Synergistic DES–Microwave Fractionation of Agri-Food Biomasses in a Zero-Waste Perspective
Abstract
1. Introduction
2. Results and Discussion
2.1. Biomasses Composition Analysis
2.1.1. Composition
2.1.2. Hemicellulose Fraction Analysis
2.2. Multistep Microwave Assisted Fractionation Process
2.2.1. Water Thermal Process
2.2.2. DES-Mediated Process
2.3. Lignin Analysis
2.3.1. GPC Results—Molar Mass Determination
2.3.2. Total Phenolic Content
2.3.3. Fourier Transform Infrared Spectroscopy
2.3.4. Thermal Behavior
2.3.5. 13C CP-MAS NMR
3. Materials and Methods
3.1. Biomass Drying
3.2. Preparation of DESs
3.3. Biomasses Treatment with DES
3.3.1. Conventional Batch DES-Mediated Lignocellulose Process
3.3.2. Microwave DES-Mediated Lignocellulose Process
3.4. Protein Extraction for Rapeseed Cakes
3.5. Determination of Biomasses Composition
Gas Chromatography/Mass Spectrometry
3.6. Lignin Characterization
3.6.1. Folin–Ciocalteu Analysis
3.6.2. Molar Mass Determination
3.6.3. Fourier Transform Infrared Spectroscopy Analysis
3.6.4. Differential Scanning Calorimetry Analysis
3.6.5. 13C CP-MAS NMR Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hamadou, B.; Djomdi, D.; Zieba Falama, R.; Djouldé Darnan, R.; Audonnet, F.; Fontanille, P.; Delattre, C.; Pierre, G.; Dubessay, P.; Michaud, P.; et al. Optimization of energy recovery efficiency from sweet sorghum stems by ethanol and methane fermentation processes coupling. Bioengineered 2023, 14, 228–244. [Google Scholar] [CrossRef]
- Serna-Loaiza, S.; Miltner, A.; Miltner, M.; Friedl, A. A Review on the Feedstocks for the Sustainable Production of Bioactive Compounds in Biorefineries. Sustainability 2019, 11, 6765. [Google Scholar] [CrossRef]
- Orfali, D.M.; Meramo, S.; Sukumara, S. Ranking economic and environmental performance of feedstocks used in bio-based production systems. Curr. Res. Biotechnol. 2025, 9, 100275. [Google Scholar] [CrossRef]
- Rajamani, S.; Kolla, S.S.N.; Gudivada, R.; Raghunath, R.; Ramesh, K.; Jadhav, S.A. Valorization of Rice Husk to Value-Added Chemicals and Functional Materials. Int. J. Environ. Res. 2023, 17, 22. [Google Scholar] [CrossRef]
- Chattaraj, S.; Mitra, D.; Ganguly, A.; Thatoi, H.; Das Mohapatra, P.K. A critical review on the biotechnological potential of Brewers’ waste: Challenges and future alternatives. Curr. Res. Microb. Sci. 2024, 6, 100228. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Janković, B.; Manić, N.; Perović, I.; Vujković, M.; Zdolšek, N. Thermal decomposition kinetics of deep eutectic solvent (DES) based on choline chloride and magnesium chloride hexahydrate: New details on the reaction mechanism and enthalpy–entropy compensation (EEC). J. Mol. Liq. 2023, 374, 121274. [Google Scholar] [CrossRef]
- Negi, T.; Kumar, A.; Sharma, S.K.; Rawat, N.; Saini, D.; Sirohi, R.; Prakash, O.; Dubey, A.; Dutta, A.; Shahi, N.C. Deep eutectic solvents: Preparation, properties, and food applications. Heliyon 2024, 10, e28784. [Google Scholar] [CrossRef]
- Rajapakse, H.; Raviadaran, R.; Chandran, D. Deep eutectic solvents for pretreatment of lignocellulosic biomass: Towards circular bioeconomy. Results Eng. 2025, 26, 105188. [Google Scholar] [CrossRef]
- Yao, Z.; Chong, G.; Guo, H. Deep Eutectic Solvent Pretreatment and Green Separation of Lignocellulose. Appl. Sci. 2024, 14, 7662. [Google Scholar] [CrossRef]
- Mazur, M.; Janeczko, T.; Gładkowski, W. Lipase-mediated Baeyer–Villiger oxidation of benzylcyclopentanones in ester solvents and deep eutectic solvents. Sci. Rep. 2022, 12, 14795. [Google Scholar] [CrossRef]
- Karaula, I.; Vasung, E.; Damjanović, A.; Panić, M.; Radović, M.; Radošević, K.; Bagović Kolić, M.; Cvjetko Bubalo, M.; Radojčić Redovniković, I. Formulation of Ready-to-Use Broccoli Extracts Rich in Polyphenols and Glucosinolates Using Natural Deep Eutectic Solvents. Molecules 2024, 29, 5794. [Google Scholar] [CrossRef]
- Cicco, L.; Dilauro, G.; Perna, F.M.; Vitale, P.; Capriati, V. Advances in deep eutectic solvents and water: Applications in metal- and biocatalyzed processes, in the synthesis of APIs, and other biologically active compounds. Org. Biomol. Chem. 2021, 19, 2558–2577. [Google Scholar] [CrossRef]
- Perna, F.M.; Vitale, P.; Capriati, V. Deep eutectic solvents and their applications as green solvents. Curr. Opin. Green Sustain. Chem. 2020, 21, 27–33. [Google Scholar] [CrossRef]
- Di Carmine, G.; Abbott, A.P.; D’Agostino, C. Deep eutectic solvents: Alternative reaction media for organic oxidation reactions. React. Chem. Eng. 2021, 6, 582–598. [Google Scholar] [CrossRef]
- Scarpelli, R.; Bence, R.; Cano, N.C.H.; Procopio, A.; Wunderlin, D.; Nardi, M. A Review on the Use of Deep Eutectic Solvents in Protection Reactions. Molecules 2024, 29, 818. [Google Scholar] [CrossRef]
- Allegretti, C.; Gatti, F.G.; Marzorati, S.; Rossato, L.A.M.; Serra, S.; Strini, A.; D’Arrigo, P. Reactive Deep Eutectic Solvents (RDESs): A New Tool for Phospholipase D-Catalyzed Preparation of Phospholipids. Catalysts 2021, 11, 655. [Google Scholar] [CrossRef]
- Buzatu, A.R.; Todea, A.; Peter, F.; Boeriu, C.G. The Role of Reactive Natural Deep Eutectic Solvents in Sustainable Biocatalysis. ChemCatChem 2024, 16, e202301597. [Google Scholar] [CrossRef]
- Suthar, K.J. Natural Deep Eutectic Solvents in Extraction Science: Progress, Challenges, and Future Prospects. Sep. Sci. Plus 2025, 8, e70075. [Google Scholar] [CrossRef]
- Buzatu, A.R.; Soler, M.A.; Fortuna, S.; Ozkilinc, O.; Dreavă, D.M.; Bîtcan, I.; Badea, V.; Giannozzi, P.; Fogolari, F.; Gardossi, L.; et al. Reactive natural deep eutectic solvents increase selectivity and efficiency of lipase catalyzed esterification of carbohydrate polyols. Catal. Today 2024, 426, 114373. [Google Scholar] [CrossRef]
- Molnar, M.; Gašo-Sokač, D.; Komar, M.; Jakovljević Kovač, M.; Bušić, V. Potential of Deep Eutectic Solvents in the Extraction of Organic Compounds from Food Industry By-Products and Agro-Industrial Waste. Separations 2024, 11, 35. [Google Scholar] [CrossRef]
- Allegretti, C.; Bellinetto, E.; D’Arrigo, P.; Griffini, G.; Marzorati, S.; Rossato, L.A.M.; Ruffini, E.; Schiavi, L.; Serra, S.; Strini, A.; et al. Towards a Complete Exploitation of Brewers’ Spent Grain from a Circular Economy Perspective. Fermentation 2022, 8, 151. [Google Scholar] [CrossRef]
- Allegretti, C.; Bellinetto, E.; D’Arrigo, P.; Ferro, M.; Griffini, G.; Rossato, L.A.M.; Ruffini, E.; Schiavi, L.; Serra, S.; Strini, A.; et al. Fractionation of Raw and Parboiled Rice Husks with Deep Eutectic Solvents and Characterization of the Extracted Lignins towards a Circular Economy Perspective. Molecules 2022, 27, 8879. [Google Scholar] [CrossRef]
- Calcio Gaudino, E.; Manzoli, M.; Testa, M.L.; La Parola, V.; Grillo, G.; Cravotto, G.; Acciardo, E.; Tabasso, S. Batch and Flow Green Microwave-Assisted Catalytic Conversion of Levulinic Acid to Pyrrolidones. ChemSusChem 2024, 17, e202301200. [Google Scholar] [CrossRef]
- Gulati, S.; John, S.E.; Shankaraiah, N. Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects. Beilstein J. Org. Chem. 2021, 17, 819–865. [Google Scholar] [CrossRef]
- Ching Lau, C.; Kemal Bayazit, M.; Reardon, P.J.T.; Tang, J. Microwave Intensified Synthesis: Batch and Flow Chemistry. Chem. Rec. 2019, 19, 172–187. [Google Scholar] [CrossRef]
- Kitchen, H.J.; Vallance, S.R.; Kennedy, J.L.; Tapia-Ruiz, N.; Carassiti, L.; Harrison, A.; Whittaker, A.G.; Drysdale, T.D.; Kingman, S.W.; Gregory, D.H. Modern Microwave Methods in Solid-State Inorganic Materials Chemistry: From Fundamentals to Manufacturing. Chem. Rev. 2014, 114, 1170–1206. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, C.; Huang, H.; Guo, W.; Yu, J.; Qiu, J. Carbon-enabled microwave chemistry: From interaction mechanisms to nanomaterial manufacturing. Nano Energy 2021, 85, 106027. [Google Scholar] [CrossRef]
- Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Mater. Today Nano 2020, 11, 100076. [Google Scholar] [CrossRef]
- Bilecka, I.; Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2010, 2, 1358–1374. [Google Scholar] [CrossRef]
- Li, Y.; Fabiano-Tixier, A.S.; Vian, M.A.; Chemat, F. Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC Trend. Anal. Chem. 2013, 47, 1–11. [Google Scholar] [CrossRef]
- Srogi, K. A Review: Application of Microwave Techniques for Environmental Analytical Chemistry. Anal. Lett. 2006, 39, 1261–1288. [Google Scholar] [CrossRef]
- Nagahata, R.; Takeuchi, K. Encouragements for the Use of Microwaves in Industrial Chemistry. Chem. Rec. 2019, 19, 51–64. [Google Scholar] [CrossRef]
- Garcia-Garcia, G.; Rahimifard, S.; Matharu, A.S.; Dugmore, T.I.J. Life-Cycle Assessment of Microwave-Assisted Pectin Extraction at Pilot Scale. ACS Sustain. Chem. Eng. 2019, 7, 5167–5175. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Z.; Xiouras, C.; Stefanidis, G.D.; Li, X.; Gao, X. Fundamentals and applications of microwave heating to chemicals separation processes. Renew. Sustain. Energy Rev. 2019, 114, 109316. [Google Scholar] [CrossRef]
- Priecel, P.; Lopez-Sanchez, J.A. Advantages and Limitations of Microwave Reactors: From Chemical Synthesis to the Catalytic Valorization of Biobased Chemicals. ACS Sustain. Chem. Eng. 2019, 7, 3–21. [Google Scholar] [CrossRef]
- Wang, N.; Zou, W.; Li, X.; Liang, Y.; Wang, P. Study and application status of the nonthermal effects of microwaves in chemistry and materials science—A brief review. RSC Adv. 2022, 12, 17158–17181. [Google Scholar] [CrossRef]
- Díaz-Ortiz, Á.; Prieto, P.; de la Hoz, A. A Critical Overview on the Effect of Microwave Irradiation in Organic Synthesis. Chem. Rec. 2019, 19, 85–97. [Google Scholar] [CrossRef]
- Li, H.; Qu, Y.; Yang, Y.; Chang, S.; Xu, J. Microwave irradiation—A green and efficient way to pretreat biomass. Bioresour. Technol. 2016, 199, 34–41. [Google Scholar] [CrossRef]
- Serra, S.; D’Arrigo, P.; Rossato, L.A.M.; Ruffini, E. Microbial Fermentation of the Water-Soluble Fraction of Brewers’ Spent Grain for the Production of High-Value Fatty Acids. Fermentation 2023, 9, 1008. [Google Scholar] [CrossRef]
- Kyriakoudi, A.; Radojčić Redovniković, I.; Vidović, S.; Radošević, K.; Andreou, T.; Mourtzinos, I.; Cvjetko Bubalo, M. Coupling deep eutectic solvents with innovative extraction techniques towards plant derived bioactive compositions. RSC Sustain. 2024, 2, 1675–1691. [Google Scholar] [CrossRef]
- Yan, L.; Huertas-Alonso, A.J.; Liu, H.; Dai, L.; Si, C.; Sipponen, M.H. Lignin polymerization: Towards high-performance materials. Chem. Soc. Rev. 2025, 54, 6634–6651. [Google Scholar] [CrossRef]
- Zheng, Y.; Moreno, A.; Zhang, Y.; Sipponen, M.H.; Dai, L. Harnessing chemical functionality of lignin towards stimuli-responsive materials. Trends Chem. 2024, 6, 62–78. [Google Scholar] [CrossRef]
- Ryu, J.; Zhang, M.; Wang, Y.; Li, R.; Kim, K.H.; Ragauskas, A.J.; Leem, G.; Park, M.B.; Yoo, C.G. Impacts of Hydrogen Bond Donor Structures in Phenolic Aldehyde Deep Eutectic Solvents on Pretreatment Efficiency. Energy Fuels 2024, 38, 16441–16450. [Google Scholar] [CrossRef]
- Zhu, B.; Ge, H.; Wei, J.; Xu, Y.; Wang, S.; Li, B.; Xu, H. Comprehensive analysis of lignin dimer dissolution microscopic mechanism in different aromatic-based deep eutectic solvent. Ind. Crops Prod. 2024, 222, 119736. [Google Scholar] [CrossRef]
- Rossato, L.A.M.; Morsali, M.; Ruffini, E.; Bertuzzi, P.; Serra, S.; D’Arrigo, P.; Sipponen, M. Phospholipase D Immobilization on Lignin Nanoparticles for Enzymatic Transformation of Phospholipids. ChemSusChem 2024, 17, e202300803. [Google Scholar] [CrossRef]
- McKenna, G.B. Glass formation and glassy behavior. In Comprehensive Polymer Science: The Synthesis, Characterization, Reactions & Applications of Polymers; Pergamon Press: Oxford, UK, 1989; Volume 2, pp. 311–362. [Google Scholar]
- Schoofs, L.; Thiele, B.; Tonn, J.; Langletz, T.; Herres-Pawlis, S.; Jupke, A.; Grande, P.M.; Klose, H. Structural Changes of Lignin during OrganoCat Processing. Energy Fuels 2024, 38, 4192–4202. [Google Scholar] [CrossRef]
- Addison, B.; Dickwella Widange, M.C.; Pu, Y.; Ragauskas, A.J.; Harman-Ware, A.E. Solid-state NMR at natural isotopic abundance for bioenergy applications. Biotechnol. Biofuels Bioprod. 2025, 18, 46. [Google Scholar] [CrossRef]
- Martínez, A.T.; Almendros, G.; González-Vila, F.J.; Fründ, R. Solid-state spectroscopic analysis of lignins from several Austral hardwoods. Solid State Nucl. Magn. Reson. 1999, 15, 41–48. [Google Scholar] [CrossRef]
- Okur, M.; Eslek Koyuncu, D.D. Investigation of pretreatment parameters in the delignification of paddy Husks with deep eutectic solvents. Biomass Bioenergy 2020, 142, 105811. [Google Scholar] [CrossRef]
- Foster, C.E.; Martin, T.M.; Pauly, M. Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part I: Lignin. J. Vis. Exp. 2010, 37, e1745. [Google Scholar] [CrossRef]
- D’Arrigo, P.; Rossato, L.A.M.; Serra, S. Sustainable production of pure L-arabinose from brewer’s spent grain biomass. Biomass Convers. Biorefin. 2024. [Google Scholar] [CrossRef]
- Allegretti, C.; Boumezgane, O.; Rossato, L.; Strini, A.; Troquet, J.; Turri, S.; Griffini, G.; D’Arrigo, P. Tuning Lignin Characteristics by Fractionation: A Versatile Approach Based on Solvent Extraction and Membrane-Assisted Ultrafiltration. Molecules 2020, 25, 2893. [Google Scholar] [CrossRef] [PubMed]
- Bellinetto, E.; Regoli, S.; Barni, R.; Canevali, C.; Boumezgane, O.; Zoia, L.; Riccardi, C.; Turri, S.; Griffini, G. Enhanced performance and reprocessability in polypropylene-lignin blends through plasma treatment. J. Bioresour. Bioprod. 2025, 10, 170–186. [Google Scholar] [CrossRef]
- Bennett, A.E.; Rienstra, C.M.; Auger, M.; Lakshmi, K.V.; Griffin, R.G. Heteronuclear decoupling in rotating solids. J. Chem. Phys. 1995, 103, 6951–6958. [Google Scholar] [CrossRef]
Sample | Water-Soluble Fraction | Hemicellulose | Cellulose | Lignin | Inorganic Residue |
---|---|---|---|---|---|
BSG | 25 | 28 | 25 | 22 | ≤1 |
r-Rice Husk | 6.5 | 19.5 | 43 | 19 | 12 |
p-Rice Husk | 6.5 | 27 | 36 | 18.5 | 12 |
Rapeseed | 48 * | 10 | 10 | 15 | 2 |
Hemp | 13 | 25 | 27 | 26 | 9 |
Sample | Rhamnose | Fucose | Arabinose | Xylose | Mannose | Glucose | Galactose |
---|---|---|---|---|---|---|---|
BSG | 3.0 | 1.0 | 29 | 65 | - | - | 2.0 |
r-RH | 0.4 | 0.5 | 49.0 | 44.9 | - | 1.2 | 4.0 |
p-RH | 0.2 | 0.5 | 22.6 | 69.2 | - | 4.9 | 2.6 |
Rapeseed | - | - | 47 | 27 | 8.0 | 1.0 | 17.0 |
Hemp | - | - | 34 | 60 | 2.0 | 1.0 | 3 |
Biomass | Heating Mode | Arabinose | Xylose | Galactose | Mannose | Glucose | Ratio H/C * | Ratio C/H * |
---|---|---|---|---|---|---|---|---|
BSG | CHM | 13 | 11 | 0 | 0 | 76 | 0.32 | 3.13 |
MWT | 15 | 43 | 0 | 0 | 42 | 1.38 | 0.72 | |
r-RH | CHM | 15 | 14 | 0 | 0 | 71 | 0.48 | 2.08 |
MWT | 16 | 21 | 0 | 0 | 63 | 0.59 | 1.70 | |
p-RH | CHM | 6 | 13 | 0 | 0 | 81 | 0.24 | 4.17 |
MWT | 8 | 40 | 0 | 0 | 52 | 0.92 | 1.10 | |
Rapeseed | CHM | 31 | 19 | 12 | 15 | 23 | 3.41 | 0.29 |
MWT | 43 | 25 | 11 | 2 | 19 | 4.39 | 0.23 | |
Hemp | CHM | 11 | 24 | 0 | 0 | 65 | 0.54 | 1.85 |
MWT | 16 | 32 | 0 | 0 | 52 | 0.90 | 1.11 |
Lignin Sample | Mn (g/mol) | Mw (g/mol) | Ð | |
---|---|---|---|---|
Source | Heating Mode | |||
BSG | CHM | 820 | 1580 | 1.93 |
MWT | 1080 | 1560 | 1.36 | |
r-RH | CHM | 1360 | 5195 | 3.82 |
MWT | 1590 | 6260 | 3.94 | |
p-RH | CHM | 1310 | 3860 | 2.95 |
MWT | 1235 | 3790 | 3.07 | |
Rapeseed | CHM | 840 | 1710 | 2.04 |
MWT | 810 | 1660 | 2.05 | |
Hemp | CHM | 1315 | 3090 | 2.35 |
MWT | 1365 | 3210 | 2.35 | |
Protobind 1000 | 830 | 2800 | 3.37 |
Lignin Sample | Vanillin Equivalent Content (mmol/g) | |
---|---|---|
Source | Heating Mode | |
BSG | CHM | 1.2 |
MWT | 1.4 | |
r-RH | CHM | 1.6 |
MWT | 1.9 | |
p-RH | CHM | 1.6 |
MWT | 2.3 | |
Rapeseed | CHM | 2.8 |
MWT | 3.8 | |
Hemp | CHM | 1.7 |
MWT | 2.2 | |
Protobind 1000 | 3.1 |
Signal (cm−1) | Assignment |
---|---|
3400 | O–H stretching |
2925 | C–H stretching of methyl and methylene groups |
2850 | |
1744 | C=O stretching of nonconjugated (1744 and 1712 cm−1) and conjugated (1656 cm−1) carbonyl/carboxyl groups in carbohydrate species |
1712 | |
1656 | |
1600 | Aromatic skeletal vibrations |
1515 (reference) | |
1460 | C–H bending of methyl and methylene groups |
1424 | Aromatic skeletal vibrations (ring stretching coupled to C–H bending) |
1380 | Ring breathing of syringyl units with C–O stretching |
1266 | Ring breathing of guaiacyl units with C–O stretching |
1214 | C–C and C–O stretching of guaiacyl and condensed guaiacyl units |
1125 | C–H bending of syringyl units |
1090 (shoulder) | C–O stretching of secondary alcohols and aliphatic ether |
1033 | C–H bending of guaiacyl units with C–O stretching of primary alcohols |
833 | C–H bending of guaiacyl and syringyl units |
Lignin Sample | Tg (°C) | |
---|---|---|
Source | Heating Mode | |
BSG | CHM | 151 |
MWT | 139 | |
r-Rice Husk | CHM | 161 |
MWT | 151 | |
p-Rice Husk | CHM | 162 |
MWT | 146 | |
Rapeseed | CHM | 104 |
MWT | 102 | |
Hemp | CHM | 150 |
MWT | 150 | |
Protobind 1000 | 151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pariani, L.C.; Castiglione, F.; Griffini, G.; Rossato, L.A.M.; Ruffini, E.; Strini, A.; Tessaro, D.; Turri, S.; Serra, S.; D’Arrigo, P. Synergistic DES–Microwave Fractionation of Agri-Food Biomasses in a Zero-Waste Perspective. Molecules 2025, 30, 3588. https://doi.org/10.3390/molecules30173588
Pariani LC, Castiglione F, Griffini G, Rossato LAM, Ruffini E, Strini A, Tessaro D, Turri S, Serra S, D’Arrigo P. Synergistic DES–Microwave Fractionation of Agri-Food Biomasses in a Zero-Waste Perspective. Molecules. 2025; 30(17):3588. https://doi.org/10.3390/molecules30173588
Chicago/Turabian StylePariani, Luca Carlomaria, Franca Castiglione, Gianmarco Griffini, Letizia Anna Maria Rossato, Eleonora Ruffini, Alberto Strini, Davide Tessaro, Stefano Turri, Stefano Serra, and Paola D’Arrigo. 2025. "Synergistic DES–Microwave Fractionation of Agri-Food Biomasses in a Zero-Waste Perspective" Molecules 30, no. 17: 3588. https://doi.org/10.3390/molecules30173588
APA StylePariani, L. C., Castiglione, F., Griffini, G., Rossato, L. A. M., Ruffini, E., Strini, A., Tessaro, D., Turri, S., Serra, S., & D’Arrigo, P. (2025). Synergistic DES–Microwave Fractionation of Agri-Food Biomasses in a Zero-Waste Perspective. Molecules, 30(17), 3588. https://doi.org/10.3390/molecules30173588