Application of Alkyl Polyglucosides as Components of the Extraction Medium in the Preparation of a Shampoo Cosmetic Formulation Containing Substances Isolated from Red Grape Pomace
Abstract
1. Introduction
2. Result and Discussion
2.1. Evaluation of Extraction Efficiency and Bioactivity of Grape Pomace Extracts Using Alkyl Polyglucosides
2.1.1. Extraction Process
2.1.2. Determination of Selected Compounds by UPLC-MS/MS
Determination of Phenolic Compounds
Determination of Amino Acids
Determination of Anthocyanins
2.1.3. Total Phenolic Content (TPC), Total Anthocyanin Content (TAC), and Antioxidant Capacity (DPPH, ABTS)
Extract | Surfactant Type | TPC [mg GAE/L] | TAC [mg Cyd-3-glu/L] | DPPH [mg TE/L] | ABTS [mg TE/L] |
---|---|---|---|---|---|
GPE_DG 2p | DG | 1476.5 ± 19.8 | 160.0 ± 7.2 | 2097.3 ± 48.9 | 1820.7 ± 22.1 |
GPE_CG 2p | CG | 2261.6 ± 25.9 | 208.4 ± 5.9 | 2898.8 ± 50.3 | 2972.1 ± 25.1 |
2.2. Design of Model Cosmetics
2.2.1. Stability
2.2.2. Viscosity
2.2.3. Foaming Properties
2.2.4. Irritating Potential
3. Materials and Methods
3.1. Materials
3.2. Plant Material
3.3. Preparation of Micellar Extracts from Red Grape Pomace Used as Cosmetic Component
3.4. DLS Methods
3.5. The Preparation of the Shampoo Formulation
3.6. UPLC-ESI-MS/MS Analysis of Selected Compounds in Grape Pomace Extracts
3.7. Total Phenolic Content (TPC)
3.8. Total Anthocyanin Content (TAC)
3.9. Antioxidant Activity (DPPH Test)
3.10. Antioxidant Activity (ABTS Test)
3.11. Characterization of Cosmetic Product (Liquid Soap)
3.11.1. Viscosity
3.11.2. Foaming Properties
3.11.3. Determination of Irritant Potential—Zein Value
3.11.4. Microbiological Stability
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APGs | alkyl polyglucosides |
CG | coco-glucoside |
DG | decyl glucoside |
References
- Gubitosa, J.; Rizzi, V.; Fini, P.; Cosma, P. Hair Care Cosmetics: From Traditional Shampoo to Solid Clay and Herbal Shampoo, A Review. Cosmetics 2019, 6, 13. [Google Scholar] [CrossRef]
- Zhang, Y.; Alsop, R.J.; Soomro, A.; Yang, F.C.; Rheinstädter, M.C. Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair. PeerJ 2015, 3, e1296. [Google Scholar] [CrossRef]
- Jaya Preethi, P.; Padmini, K.; Srikanth, J.; Lohita, M.; Swetha, K.; Vengal Rao, P. A Review on Herbal Shampoo and Its Evaluation. Asian J. Pharm. Anal. 2013, 3, 153–156. [Google Scholar]
- Zięba, M.; Czerwonka, D.; Ruszkowska, M. Micellar extracts obtained from Bistortae rhizoma, Fraxinus excelsior, and Romex crispus as components of hair shampoos. Tenside Surfactants Deterg. 2024, 61, 216–227. [Google Scholar] [CrossRef]
- Dias, G.; Reis, M.F.; Munck, A.A.; Makino Rezende, C.P.; Ricardo, A.A.; Pichler, J. The Shampoo pH can Affect the Hair: Myth or Reality? Int. J. Trichology 2014, 6, 95–99. [Google Scholar] [CrossRef]
- Sinclair, R.D. Healthy hair: What is it? J. Investig. Dermatol. Symp. Proc. 2007, 12, 2–5. [Google Scholar] [CrossRef]
- Surupsing, M.V.; Akash, D.P.; Harishchandra, M.Y.; Vipul, H.J.; Pawar, S.P. Formulation and Evaluation of Herbal Shampoo Powder. Int. J. Pharm. Chem. Res. 2017, 3, 492–498. [Google Scholar]
- Bellare, J.; Iyer, R.; Mainkar, A.R.; Jolly, C.I. A study on the conditioning effects of natural shampoos using the scanning electron microscope. Int. J. Cosmet. Sci. 2001, 23, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Constantine, M.J.; Krysztal, S. Solid Shampoo Composition in Compact Needle Form with Water as a Binder. U.S. Patent 4,996,006, 26 February 1991. [Google Scholar]
- Vijetha, J.R.; Grace, X.F.; Shanmuganathan, S.; Chamundeeswari, D. Preparation and Evaluation of Polyherbal Shampoo Powder. Int. J. Pharm. Biol. Sci. 2013, 3, 60–66. [Google Scholar]
- Al Badi, K.; Khan, S.A. Formulation, evaluation and comparison of the herbal shampoo with the commercial shampoos. Beni-Suef Univ. J. Basic Appl. Sci. 2014, 3, 301–305. [Google Scholar] [CrossRef]
- Middha, S.K.; Goyal, A.K.; Lokesh, P.; Yardi, V.; Mojamdar, L.; Keni, D.S.; Babu, D.; Usha, T. Toxicological Evaluation of Emblica officinalis Fruit Extract and its Anti-inflammatory and Free Radical Scavenging Properties. Pharm. Mag. 2015, 11, S427–S433. [Google Scholar]
- Nizioł-Łukaszewska, Z.; Bujak, T.; Wasilewski, T.; Szmuc, E. Inulin as an effectiveness and safe ingredient in cosmetics. Pol. J. Chem. Technol. 2019, 21, 44–49. [Google Scholar] [CrossRef]
- Almanza-Oliveros, A.; Bautista-Hernández, I.; Castro-López, C.; Aguilar-Zárate, P.; Meza-Carranco, Z.; Rojas, R.; Michel, M.R.; Martínez-Ávila, G.C.G. Grape pomace—Advances in its bioactivity, health benefits, and food applications. Foods 2024, 13, 580. [Google Scholar] [CrossRef]
- Grimaldi, M.; Pitirollo, O.; Ornaghi, P.; Corradini, C.; Cavazza, A. Valorization of agro-industrial byproducts: Extraction and analytical characterization of valuable compounds for potential edible active packaging formulation. Food Packag. Shelf 2022, 33, 100900. [Google Scholar] [CrossRef]
- Bhutani, M.; Gaur, S.S.; Shams, R.; Dash, K.K.; Shaikh, A.M.; Béla, K. Valorization of Grape By-Products: Insights into Sustainable Industrial and Nutraceutical Applications. Future Foods 2025, 12, 100710. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Santos, L. A potential valorization strategy of wine industry by-products and their application in cosmetics—Case study: Grape pomace and grapeseed. Molecules 2022, 27, 969. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.Ž.; Bajić, S.S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Tešić, Ž.L.; Pešić, M.B. Phenolic compounds and biopotential of grape pomace extracts from Prokupac red grape variety. LWT-Food Sci. Technol. 2021, 138, 110739. [Google Scholar] [CrossRef]
- Lopes, J.d.C.; Madureira, J.; Margaça, F.M.A.; Verde, S.C. Grape pomace: A review of its bioactive phenolic compounds, health benefits, and applications. Molecules 2025, 30, 362. [Google Scholar] [CrossRef]
- Moradi, M.; Yamini, Y. Surfactant roles in modern sample preparation techniques: A review. J. Sep. Sci. 2012, 35, 2319–2340. [Google Scholar] [CrossRef]
- Moutinho, J.; Gouvinhas, I.; Domínguez-Perles, R.; Barros, A. Optimization of the extraction methodology of grape pomace polyphenols for food applications. Molecules 2023, 28, 3885. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.T.; Nguyen, V.B.; Le, T.X.; Tran, A.H.T.; Kha, T.C. Extraction of bioactive compounds from red cardinal grape pomace by deep eutectic solvents. Chem. Eng. Trans. 2023, 106, 889–894. [Google Scholar] [CrossRef]
- Otero-Pareja, M.J.; Casas, L.; Fernández-Ponce, M.T.; Mantell, C.; Martínez de la Ossa, E.J. Green extraction of antioxidants from different varieties of red grape pomace. Molecules 2015, 20, 9686–9702. [Google Scholar] [CrossRef] [PubMed]
- Sazdanić, D.; Atanacković Krstonošić, M.; Ćirin, D.; Cvejić, J.; Alamri, A.; Galanakis, C.M.; Krstonošić, V. Non-ionic surfactants-mediated green extraction of polyphenols from red grape pomace. JARMAP 2023, 32, 100439. [Google Scholar] [CrossRef]
- Brazinha, C.; Cadima, M.; Crespo, J.G. Optimization of extraction of bioactive compounds from different types of grape pomace produced at wineries and distilleries. J. Food Sci. 2014, 79, E1142. [Google Scholar] [CrossRef]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind. Crops Prod. 2015, 75 Pt B, 141–149. [Google Scholar] [CrossRef]
- Bogdanovic Markovic, D.; Tasic-Kostov, M.; Lukic, M.; Isailovic, T.; Krstonosic, V.; Daniels, R.; Savic, S. Physicochemical characterization and in vivo skin performance of a novel alkyl polyglucoside emulsifier in natural cosmetic cream-bases. Tenside Surfactants Deterg. 2013, 51, 133–145. [Google Scholar] [CrossRef]
- Geetha, D.; Tyagi, R. Alkyl poly glucosides (APGs) surfactants and their properties: A review. Tenside Surfactants Deterg. 2012, 49, 417–427. [Google Scholar] [CrossRef]
- Pantelić, I. Alkyl Polyglucosides: From Natural-Origin Surfactants to Prospective Delivery Systems; Pantelić, I., Ed.; Woodhead Publishing: Cambridge, UK, 2014. [Google Scholar]
- Ćirin, D.; Milutinov, J.; Krstonošić, V. Occurrence of alkyl glucosides in rinse-off cosmetics marketed as hypoallergenic or for sensitive skin. Toxicol. Ind. Health 2024, 40, 306–311. [Google Scholar] [CrossRef]
- Moldes, A.B.; Rodríguez-López, L.; Rincón-Fontán, M.; López-Prieto, A.; Vecino, X.; Cruz, J.M. Synthetic and bio-derived surfactants versus microbial biosurfactants in the cosmetic industry: An overview. Int. J. Mol. Sci. 2021, 22, 2371. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Mondal, M.H.; Adhikari, A.; Bhattarai, A.; Saha, B. Scientific information about sugar-based emulsifiers: A comprehensive review. RSC Adv. 2021, 11, 33004–33016. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, T.; Hordyjewicz-Baran, Z.; Zarębska, M.; Stanek, N.; Zajszły-Turko, E.; Tomaka, M.; Bujak, T.; Nizioł-Łukaszewska, Z. Sustainable Green Processing of Grape Pomace Using Micellar Extraction for the Production of Value-Added Hygiene Cosmetics. Molecules 2022, 27, 2444. [Google Scholar] [CrossRef] [PubMed]
- Fiume, M.M.; Heldreth, B.A.; Bergfeld, W.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.; Marks, J.G.; Shank, R.C.; Slaga, T.; et al. Safety Assessment of Decyl Glucoside and Other Alkyl Glucosides as Used in Cosmetics. J. Appl. Toxicol 2013, 32 (Suppl. 3), 22S–48S. [Google Scholar] [CrossRef]
- Dai, X.; Liu, Y.; Yu, D.; Li, Z.; Li, H.; Wang, Q. Micellar extraction of phenolics using nonionic surfactants: Comparison with organic solvents. Food Chem. 2021, 347, 129020. [Google Scholar]
- Wojcieszak, M.; Illienko, K.; Różański, J.; Grzywaczyk, A.; Kaczorek, E.; Materna, K. Evaluation of nonionic surfactant-based emulgels as a prospective approach for skincare products. J. Mol. Liq. 2025, 431, 127702. [Google Scholar] [CrossRef]
- van Es, D.S.; Marinkovic, S.; Oduber, X.; Estrine, B. Use of furandicarboxylic acid and its decyl ester as additives in the Fischer’s glycosylation of decanol by D-glucose: Physicochemical properties of the surfactant compositions obtained. J. Surfactants Deterg. 2012, 16, 147–154. [Google Scholar] [CrossRef]
- Parande, B.; More, S.D.; Dongaonkar, C.C.; Dhumase, P.; Suryawanshi, S.; Wagh, P.; Shinde, K.; Thorat, S. Formulation and evaluation of dentifrice containing Sesbania grandiflora with natural elements. Res. J. Top. Cosmet. Sci. 2024, 15, 70–74. [Google Scholar] [CrossRef]
- Alibade, A.; Batra, G.; Bozinou, E.; Salakidou, C.; Lalas, S. Optimization of the extraction of antioxidants from winery wastes using cloud point extraction and a surfactant of natural origin (lecithin). Chem. Pap. 2020, 74, 4517–4524. [Google Scholar] [CrossRef]
- Zakharova, L.Y.; Vasilieva, E.A.; Mirgorodskaya, A.B.; Zakharov, S.V.; Pavlov, R.V.; Kashapova, N.E.; Gaynanova, G.A. Hydrotropes: Solubilization of nonpolar compounds and modification of surfactant solutions. J. Mol. Liq. 2023, 370, 120923. [Google Scholar] [CrossRef]
- Chen, P. Molecular Interfacial Phenomena of Polymers and Biopolymers; Woodhead Publishing: Sawston, UK, 2005. [Google Scholar]
- Lin, B.; Wang, J.; Zha, J.; Chang, K. Development of Green Solubilizer Based on Acidic Sophorolipid. J. Surfact. Deterg. 2025, 28, 861–870. [Google Scholar] [CrossRef]
- Chiavaroli, A.; Balaha, M.; Acquaviva, A.; Ferrante, C.; Cataldi, A.; Menghini, L.; Rapino, M.; Orlando, G.; Brunetti, L.; Leone, S.; et al. Phenolic Characterization and Neuroprotective Properties of Grape Pomace Extracts. Molecules 2021, 26, 6216. [Google Scholar] [CrossRef]
- Maidin, N.M.; Michael, N.; Oruna-Concha, M.J.; Jauregi, P. Polyphenols extracted from red grape pomaceby a surfactant based method show enhanced collagenase and elastase inhibitory activity. J. Chem. Technol. Biotechnol. 2018, 93, 1916–1924. [Google Scholar]
- Krstonošić, M.A.; Sazdanić, D.; Mikulić, M.; Ćirin, D.; Milutinov, J.; Krstonošić, V. Optimization of surfactant-mediated green extraction of phenolic compounds from grape pomace using response surface methodology. Int. J. Mol. Sci. 2025, 26, 2072. [Google Scholar] [CrossRef]
- Samant, B.S.; Kaliappan, R. The use of surfactants in the extraction of active ingredients from natural resources: A comprehensive review. RSC Adv. 2025, 15, 23569–23587. [Google Scholar] [CrossRef]
- Noguchi, A.; Djerassi, D. Chapter 15- Amino Acids and Peptides: Building Blocks for Skin Proteins. Nutr. Cosmet. 2009, 15, 287. [Google Scholar]
- da Silva, C.S.M.; Costa, G.A.N.; Aguiar, A.F.; Camargo, M.Z.; Fernandes, K.B.P.; Oliveira, M.R.; da Silva, R.A. Effect of the Use of a Cream with Leucine and Lactic Acid Associated with Electrostimulation in Contouring and Facial Tonus: A Randomized Clinical Controlled Trial. Cosmetics 2022, 9, 36. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Calhau, C.; Morais, R.M.; Pintado, M.E. Anthocyanin extraction from plant tissues: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3072–3083. [Google Scholar] [CrossRef]
- Hordyjewicz-Baran, Z.; Wasilewski, T.; Zarębska, M.; Stanek-Wandzel, N.; Zajszły-Turko, E.; Tomaka, M.; Zagórska-Dziok, M. Micellar and solvent loan chemical extraction as a tool for the development of natural skin care cosmetics containing substances isolated from grapevine buds. Appl. Sci. 2024, 14, 1420. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Dias, M.F.R.G. Hair Cosmetics: An Overview. Int. J. Trichol. 2015, 7, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Parreira, H.C. On the isoelectric point of human hair. J. Colloid Interface Sci. 1980, 75, 212–217. [Google Scholar] [CrossRef]
- Bujak, T.; Niziol-Lukaszewska, Z.; Wasilewski, T. Effect of molecular weight of polymers on the properties of delicate facial foams. Tenside Surfactants Deterg. 2018, 55, 96–102. [Google Scholar] [CrossRef]
- Bovero, A. Dermocosmetologia. Dall’inestetismo al Trattamento Cosmetico; Tecniche Nuove: Milano, Italy, 2011. [Google Scholar]
- Lips, A.; Ananthapadmanabhan, K.P.; Vethamuthu, M.; Hua, X.Y.; Yang, L.; Vincent, C.; Deo, N.; Somasundaran, P. Role of Surfactant Micelle Charge in Protein Denaturation and Surfactant-Induced Skin Irritation. In Surfactants in Personal Care Products and Decorative Cosmetics, 3rd ed.; Rhein, L., Schlossman, M., Lenick, A., Somasundaran, P., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 177–189. [Google Scholar]
- Maneechai, P.; Leelapornpisid, P.; Poomanee, W. Multifunctional biological activities and cytotoxic evaluation of Bouea macrophylla for cosmetic applications. Nat. Life Sci. Commun. 2023, 22, e2023030. [Google Scholar] [CrossRef]
- Sharafan, M.; Malinowska, M.A.; Ekiert, H.; Sikora, E.; Szopa, A. The use of star anise (Illicium verum) and trans-anethole in cosmetology. Farm. Pol. 2022, 78, 219–231. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Wasilewski, T.; Seweryn, A.; Bujak, T. Supercritical carbon dioxide blackcurrant seed extract as an anti-irritant additive for hand dishwashing liquids. Green Chem. Lett. Rev. 2016, 9, 114–121. [Google Scholar] [CrossRef]
Extraction Medium | Hydrodynamic Diameter (nm) | PDI |
---|---|---|
DG 1p | 16.0 ± 0.5 | 0.16 |
DG 2p | 13.2 ± 0.2 | 0.14 |
DG 4p | 17.4 ± 0.1 1900 ± 100 | 0.39 |
CG 1p | 20.7 ± 0.3 | 0.16 |
CG 2p | 17.5 ± 0.5 | 0.17 |
CG 4p | 15.2 ± 0.2 | 0.15 |
Compound | Quantification/ Confirmation Transition | Family | GPE_CG 1p [mg/L] | GPE_CG 2p [mg/L] | GPE_CG 4p [mg/L] | GPE_DG 2p [mg/L] | |
---|---|---|---|---|---|---|---|
1 | (+)-Catechin | 290.9 > 139.0 290.9 > 123.0 | flavonols | 946 ± 18.4 | 681 ± 3.50 | 803 ± 12.0 | 444 ± 9.8 |
2 | (-)-Epicatechin | 290.9 > 139.0 290.9 > 123.0 | flavonols | 1805 ± 35.4 | 1340 ± 28.3 | 1570 ± 56.6 | 613 ± 12.3 |
3 | (-)-Catechin 3-gallate | 443.0 > 123.0 443.0 > 273.0 | flavonols | 4.91 ± 0.60 | 4.58 ± 0.08 | 5.92 ± 0.04 | 1.99 ± 0.37 |
4 | (-)-Epicatechin 3-gallate | 443.0 > 123.0 443.0 > 273.0 | flavonols | 10.27 ± 0.75 | 8.63 ± 0.15 | 14.5 ± 0.28 | 3.75 ± 0.20 |
5 | Rutin | 608.9 > 299.9 608.9 > 270.9 | flavonols | 2.13 ± 0.36 | 2.03 ± 0.05 | 1.91 ± 0.04 | 0.618 ± 0.004 |
6 | Gallic acid | 168.9 > 124.8 168.9 > 78.9 | phenolic acid | 7.86 ± 0.03 | 5.67 ± 0.47 | 5.17 ± 0.31 | 0.51 ± 0.10 |
7 | D-(-)-quinic acid | 190.9 > 84.9 190.9 > 93.0 | phenolic acid | 0.345 ± 0.23 | 0.372 ± 0.16 | 0.367 ± 0.38 | 2.57 ± 0.13 |
Sum of phenolic compounds | 2776 | 2042 | 2401 | 1066 | |||
8 | L-Valine | 118.1 > 72.0 118.1 > 55.0 | amino acid | 10.2 ± 0.41 | 9.9 ± 0.59 | 14.0 ± 0.57 | 5.4 ± 0.44 |
9 | L-Methionine | 150.1 > 103.9 150.1 > 132.9 | amino acid | 2.51 ± 0.11 | 3.43 ± 0.13 | 4.61 ± 0.31 | 0.804 ± 0.12 |
10 | L-Tryptophan | 205.0 > 188.0 205.0 > 145.9 | amino acid | 21.8 ± 0.28 | 24.3 ± 0.57 | 27.2 ± 0.49 | 15.3 ± 0.06 |
11 | L-Leucine | 132.1 > 86.0 132.1 > 44.0 | amino acid | 29.8 ± 0.21 | 29.4 ± 0.21 | 42.4 ± 0.28 | 30.1 ± 0.58 |
12 | L-Histidine | 156.1 > 110.0 156.1 > 82.9 | amino acid | 2.05 ± 0.01 | 2.56 ± 0.04 | 2.30 ± 0.01 | n.d. * |
13 | L-Threonine | 120.1 > 74.0 120.1 > 56.0 | amino acid | 5.67 ± 0.06 | 4.82 ± 0.09 | 6.04 ± 0.10 | 4.51 ± 0.02 |
14 | L-Lisine | 147.1 > 84.0 147.1 > 130.0 | amino acid | 20.7 ± 0.14 | 30.6 ± 0.21 | 24.0 ± 0.14 | 22.3 ± 0.24 |
15 | L-Phenylalanine | 163.9 > 147.0 163.9 > 103.0 | amino acid | 11.8 ± 0.35 | 14.7 ± 0.00 | 18.2 ± 0.71 | 11.2 ± 0.33 |
16 | L-Aspartic acid | 131.8 > 88.0 131.8 > 114.9 | amino acid | 2.82 ± 0.11 | 2.50 ± 0.02 | 4.19 ± 0.29 | 1.18 ± 0.08 |
Sum of amino acids | 107.2 | 122.1 | 142.9 | 90.8 |
Compound | Molecular Formula | Molar Mass [Da] | Precursor Ion m/z | Main Product Ion MS2 [m/z] | GPE_CG_4p/ GPE_CG_1p | GPE_CG_4p/ GPE_CG_2p | GPE_CG_2p/ GPE_DG_2p | |
---|---|---|---|---|---|---|---|---|
1 | Cyanidin 3-glucoside (Cy 3-glc) | C21H21O11+ | 449 | 449 [M + H]+ | 287 [M-C6H11O5]+ 315 [M-C5H10O4]+ | 1.37 | 1.32 | 4.83 |
2 | Petunidin 3-glucoside (Pet 3-glc) | C22H23O12+ | 478 | 479 [M + H]+ | 317 [M-C6H11O5]+ 302 [M-C6H11O4]+ | 1.07 | 1.01 | 7.15 |
3 | Peonidin 3-glucoside (Peo 3-glc) | C22H23O11+ | 462 | 463 [M + H]+ | 301 [M-C6H11O5]+ 201 [C9H5O4]+ | 1.15 | 1.03 | 5.70 |
4 | Malvidin 3-glucoside (Mv 3-glc) | C23H25O12+ | 492 | 493 [M + H]+ | 331 [M-C6H11O5]+ 315 [M-C5H10O4]+ | 1.22 | 1.08 | 6.73 |
5 | Cyanidin 3-(acetylglucoside) (Cy 3-acglc) | C23H23O12+ | 490 | 491 [M + H]+ | 287 [M-C8H13O6]+ 163 [M-C17H13O7]+ | 1.20 | 1.21 | 6.78 |
6 | Malvidin 3-(6″acetyl) glucoside (Mv 3-(6-acglc)) | C25H27O13+ | 534 | 535 [M + H]+ | 331 [M-C8H13O6]+ 315 [M-C8H13O7]+ | 1.12 | 1.03 | 8.47 |
7 | Petunidin 3-(6″-cumaroyl)-glucoside (Pet 3-(cum)glc) | C31H29O14+ | 624 | 625 [M + H]+ | 317 [M-C15H17O7]+ 301 [M-C15H18O8]+ | 1.53 | 1.31 | 9.69 |
8 | Malvidin 3-(6″-cumroyl)- Glucoside (Mv 3-(6-cum)glc) | C32H31O14+ | 638 | 639 [M + H]+ | 331 [M-C15H17O7]+ 447 [M-C6H10O5]+ | 1.71 | 1.35 | 7.32 |
9 | Peonidin 3-(6″-cumaroyl)-glucoside (Peo 3-(6-cum)glc) | C31H29O13+ | 608 | 609 [M + H]+ | 301 [M-C15H17O7]+ 492 [M-C9H8O4]+ | 1.71 | 1.45 | 8.18 |
Extract | CG Concentration [%] | TPC [mg GAE/L] | TAC [mg Cyd-3-glu/L] | DPPH [mg TE/L] | ABTS [mg TE/L] |
---|---|---|---|---|---|
GPE_CG 1p | 1 | 2631.7 ± 41.0 | 201.7 ± 8.2 | 3353.0 ± 49.8 | 3415.3 ± 57.0 |
GPE_CG 2p | 2 | 2747.7 ± 37.4 | 226.8 ± 5.3 | 3598.6 ± 14.2 | 3708.6 ± 49.6 |
GPE_CG 4p | 4 | 2780.1 ± 31.2 | 203.9 ± 5.1 | 3152.5 ± 50.1 | 3411.7 ± 42.3 |
Ingredient (INCI Name) | [% m/m] | ||
---|---|---|---|
Sh_E_0p | Sh_E_10p | ||
1 | Sodium Lauryl Sulfate, Ammonium Lauryl Sulfate, Disodium 2-Sulfolaurate (Anionic surfactants) | 9 | |
2 | Coco-Glucoside (Non-ionic surfactant) | 2 | 1.8 |
3 | Cocamidopropyl Betaine (Amphoteric surfactants) | 2 | |
4 | Citric Acid (pH regulator) | to pH 5.5 | |
5 | Benzyl Alcohol, Benzoic Acid, Dehydroacetic Acid, Tocopherol (Preservative) | 0.5% | 0.45% |
6 | Guar Hydroxypropyltrimonium Chloride (Conditioning polymer) | 0.1 | |
7 | Extract | 0 | 10 |
Coco-Glucoside | 0 | 0.2 | |
Preservative | 0 | 0.05 | |
Aqua | 0 | 9.76 | |
8 | Aqua-to 100 | to 100 | |
9 | Sodium Chloride (Viscosity modifier) | 2 |
Cosmetics Product | Stability | Viscosity mPa·s | Foaming Ability cm3 | Foam Stability % | Irritating Potential mgN/100 mL |
---|---|---|---|---|---|
Sh_E_0p | stable | 3392 ± 180 | 384 ± 25 | 84 | 230.7 ± 0.5 |
Sh_E_10p | stable | 3392 ± 180 | 304 ± 20 | 95 | 221.4 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasilewski, T.; Hordyjewicz-Baran, Z.; Sabura, E.; Malorna, K.; Dresler, E.; Zegarski, M.; Stanek-Wandzel, N. Application of Alkyl Polyglucosides as Components of the Extraction Medium in the Preparation of a Shampoo Cosmetic Formulation Containing Substances Isolated from Red Grape Pomace. Molecules 2025, 30, 3817. https://doi.org/10.3390/molecules30183817
Wasilewski T, Hordyjewicz-Baran Z, Sabura E, Malorna K, Dresler E, Zegarski M, Stanek-Wandzel N. Application of Alkyl Polyglucosides as Components of the Extraction Medium in the Preparation of a Shampoo Cosmetic Formulation Containing Substances Isolated from Red Grape Pomace. Molecules. 2025; 30(18):3817. https://doi.org/10.3390/molecules30183817
Chicago/Turabian StyleWasilewski, Tomasz, Zofia Hordyjewicz-Baran, Ewa Sabura, Katarzyna Malorna, Ewa Dresler, Maciej Zegarski, and Natalia Stanek-Wandzel. 2025. "Application of Alkyl Polyglucosides as Components of the Extraction Medium in the Preparation of a Shampoo Cosmetic Formulation Containing Substances Isolated from Red Grape Pomace" Molecules 30, no. 18: 3817. https://doi.org/10.3390/molecules30183817
APA StyleWasilewski, T., Hordyjewicz-Baran, Z., Sabura, E., Malorna, K., Dresler, E., Zegarski, M., & Stanek-Wandzel, N. (2025). Application of Alkyl Polyglucosides as Components of the Extraction Medium in the Preparation of a Shampoo Cosmetic Formulation Containing Substances Isolated from Red Grape Pomace. Molecules, 30(18), 3817. https://doi.org/10.3390/molecules30183817