev. Mater. 2025, 10, 404–424. [Google Scholar] [CrossRef]
- Raju, T.D.; Murugadoss, V.; Nirmal, K.A.; Dongale, T.D.; Kesavan, A.V.; Kim, T.G. Advancements in perovskites for solar cell commercialization: A review. Adv. Powder Mater. 2025, 4, 100275. [Google Scholar] [CrossRef]
- Yu, J.; Dou, Y.; Zhao, J.; Zhu, S.; Zhang, K.; Huang, F. A review of metal oxide semiconductors: Progress in solution-processed photovoltaic technologies. J. Alloys Compd. 2025, 1024, 180207. [Google Scholar] [CrossRef]
- Jamal, F.; Rafique, A.; Moeen, S.; Haider, J.; Nabgan, W.; Haider, A.; Imran, M.; Nazir, G.; Alhassan, M.; Ikram, M.; et al. Review of Metal Sulfide Nanostructures and their Applications. ACS Appl. Nano Mater. 2023, 6, 7077–7106. [Google Scholar] [CrossRef]
- Sari, Y.; Gareso, P.L.; Armynah, B.; Tahir, D. A review of TiO2 photocatalyst for organic degradation and sustainable hydrogen energy production. Int. J. Hydrogen Energy 2024, 55, 984–996. [Google Scholar] [CrossRef]
- Esrafili, A.; Salimi, M.; Jonidi Jafari, A.; Reza Sobhi, H.; Gholami, M.; Rezaei Kalantary, R. Pt-based TiO2 photocatalytic systems: A systematic review. J. Mol. Liq. 2022, 352, 118685. [Google Scholar] [CrossRef]
- Fu, L.; Li, Z.; Shang, X. Recent surficial modification strategies on BiVO4 based photoanodes for photoelectrochemical water splitting enhancement. Int. J. Hydrogen Energy 2024, 55, 611–624. [Google Scholar] [CrossRef]
- Yi, Q.; Wang, H.; Lee, J.-M. BiVO4-Based Photoelectrochemical Water Splitting. ChemElectroChem 2025, 12, e202400600. [Google Scholar] [CrossRef]
- Abarca, J.A.; Molera, M.; Merino-Garcia, I.; Díaz-Sainz, G.; Irabien, A.; Solla-Gullón, J.; Fàbrega, C.; Andreu, T.; Albo, J. Electrodeposited BiVO4-based photoanodes for an energy-efficient photo-assisted CO2-to-formate conversion. Chem. Eng. J. 2025, 514, 163348. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Qi, Y.; Zhang, J.; Wang, N.; Liu, M.; Zhang, B.; Cai, X.; Zhang, H.; Wei, S.-H.; et al. Etched BiVO4 photocatalyst with charge separation efficiency exceeding 90%. Nat. Commun. 2025, 16, 3776. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Y.; Miao, L.; Gao, Y.; Di, J. Photocurrent switching effect on BiVO4 electrodes and its application in development of photoelectrochemical glucose sensor. J. Solid State Electrochem. 2020, 24, 411–420. [Google Scholar] [CrossRef]
- Bai, Y.; Fang, Z.; Fang, Y.; Lin, C.; Bai, H.; Fan, W. Recent advances in BiVO4-based heterojunction photocatalysts for energy and environmental applications. Chem. Commun. 2025, 61, 5264–5280. [Google Scholar] [CrossRef]
- Che Mohamad, N.A.R.; Chae, K.; Lee, H.; Kim, J.; Marques Mota, F.; Bang, J.; Kim, D.H. Synergistic effect of oxygen vacancies and in-situ formed bismuth metal centers on BiVO4 as an enhanced bifunctional Li–O2 batteries electrocatalyst. J. Colloid Interface Sci. 2025, 678, 119–129. [Google Scholar] [CrossRef]
- Zhong, Y.; Yin, J.; Li, M.; He, Y.; Lei, P.; Zhong, L.; Liao, K.; Wu, H.; Wang, Z.; Jie, W. High-performance memristor for energy-efficient artificial optoelectronic synapse based on BiVO4 nanosheets. J. Alloys Compd. 2024, 991, 174533. [Google Scholar] [CrossRef]
- Zhao, M.; Sun, Y.; Yan, L.; Zhao, Z.; Wang, L.; Yan, X.; Wang, K. Memristor with BiVO4 nanoparticle as artificial synapse for neuroinspired computing. Appl. Phys. Lett. 2022, 120, 093501. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Liu, B.; Guo, Z.; Ostrikov, K.; Wang, L.; Huang, W. Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting. Nanoscale 2021, 13, 17989–18009. [Google Scholar] [CrossRef] [PubMed]
- Trinh, D.T.T.; Khanitchaidecha, W.; Channei, D.; Nakaruk, A. Synthesis, characterization and environmental applications of bismuth vanadate. Res. Chem. Intermed. 2019, 45, 5217–5259. [Google Scholar] [CrossRef]
- Guan, B.; Chen, J.; Li, Z.; Zhuang, Z.; Chen, Y.; Ma, Z.; Guo, J.; Zhu, C.; Hu, X.; Zhao, S.; et al. Review on Synthesis, Modification, Morphology, and Combination of BiVO4-based Catalysts for Photochemistry: Status, Advances, and Perspectives. Energy Fuels 2024, 38, 806–853. [Google Scholar] [CrossRef]
- Lili, L.; Luo, X.G.; Lin, X.Y.; Xu, C.G.; Zhao, Z. Preparation and characterization of Fe-doped BiVO4. Mater. Sci. Forum 2009, 620–622, 655–658. [Google Scholar] [CrossRef]
- Liu, H.; Nakamura, R.; Nakato, Y. Promoted photo-oxidation reactivity of particulate BiVO4 photocatalyst prepared by a photoassisted sol-gel method. J. Electrochem. Soc. 2005, 152, G856–G861. [Google Scholar] [CrossRef]
- Diktanaitė, A.; Gaidamavičienė, G.; Kazakevičius, E.; Kežionis, A.; Žalga, A. Aqueous sol-gel synthesis, thermal analysis, characterization and electrical properties of V2O5 doped Bi2O3 system. Thermochim. Acta 2020, 685, 178511. [Google Scholar] [CrossRef]
- Pookmanee, P.; Kojinok, S.; Puntharod, R.; Sangsrichan, S.; Phanichphant, S. Preparation and Characterization of BiVO4 Powder by the Sol-gel Method. Ferroelectrics 2013, 456, 45–54. [Google Scholar] [CrossRef]
- Kwolek, P.; Pilarczyk, K.; Tokarski, T.; Lewandowska, K.; Szaciłowski, K. BixLa1−xVO4 solid solutions: Tuning of electronic properties via stoichiometry modifications. Nanoscale 2014, 6, 2244–2254. [Google Scholar] [CrossRef]
- Yu, C.; Yang, K.; Yu, J.C.; Cao, F.; Li, X.; Zhou, X. Fast fabrication of Co3O4 and CuO/BiVO4 composite photocatalysts with high crystallinity and enhanced photocatalytic activity via ultrasound irradiation. J. Alloys Compd. 2011, 509, 4547–4552. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, W.; Liu, S.; Zhang, L.; Xu, H.; Zhu, W. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J. Mol. Catal. A: Chem. 2006, 252, 120–124. [Google Scholar] [CrossRef]
- Yuan, Y.; Huang, Y.; Ma, F.; Zhang, Z.; Wei, X.; Zhu, G. Structural stability, band structure and optical properties of different BiVO4 phases under pressure. J. Mater. Sci. 2016, 51, 6662–6673. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Z.; Zou, Z. Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 2011, 13, 4746–4753. [Google Scholar] [CrossRef]
- Nasir, S.N.S.; Mohamed, N.A.; Tukimon, M.A.; Noh, M.F.M.; Arzaee, N.A.; Teridi, M.A.M. Direct extrapolation techniques on the energy band diagram of BiVO4 thin films. Phys. B Condens. Matter 2021, 604, 412719. [Google Scholar] [CrossRef]
- Lin, X.; Yu, L.; Yan, L.; Li, H.; Yan, Y.; Liu, C.; Zhai, H. Visible light photocatalytic activity of BiVO4 particles with different morphologies. Solid State Sci. 2014, 32, 61–66. [Google Scholar] [CrossRef]
- Ding, K.; Chen, B.; Fang, Z.; Zhang, Y. Density functional theory study on the electronic and optical properties of three crystalline phases of BiVO4. Theor. Chem. Acc. 2013, 132, 1352. [Google Scholar] [CrossRef]
- Ganeshbabu, M.; Kannan, N.; Venkatesh, P.S.; Paulraj, G.; Jeganathan, K.; MubarakAli, D. Synthesis and characterization of BiVO4 nanoparticles for environmental applications. RSC Adv. 2020, 10, 18315–18322. [Google Scholar] [CrossRef]
- Sajid, M.M.; Amin, N.; Shad, N.A.; Khan, S.B.; Javed, Y.; Zhang, Z. Hydrothermal fabrication of monoclinic bismuth vanadate (m-BiVO4) nanoparticles for photocatalytic degradation of toxic organic dyes. Mater. Sci. Eng. B 2019, 242, 83–89. [Google Scholar] [CrossRef]
- Zhang, L.; Long, J.; Pan, W.; Zhou, S.; Zhu, J.; Zhao, Y.; Wang, X.; Cao, G. Efficient removal of methylene blue over composite-phase BiVO4 fabricated by hydrothermal control synthesis. Mater. Chem. Phys. 2012, 136, 897–902. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, W.; Gu, Q. Ab Initio Calculation of Surface-Controlled Photocatalysis in Multiple-Phase BiVO4. J. Phys. Chem. C 2022, 126, 9541–9550. [Google Scholar] [CrossRef]
- Nissi, J.R.; Bincy, T.S.; Prajeesh, S.; Vidhya, B.; Murugan, S. Facile synthesis of Cu-doped BiVO4 using domestic microwave-assisted chemical precipitation method with fleeting time of microwave irradiation for the photocatalytic application. Inorg. Nano-Met. Chem. 2025, 55, 47–59. [Google Scholar] [CrossRef]
- Kang, D.; Park, Y.; Hill, J.C.; Choi, K.-S. Preparation of Bi-Based Ternary Oxide Photoanodes BiVO4, Bi2WO6, and Bi2Mo3O12 Using Dendritic Bi Metal Electrodes. J. Phys. Chem. Lett. 2014, 5, 2994–2999. [Google Scholar] [CrossRef]
- Shaddad, M.N.; Arunachalam, P.; Hezam, M.; BinSaeedan, N.M.; Gimenez, S.; Bisquert, J.; Al-Mayouf, A.M. Facile fabrication of heterostructured BiPS4-Bi2S3-BiVO4 photoanode for enhanced stability and photoelectrochemical water splitting performance. J. Catal. 2023, 418, 51–63. [Google Scholar] [CrossRef]
- Mariathasan, J.W.E.; Hazen, R.M.; Finger, L.W. Crystal structure of the high-pressure form of BiVO4. Phase Transit. 1986, 6, 165–173. [Google Scholar] [CrossRef]
- Waltersson, K.; Forslund, B.; Wilhelmi, K.-A.; Andersson, S.; Galy, J. The crystal structure of V3O7. Acta Crystallogr. Sect. B 1974, 30, 2644–2652. [Google Scholar] [CrossRef]
- Landi, S.; Segundo, I.R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C.J. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 2022, 341, 114573. [Google Scholar] [CrossRef]
- Gawęda, S.; Podborska, A.; Macyk, W.; Szaciłowski, K. Nanoscale optoelectronic switches and logic devices. Nanoscale 2009, 1, 299–316. [Google Scholar] [CrossRef] [PubMed]
- Szaciłowski, K.; Macyk, W. Chemical switches and logic gates based on surface modified semiconductors. Comptes Rendus Chim. 2006, 9, 315–324. [Google Scholar] [CrossRef]
- Mahapatra, A.; Anilkumar, V.; Nawrocki, J.; Pandey, S.V.; Chavan, R.D.; Yadav, P.; Prochowicz, D. Transient Photocurrent Response in a Perovskite Single Crystal-Based Photodetector: A Case Study on the Role of Electrode Spacing and Bias. Adv. Electron. Mater. 2023, 9, 2300226. [Google Scholar] [CrossRef]
- Bisquert, J.; Gonzales, C.; Guerrero, A. Transient On/Off Photocurrent Response of Halide Perovskite Photodetectors. J. Phys. Chem. C 2023, 127, 21338–21350. [Google Scholar] [CrossRef]
- Peter, L.M.; Walker, A.B.; Bein, T.; Hufnagel, A.G.; Kondofersky, I. Interpretation of photocurrent transients at semiconductor electrodes: Effects of band-edge unpinning. J. Electroanal. Chem. 2020, 872, 114234. [Google Scholar] [CrossRef]
- Bisquert, J.; Compte, A. Theory of the electrochemical impedance of anomalous diffusion. J. Electroanal. Chem. 2001, 499, 112–120. [Google Scholar] [CrossRef]
- Chen, X.; Tang, Y.; Liu, W. Efficient Dye-Sensitized Solar Cells Based on Nanoflower-like ZnO Photoelectrode. Molecules 2017, 22, 1284. [Google Scholar] [CrossRef]
- Cui, J.; Daboczi, M.; Cui, Z.; Gong, M.; Flitcroft, J.; Skelton, J.; Parker, S.C.; Eslava, S. BiVO4 Photoanodes Enhanced with Metal Phosphide Co-Catalysts: Relevant Properties to Boost Photoanode Performance. Small 2024, 20, 2306757. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Q.; Abbas, A.; Zhang, W.; Huang, S.; Li, X.; Liu, S.; Shuai, J. BiVO4 Photoanodes Modified with Synergetic Effects between Heterojunction Functionalized FeCoOx and Plasma Au Nanoparticles. Catalysts 2023, 13, 1063. [Google Scholar] [CrossRef]
Sample | Rs Ω | Q F∙sα−1 | α | Rct Ω | RB Ω | τB s | γB | fmax MHz | τn µs |
---|---|---|---|---|---|---|---|---|---|
l-BiVO4 | 40.9 | 2.58 × 10−9 | 0.98 | 117.9 | 303.8 | 1.607 × 10−2 | 0.74 | 1.36 | 0.12 |
g-BiVO4 | 30.4 | 2.52 × 10−9 | 0.99 | 95.7 | 481.1 | 9.224 × 10−3 | 0.41 | 1.72 | 0.09 |
s-BiVO4 | 31.3 | 2.23 × 10−9 | 1 | 92.7 | 202.6 | 1.919 × 10−3 | 0.38 | 1.38 | 0.12 |
m-BiVO4 | 41.5 | 2.60 × 10−9 | 0.98 | 101.8 | 350.4 | 5.449 × 10−3 | 0.40 | 1.78 | 0.09 |
Sample | Band Gap eV | WF eV | EF V |
---|---|---|---|
l-BiVO4 | 2.51 | 5.35 | 0.85 |
g-BiVO4 | 2.40 | 5.67 | 1.17 |
s-BiVO4 | 2.38 | 5.23 | 0.73 |
m-BiVO4 | 2.41 | 5.03 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caus, D.; Berent, K.; Mech, K.; Naumov, A.; Marciszko-Wiąckowska, M.; Podborska, A. Comparative Studies on Synthesis Methods of BiVO4 for Photoelectrochemical Applications. Molecules 2025, 30, 3818. https://doi.org/10.3390/molecules30183818
Caus D, Berent K, Mech K, Naumov A, Marciszko-Wiąckowska M, Podborska A. Comparative Studies on Synthesis Methods of BiVO4 for Photoelectrochemical Applications. Molecules. 2025; 30(18):3818. https://doi.org/10.3390/molecules30183818
Chicago/Turabian StyleCaus, Dominik, Katarzyna Berent, Krzysztof Mech, Andrii Naumov, Marianna Marciszko-Wiąckowska, and Agnieszka Podborska. 2025. "Comparative Studies on Synthesis Methods of BiVO4 for Photoelectrochemical Applications" Molecules 30, no. 18: 3818. https://doi.org/10.3390/molecules30183818
APA StyleCaus, D., Berent, K., Mech, K., Naumov, A., Marciszko-Wiąckowska, M., & Podborska, A. (2025). Comparative Studies on Synthesis Methods of BiVO4 for Photoelectrochemical Applications. Molecules, 30(18), 3818. https://doi.org/10.3390/molecules30183818